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SIGNAL AND NOISE IN NONLINEAR DEVICES

CHARLES A. GREENHALL *)

ABSTRACT - Independent signal and noise are presented to the input of a non-

linear device, and we ask how the output time function is to be decompo-
sed into an output signal and output noise. On the basis of two require-
ments on this decomposition we determine that the signal output is just
the conditional expectation of the output with respect to the original signal.
This makes the output signal and noise uncorrelated. The decomposition
is invariant to linear filtering. The signal output of a zero-memory device
is given by another zero-memory device acting on the input signal. The

output signal of a bandpass nonlinearity is written down in terms of an

integral. For the bandpass hard limiter in Gaussian noise this gives the output
signal amplitude very quickly in terms of Bessel functions. The antocorre-

lation of the output noise of a zero-memory device in Gaussian noise is

derived. Another possible definition of signal output is investigated and rejected.

1. Introduction.

When independent signal and noise are components of the input
to a nonlinear device such as a detector or bandpass limiter, these
two components are inextricably mixed in the output. Shutterly [11]
(and see also Campbell [6]) expresses the output of a zero-memory
device as a sum of products of signal and noise functions. However,
the concept of « output signal-to-noise ratio » is applied to nonlinear
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devices, which suggests that the output might be decomposed into

two uncorrelated components, to be called output signal and output
noise. Davenport [7] made such a decomposition for the hard limiter,
but in the autocorrelation or spectral domain. The purpose of this

paper is to make the same decomposition in the time domain on the
basis of general and simple requirements on such a decomposition.
This would be of help in tracing the progress of signal and noise

through a receiver containing nonlinear devices. We will define the

output signal and noise for a very broad class of black box devices,
and then specialize the result to zero memory devices and bandpass
zero-memory devices, including as a special case the bandpass limiter.

2. Def inition of Output Signal and Noise.

Suppose the « nonlinear device » has two time-varying real in-

puts set) and n(t)( - 00  t 00), and one output y(t), where the signal
s and noise n are sample functions of independent real stationary
processes.

The sample functions s and n are points of independent sample
spaces SZS and !1n which have probability measures Ps and Pn . Assume
that these processes have finite variance, E(s2(t))  oo, E(n2(t»  00 for
all t. For convenience we will take E(n(t)) = 0.

The output y(t)( - 00  t  00) of the device is determined by
the input functions s and n. Therefore we can consider y to be a sample
function of a random process Y(t, s, n) on the product probability space
flsxnn with the product probability PS .Pn . We require that the device
be time invariant; in other words, if the inputs are s(t- 6) and n,(t-B),
then the output is y(t- S). This guarantees that Y is a stationary process.
We also ask that

Our aim is to determine what is meant by the « signal » and « noise »
portions of y( t). In Davenport’s treatment of the bandpass limiter [7]
[8] the autocorrelation or spectrum of the output was calculated. These
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broke up naturally into a part due to signal only, and a part due to
noise and intermodulation between signal and noise. What we want

is a decomposition of the output in the time domain,

into output signal and noise portions.
We will place the following conditions on the decomposition (2.1)r o

i) For each t( - 00  t 00), sy(t) is a random variable of finite
variance on the original signal sample space !1s . The sy(t) form a statio--
nary process.

ii) For each t, the random variable ny(t) = y(t) - sy(t) is uncorre--

lated with all random variables in the space S=L2(!1s, Ps) of signal
random variables of finite variance, i. e., with all random variables f(s)
on fls such that E(f)  00. Thus

for all f in S.

It is enough to require (2.2) for all f of the form f(s)=F(s(tl),
... , I s(tk)), where ti , ... , tk are distinct times and F is a function of k

variables such that E[f(s)]  00.
It is too much to require that ny be independent of the original

signal process. Thus ny will in general depend both on input signal and
input noise.

Conditions (i) and (ii) imply that

since for f ixed t’, s,(t’) is a signal random variable which can replace f
in (2.2). Hence the power spectrum of y is, except possibly for a dc
component, the sum of the power spectra of sy and ny .

To see how far conditions (i) and (ii) determine sy and ny , we

write (2.2) as
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for all f in S. Then write y(t) as

Since E(ny) is just a constant, it belongs to S. Therefore sy(t)+E(ny)
is in S by (i), and ny(t)-E(ny) is orthogonal to S by (2.4). Thus for
fixed t, sy(t)+E(ny) is the projection p(t) = P(t, s) of the random variable
y(t) onto S, the « signal space ».

Furthermore, the random variables

where c is any constant, satisy (i) and (ii). (It may be shown that the
random variables p(t) form a stationary process.). Thus these conditions
determine the output signal and noise within a constant.

The projection p(t) has another significance. We know that p(t)
is an integrable random variable on fl, satisfying E(p(t) f ) =E(y(t) f ) for
all bounded measurable f on Os. This implies that p(t) is just the con-
ditional expectation of the random variable y(t) with respect to all the
random variables s(t’)( - 00  t’  00): p(t) = E(y(t) I set’), all t’). Since

(!1s, PS) and (!1n, Pn) are independent probability spaces, it may easily
be verified that this projection or conditional expectation may be written

We now set c = 0 in (2.5) and adopt as our definitions of output
signal and noise

Then E(sy(t)) = E(y(t)), E(ny(t»=O. Equation (2.6) shows that the
signal portion of the output at time t is obtained by fixing the input
signal and averaging the output at time t over all possible noise inputs
belonging to the noise sample space On. (For causal devices the output
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is determined by the past s(t’), n(t’)(t’ t), but this does not falsify our
statements.)

The definition (2.7) may also be of use for non-stationary input
signals. The conditions (i) and (ii), with stationarity removed, yield that
sy(t) = p(t) + c(t), where c(t) is an arbitrary deterministic function of

time. Some further condition (like c=constant) is needed to define say
well enough.

3. Linear Filters and Zero-Memory Devices.

The conditional expectation in (2.7) is of course in no convenient
form for calculation, being an average over a whole function space. Ho-
wever, in the special case of a zero-memory device followed by a linear
filter (acting on the sum of the input signal and noise), the conditional
expectation reduces to ordinary integrals over real variables.

a) Linear Filter. Let

where x = s -~- n and the impulse response h satisfies

The condition (3.2) on h ensures that with probability one the inte-
gral (3 .1 ) exists for all t and that E(f)  00, given that E(x2)  w. We
will show that

where Sy and ny are defined by (2.7). The condition (3.2) and E(S2)  ~
ensures that (Hs)(t) is a random variable on !1s with finite variance, so
all we have to do is verify the projection property
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for all random variables f on !1s of finite variance. Thus

which is (3.4). With the definition (2.7), then, a linear filter does not
mix the signal and noise.

This property extends further. Suppose we follow the general non-
linear device of section 2 by a linear filter H. Thus the output of the
composite device is z(t) = (Hy)(t) = (Hsy)(t) + (Hny)(t). If we replace s

and n in (3.5) by sy and ny , and note that E( f ny(t)) = 0 by (ii) and
Eny= 0, we see that the analog of (3.4),

holds, and hence

We emphasize that sHy(t) is the projection of (Hy)(t) onto the original
signal space. The result (3.6) says that decomposition (2.7) is not affec-
ted by passage through a linear filter. The signal and noise outputs of
a device followed by a linear filter are obtained by letting the filter act
on the signal and noise outputs of the device. In particular, this will
allow us to treat bandpass non-linearities.

b) Zero-Memory Device.

Here we let

where F, the characteristic of the device, is a real-valued function of
two variables such that
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For fixed t we are dealing with only the two random variables s(t)
and n(t). Hence (2.6) and (2.7) become

where p is the probability density of n(t). As far as the signal is concer-
ned, the device acts like another device of characteristic G, which of course
depends on the noise density p(n). We will call G the signal characte-
ristic of the device. In the next section this will be illustrated by the
hard limiter. Blachman [1] [2] has considered this idea that the signal
output is a zero-memory function of the signal input, obtained by avera-
ring the output over the noise.

Now suppose the input signal and noise to this device F are narrow-
band about a center frequency wo . Let the signal have the representation
s(t) = V(t) sin (wot + 0(t)), V(t) 2:0, where V sin 0 and V cos 8 are nar-

rowband about zero frequency with bandwidths small compared with
~oo . Also, assume that the random variables V(t) and 0(t), t fixed, are
independent, that 0(t) is uniformly distributed in [0, 2~ ] , and that the
distribution of Vet) is independent of t. Then

Hence with probability one, we can expand G(V(t) sin 1» in a

Fourier series on 0::5 P::5 2’7t:

convergent in L2(0, 2x), where the Fourier coefficients ck are given by
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The same change of variables as was used in (3.8) will give that

For fixed t this converges in the mean. The terms in (3.10) are

the signal components in the narrow frequency zones about each

±kwo(k=0, 1, 2, ...). We can find a (nonrealizable) filter H satisfying
(3.2) whose complex transfer function is 1 in the kth zone and 0 in

all other zones (by making the transfer function smooth enough). If
such a filter passes the kth harmonic unchanged and annihilates all the

others, then by (3.6) the signal output of the device consisting of the zero-
memory device followed by H is

In the first zone, k =1, there are in-phase and quadrature compo-
nents sharing the original phase modulation 0(t). The amplitude modu-
lation is distorted by zero-memory characteristics Im ck and Re ck .

For zero-memory devices of form F(s(t)+n(t)), Blachman [ 1 ] [3]
and Doyle [9] obtain the output signal amplitude in the first zone by
averaging over the noise the component of the total bandpass output
in phase with the input signal. The resulting integral may be transformed
into (3.9) (k =1 ) under the condition that n(t) = A(t) sin ~(t), where A(t)
and ~(t) are independent random variables and ~(t) is uniformly distri-
buted. 

,

4. Bandpass Limiter.

An example of a zero-memory device is the ideal limiter, where

Henceforth the input noise net) will be a stationary Gaussian pro-
cess, with Fez)==0, E(n2)=rr. We easily calculate from (3.7) that the
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signal at the output of the hard limiter is

The signal characteristic G is a smooth limiter. For more general
noise densities, G has the shape of the distribution function of n(t).
For large signal-to-noise ratios the signal characteristic G is itself like
a hard limiter. For small signal-to-noise rations, G is almost linear, i.e.

Consider now the case of narrow-band signal and noise inputs.
The harmonic expansion (3.10) of sy(t) can be written

if k is even then by= 0.
Tausworthe [12] and Blachman [2] obtained the expression (4.3)

for the signal amplitude in the kth zone. We can avoid the usual hyper-
geometric functions and express (4.3) directly in terms of Bessel functions.
Integrate (4.3) by parts to obtain
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where the Im are modified Bessel functions of the first kind.
The signal power in the kth zone is

From this we can compute signal-to-noise ratio in this zone, since
the total power there is 8/( 1tk)2, and the signal and noise portions are
uncorrelated by our assumption (ii) on the signal-noise decomposition.

5. Noise and International Output.

In the case of a zero-memory device in Gaussian noise with mean

0, variance o- we will expand the noise portion ny(t) of the output in
a Hermite series. This is a convenient form for computing the output
noise autocorrelation and spectrum [5] [ 13 ] . We write

where

and the expansion in (5.1 ) converges in the mean. (The situation is
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analogous to (3.9)). But the r=0 term in (5.1) is just the signal portion
sy(t) since Ho=1. Thus

Because

(Mehler’s formula), the autocorrelation of ny is

where p( ’t) = cr-2E [n(t)n(t + ’t)].
Let s(t) have the stationary narrow-band form V(t)sin(D(t),

C(~)=~+8(f)+a, where a is a uniformly distributed constant phase.
Write

Let Vi=V(t), V2=V(t+-c), ~1=~(t), ~~=~(t-I--~), etc. It can be
shown that the terms in (5.4) are uncorrelated in the sense that

Hence
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This displays the autocorrelation of ny as a series of intermodulation
terms in the usual way.

Let us calculate the coefficients ark more explicitly for the hard

limiter, F(s, n) = sgn (s + n). For convenience let E(n2) =1. Then

where s is to be replaced by sla. Then

This procedure was used by Tikhonov and Amiantov [ 13 ] , and of
course other expressions for the ark exist [4] [7] [8] [10] [11] [13].
We display the expansions (5.3) and (5.5) to show the connection

between the existing theory and our decomposition 

6. Investigation of Another Definition of Signal Output.

An alternative definition of signal output might have been the cor-
responding « wide sense » conditional expectation west), the projection
of y(t) onto the subspace generated by linear combinations of the
random variables s(t’), (or t’:::; t). Then y(tl) - w(ti)
is orthogonal to w(t2), just as y(ti) - p(ti) is orthogonal to p(t2), so this
gives a decomposition in the spectral domain as before. In general, for
a zero-memory device, is not given by a zero-memory transformation
of the signal, even in the absence of noise. A sufficient condition that
w(t) be a zero-memory function of s(t), and thus w(t) = const s~t), is

that

for all t, t’, where f (t’, t) is not a random variable. We will proceed
to prove this: We can evaluate f by taking the expectation of (6.1)
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multiplied by s( t) :

the normalized autocorrelation. If G is a function such that E[ G2(s(t»]  00
then

Is should be noted that (6.1) is weaker than Barret and Lampard’s
condition [14], being merely a geometric condition on the joint distri-

bution of s( t), s( t’) .
Given a zero-memory device y(t) = F(s(t), n(t)) and the noise process,

let G be the signal characteristic, defined by (3.7). For all t, t’,

This demonstrates that As(tt is the projection 
We see that under the condition (6.1), which is satisfied by Gaussian

and sine-wave signals, the « linear » definition w(t) of the signal output
does not include distortion higher harmonics. These parts are classified
as « noise » even in the case of no input noise. For this reason we

would not want to consider w(t) the entire signal output.
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