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MONOMORPHISMS AND EPIMORPHISMS

IN ABSTRACT CATEGORIES

PIETRO ARDUINI *)

Classically 1) a subobject of an object A, in any category a, is
a monic 2) of codomain A. Hence: in the category of topological spaces,
as in that of topological groups, the real numbers system with the
discrete topology is a subobject of the real numbers system with the
usual topology; in the category of ordered sets and increasing functions,
a set ordered by equality is a subobject of any ordered set having
the same support. And so on.

Between the concepts, which, in particular, may allow for better
categorical definitions of subobject and quotient object, we recall: the

concept of bicategory introduced by Isbell [4] and generalized by
Wyler [10]; the definition of normal monamorphism 3) due to Ku-

ros [5]; the definitions of extremal monomorphism and canonical ca-
tegory in Sonner [8]; Wyler’s operational categories [9]. However
none of these concepts gives rise to fully satisfactory definitions of

subobject, quotient object, image and coimage 4); in particular, Son-

*) Lavoro svolto nell’ambito del gruppo di ricerca n. 20 del Comitato Nazio-
nale per la Matematica del C.N.R., a.a. 1967-8.

Istituto Matematico dell’UniversitA, via L. B. Alberti 4, 16132 Genova (Italy).
1) From Grothendieck [1] to Mitchell [7].
2) That is a left cancellable morphism.
3) This definition is referred only to the categories with zero morphisms: in

such a case, any normal monomorphism is a monomorphism with respect to the
definition in our section 1, but not vice versa.

4) Briefly. By means of a single bicategorical structure in the sense of Isbell,
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ner’s definitions have the feature that the composition of consecutive
extremal monomorphisms need not be an extremal monomorphism,
even if the category is canonical in his sense (see our section 8).

The aim of this paper is to propose, in full generality, « good »
definitions of monomorphism and epimorphism, testing them both from
a practical point of view (in categories of « structured sets » subobjects
must agree with subspaces; and dually) and from a theoric point of
view (there are properties that a « good » definition of monomorphism
or of epimorphism must satisfy).

Pursuing in this direction, in a succeeding paper, « good » defi-
nitions of image and coimage will be proposed and tested also from a
theoretic point of view (reducing the existence of image (resp. coimage)
for each morphism to the existence of a right (resp. left) adjoint of a
suitable forgetful functor).

A « good » self-dual and comprehensive definition of canonical

category (i.e. a category such that every morphism has a coimage-image
factorization) will then be at hand.

With regard to the underlying formal system and to logical diffi-

culties, which arise in categorical algebra, the naive point of view is

adopted and the word « set » is indiscriminately used: one may state

all the smallness hypothesises required by Von Neumann-Bernays-G6-
del system, or specify, when necessary, the suitable universes in the
sense of Grothendieck, or use Lawvere’s category of all categories,
accordingly to one’s taste.

the image and the coimage of a continuons function, in the category of topologi-
cal spaces, cannot be discriminated (see [4] page 575).

With regard to normal monomorphisms, in addition to the preceding footnote,
we may remark that: a theory with the self-dual axiom " 

Every morphism has
both a normal image and a conormal image » (the terminology is that of [6]) does
not cover a category as that of groups; a self-dual theory, general enough to cover
the category of groups, as that of Wyler [10], needs of a bicategorical machinery
which seems quite complicated and redundant with respect to the examples given.

Finally the theory of operational categories deals with categories of « structu-
red sets » only.

Recently new theories have been developed by Heller and Michalowicz (see
Notices of the A.M.S. 15 (1968) page 467).
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Other conventions: the dual to item m.n.p. is denoted or referred
to by m.n.p. * ; « f x » stands for « f(x) » whenever there is no danger of
confusion; for undefined terms, excepting adjoint functors, reference
is made to Mitchell [7].

All the proofs are easy; however they are written down in section
7, so that the paper can be read by anybody who knows such defini-
tions as those of category, functor, natural transformation and a few
others.

The content of this paper is therefore as follows:

1. Definitions and elementary properties.
2. Examples.
3. Other elementary properties.
4. Preservation or ref lection properties.
5. Injectives, projectives.
6. Subobjects, quotient objects.
7. Proofs.

8. Appendix.
References.

1. Def initions and elementary properties.

1.1 DEFINITION. Let d be any category. A morphism A’ ~ A
is a monomorphism iff:

(MI) A’ -~ A is monic;

(Mn) for any commutative square

with X --~ X" epic, there is a (necessarily unique 1)) morphism X" -+ A’

5) Because X -~ X" is epic.
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such that the diagram

commutes.

1.1.1 NOTE. The axioms (MI) and (Mil) are independent.

1.1 * DEFINITION. Let (5 be any category. A morphism A -~ A"
is an epimorphism iff:
(EI) A - A" is epic;
(E,,) for any commutative square

with X’-&#x3E; X monic, there is a (necessarily unique 6») morphism A" -~ X’
such that the diagram

commutes.

1.2 PROPOS ITION. I f A2 ~ Al and A are monomorphisms,
then their composition A2 - A is a monomorphism.

1.3 PROPOSITION. If the composition A2 -~ A is a mono-

morphism, then A2 is a monomorphism.

1.3.1 COROLLARY. A coretraction is a monomorphism.

1.3.2 EXAMPLES. (i) The diagonal A : A-&#x3E; A X A (in a category
with finite products) is a monomorphism.

(ii) The injections Ai - XAi (in a category with products and
i

6) Because X’-&#x3E; X is monic.
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zero morphisms) are monomorphisms.

1.4 PROPOSITION. An epic monomorphism is an isomorphism.

1.5 PROPOSITION. A morphism is an isomorphism iff it is both
a monomorphism and an epimorphism.

2. Examples.

2.1 In each of the following categories every monic is a monomorphism:
sets; pointed sets; lattices (with lattice morphisms); groups; exact categories; com-
plexes of an exact category; corrispondences in an abelian category.

2.2 Categories, whose monomorphisms are just (up to isomorphisms) in-

clusions of ordinary subspaces, are, e.g., the following: (partly) ordered sets;
lattices (with lattice morphisms); groups; topological spaces; pointed topological
spaces; uniform spaces; topological groups; linear topological spaces; topological
spaces with open 7) (or closed or proper) maps; compact (Hausdorff) spaces 8).

2.3 Categories, whose monomorphisms are just (up to isomorphisms) inclusions
of closed subspaces, are, e.g., the following: Hausdorff spaces; locally compact
spaces; metric spaces with continuous (or Lipschitzian) maps; locally compact
abelian groups; linear Hausdorff topological spaces; linear normed spaces; Banach
spaces; nuclear spaces.

2.3.1 REMARK. One need not wonder that, from the categorical point of

view, the closed subspaces of an Hausdorff space are its only subobjects. Take the
following definitions:

(a) A is an absolute retract in the category of topological spaces iff every
topological imbedding A ~ X is a coretraction;

(b) A is an absolute retract in the category of metric spaces (with con-
tinuous maps) iff every closed topological imbedding A-+X is a coretraction.

Definitions (a) and (b) seem not to agree because of that « closed &#x3E;&#x3E; in (b).
With reference to 1.1, 2.2, 2.3, they are both special cases of the following:

7) In such a category, subspaces are open subsets with the relative topology,
because the inclusion map must be open. Similarly in the other cases.

8) In such a category, subspaces are closed subsets with the relative topology,
because they must be compact.
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2.4 DEFINITION. A is an absolute retract in a category a iff every mono-
morphism in a of domain A is a coretraction.

2.5 In an ordered category (that is in an ordered set regarded as a category)
the identities are the only monomorphisms.

3. Other elementary properties.

In this section we relate monomorphisms with equalizers, cartesian
squares 9), limits, functor categories.

Throughout the section, unless otherwise stated, we are working in
any category 6[.

0153

3.1 PROPOSITION. 1 f K - A is an equalizer for A B, then
f3

K - A is a monomorphism.

3.1.1 COROLLARY. Let

be a cartesian square. If the product Al X A2 exists, then the canonical
morphism P ~ Al X A2 is a monomorphism.

3.2 PROPOS ITION. Let

be a cartesian square. If A, -&#x3E; A is a monomorphism, then so is P -+ A2 .

3.2.1 REMARKS. Consider the category generated by the following
commutative diagram

9) Other names for the same thing are: pullback diagram, couniversal square,
produit fibrd, meet, co-amalgamation.
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where the composition morphisms from X to P2 are equal, and similarly
the composition morphisms from PI to Y.

It is easily seen that the square is bicartesian (i.e. cartesian and co-
cartesian). However,:’ (i) P2 is an epimorphism while P, A2 is

not even epic; (ii) PI --~ A2 is a monomorphism while Al - P2 is not

even monic.

«.
3.3 PROPOSITION. Let (A’i ~ At)fe7 be a translation between in-

verse systems over an ordered set I (in a category et with inverse limits
over I) . Then monomorphism whenever aci is a monomor-

+-

phism for each i E I.

3.3.1 REMARK. Proposition 3.3 extends, in an obvious way, to

the case of limits over any category I.

3.3.2 COROLLARY. If family of monomorphisms in a

category with products, then Xai is a monomorphism.
i

3.4 REMARKS. Given categories é1 and I, let us denote by 6[,
the category of functors from I to d and of natural transformations
between such functors. Then we have:

(i) Contrary to what happens for monics, in ¿tl a pointwise mo-
nomorphism 1°) need not be a monomorphism.

Take, for example, as d the category generated by the following
commutative diagram

lo) I.e. a natural transformation F’ --~F such that F’i -~ Fi is a monomorphism
for each object i in I.
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where the composition morphisms from Xo to Y like those from A’o to Z
like those from A’, to W are equal, and as I the ordinal 2, i.e. the category
pictured by

Then the symbols used undoubtedly suggest what we mean with functors
like A’, A, X, X" and with natural transformations like A’ 2013&#x3E; A, X ~ X",
X 2013&#x3E; A’, X~ 2013~ A in a2. Now it is easy to check that A’ 2013&#x3E; A is a point-
wise monomorphism and X ~ X" is epic (but not pointwise). Since

there is no morphism from X’ o to A’o the square

cannot be filled in commutatively with a natural transformation from
X" to A’, so that A’ -~ A is not a monomorphism in a2.

Conversely:

(ii) A monomorphism in al need not be a pointwise mono-
morphism.
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En effect let us add, in a commutative way, a morphism X"o --~ A’o
to the foregoing diagram; let a be the category generated by the diagram
so obtained (under the same assumptions as above) and let again I be
the ordinal 2. Then it is easily seen that, in x ~ X" is an epi-
morphism which is not even a pointwise epic: in other words we have
a counterexample dual with regard to that required.

However, with the symbols introduced above, we have trivially:

3.4.1 PROPOSITION. In é1,I every pointwise monomorphism is a

monomorphism whenever every epic is a pointwise epic.

Likely, in order to get that in every epic is a pointwise epic,
suitable hypothesises on the categories 9L and I must be made from time
to time. For example, it is easily seen that each of the following
conditions:

(a) I is an ordered category and fl has a zero object;

(b) I is a discrete category 11)

is a sufficient one, so that we have respectively:

3.4.2 COROLLARY. If I is an order category and (5 has a zero

object, then in é1,I every pointwise monomorphism is a monomorphism.

3.4.3 COROLLARY. If I is a discrete category then in every

pointwise monomorphism is a monomorphism.

4. Preservation or ref lection properties.

Contrary to monics, a faithful functor need not reflect monomor-

phisms (different but comparable uniform structures over the same set
may induce the same topology; over a non-zero group there are at least
two comparable and group-compatible topologies; and so on). The same
happens also for inclusions, possibly full, of subcategories (the inclusion
Hausdorff spaces - Topological spaces gives an example).

11) I.e. a category with only identies as morphisms (in other words: a set).
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In this section we first give sufficient conditions in order that a
functor reflects monomorphisms or epimorphisms and we relate such
properties with adjointness; afterwards we relate adjointness with pre-
servation of monomorphisms or epimorphisms; as a consequence we

obtain at last that monomorphisms and epimorphisms are invariant with
respect to equivalences.

4.0 With respect to a functor lB, we shall deal with
the following statements:

(A) for any morphism X -~ A and any monic A’ - A, X - A
f actors 12) through A’ ~ A (in d), whenever TX -~ TA factors through
TA’ - TA (in 

(B) any commutative square

with X -+ X" epic and A’--&#x3E; A monic, can be filled in commutatively
with a morphism X" -+ A’ (in a) whenever its image

does (in e~3~ ,

which the following lemmas hold for:

4.0.1 LEMMA. (A) implies (B).

4.0.1 * LEMMA. (A*) implies (B) 13).

4.0.2 LEMMA. If T: full and faithful functor, then
T satisfies (A), (A*) and (B).

The announced reflection properties are:

12) Necessarily in a unique way.
13) Note that (B) is self-dual.
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4.1. PROPOSITION. Let T: ~ --~ em be an epic preserving and monic
reflecting functor. Then T reflects monomorphisms whenever satisfies
any one of (A), (A*), (B).

4.1.1 COROLLARY. A full and faithful functor which preserves

epics (resp. monics) reflects monomorphisms (resp. epimorphisms).

4.1.2 COROLLARY. If ~!’ is a full subcategory of a category ~!,
then the inclusion functor reflects monomorphisms (resp. epimorphisms)
whenever preserve epics (resp. monics) .

Reflection properties and adjointness 14) are related as follows.

14) Hereafter, whenever we deal with a pair of adjoint functors

with S left adjoint to T, we understand that a quadruple of natural
transf ormations :

so is chosen as to satisfy the following equations:
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4.2 PROPOSITION. Suppose a functor T: a. have a left ad-
joint S: em --~ ~. Then the following statements are equivalent.

(a) T is faithful and satisfies (A).
(b) T is faithful and satisfies (B).
(c) T reflects epics and satisfies (B).
(d) T reflects epimorphisms.
(e) If 0: B -&#x3E; TA is an epimorphism, then is an epi-

morphism.
(f) ~A: ST A -+ A is an epimorphism for all objects A of et.

4.2.1 COROLLARY. A full and faithful functor, which has a left
adjoint, reflects epimorphisms.

4.2.2 COROLLARY. Let ~’ a full subcategory of a category ~. If
the inclusion functor has a left adjoint, then it reflects epimorphisms.

4.2.3 EXERCI SE. The inclusion Hausdorff spaces -+ Topological
spaces has no right adjoint.

4.2.4 COROLLARY. Suppose a functor T: 61. have both a left
adjoint S: em - 61. and a right adjoint --~ ~,. Then the following
statements are equivalent.

(a) T reflects epimorphisms.
(b) T reflects monomorphisms.

which together the following further equations yield:

As a rule, the equations above will be written down or quoted without
any reference to this footnote.
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(c) ,~,A (S, T) ~ STA - A is an epimorphism for all objects A of a.
(d) CPA (T, u): A ~ UTA is a monomorphism for all objects A

of a.

The relationship between adjointness and preservation reads as fol-
lows.

4.3 PROPOSITION. If T: has a left adjoint -+ a,
then T preserves monomorfisms.

4.3.1 REMARK. Let (5 be a category with products. If I is a set

(i.e. a discrete category), then X can be envisaged as a functor from
iel

to (5, and more precisely as the right adjoint of a suitable « constant &#x3E;&#x3E;

functor. Hence combining 4.3 and 3.4.3 we get another proof of 3.3.2.
Likewise, if (5 is a category with zero objects, 3.3 can be proved

combining 4.3 and 3.4.2. However, if a has no zero object the same
argument does not apply: en effectt, since any category has inverse

limits over the ordinal 2, the obstruction to such a proof is given by
the remark (i) of 3.4. Hence, after all, proposition 3.3 (and a fortiori
its generalization 3.3.1) stands apart.

Combining 4.2.1 and 4.3 we obtain the following:

4.4 PROPOSITION. If a functor T is full, faithful and has a left
adjoint, then T preserves monomorphisms and reflects epimorphisms.

In particular

4.4.1 COROLLARY. Let fl’ a full subcategory of a category a. If
the inclusion functor has a left adjoint, then it preserves monomor-

phisms and reflects epimorphisms.

4.5 Recall that an equivalence between a category (5 and a ca-
tegory 18 (see Grothendieck [1]) is a quadruple (S, T, u, -c) consisting
of covariant functors
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and natural equivalences

such that

Now it is easily seen that, if (S, T, o-, T) is such a quadruple, then S is
both a left and a right adjoint of T with all the cp, ~ natural equivalences.
Hence combining 4.2.4, 4.3 and 4.3* we get:

4.5.1 PROPOSITION. Monomorphisms and epimorphisms are invar-
iant with respect to equivalences.

5. Injectives, projectives.

5.1 DEFINITIONS. An object Q in a category et is injective iff for
every diagram

with A’-&#x3E; A a monomorphism, there is a (not necessarily unique) mor-
phism A ~ Q making the diagram commutative.

A category et has enough injectives iff very object A in é1 admits
a monomorphism A ~ Q, with Q an injective.

The dual to injective is projective.

5.1.1 EXAMPLE. The injectives in the category of ordered sets are
just the complete lattices. Furthermore the category has enough injectives.

5.1.2 NOTE. The definition of injective in 5 .1 is obtained from
Mitchell’s one simply by taking « monomorphism » instead of « monic »
(see [ 7 ] ).

(With respect to Mitchell’s definition, the only injective in the

category of ordered set is, up to isomorphisms, the ordinal 1).



149

Conversely our definition agrees with that of Heller (see [2]).

As usual we get:

5.2 PROPOSITION. A retract of an injective is an injective.

5.3 PROPOSITION. Every injective is an absolute retract (in any
category). Conversely in a category with enough injectives, every absolute
retract is an injective.

4 PROPOSITION. I f Q=XQi and if each Qi is injective, then Q
i

is injective. Conversely, in a category with zero morphisms, if Q is

injective then each Qi is injective.

Other properties can be reached in a standard way. For example
we have:

5 PROPOSITION. Suppose a functor T: tl have a left ad-
joint ~ c‘~, which preserves monomorphisms. Then T preserves
injectives.

5.5.1 COROLLARY. Let ~’ be a full subcategory of a category et. If
the inclusion functor has a left adjoint which preserves monomorphisms,
then an object Q’ in (Ll’ is injective in (Ll’ iff it is injective in et.

6. Subobjects, quotient objects.

After a survey of the properties of monomorphisms listed in the

preceding sections, the following definition seems correct.

6.1 DEFINITION. Let A be an object in any category ~L. A mor-

phism ac in ð is a subobject o f A iff a is a monomorphism of co-
domain A.

The domain of rL will be denoted A(1. and will be called, by a
standard « abus de langage », a subobject of A.

Such locutions as « inclusion », « contained » and such symbols as
« cr » are at hand.
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6.1.1 Other definitions and Remarks. Given subobjects ocl and a~2

of an object A, we shall write if there is a morphism y such that
ai = a2y.

As usual: and oc2  a3 implies oci  oc3 , so that the set
of subobjects of an object is a pre-ordered set.

Further: and is equivalent to « there is an iso-

morphism y such that ».

Again: unions and intersections of families of subobjects of an

object A are to be understood in their usual meaning in pre-ordered
sets. So a= U Aa is equivalent to Aa c Aa. for each i and A«cAm, ,

i

for any Aa.’ , which contains each Aa. (Obviously Aa is determined up
to isomorphisms).

6.1.2 NOTE. All properties of monomorphisms seen in the preced-
ing sections may be rewritten in terms of subobjects. In order to obtain
stronger properties of subobjects, a more rich structure than that of

category is needed.
For example by 3.2, 1.2 and by definitions it is easily seen that

given subobjects ol and a2 of an object A, if

is a cartesian square, then the composition from P to A is the inter-

section of ai and oc2. Nevertheless the vice versa may fail unless the

category has images (see our introduction).
Therefore we must put off a more detailed study of subobjects.

By duality we have:

6.1 * DEFINITION. Let A be an object in any category ~. A mor-

phism a in ét is a quotient object of A iff a is an epimorphism of do-
main A.

The codomain of ~c will usually be denoted by A" and will be
called a quotient object of A; oc itself will be referred to as the projection
of A onto All.

Definitions and remarks, dual to those for subobjects, obviously
stand.
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7. Proofs.

Hereafter, whenever we write « It is known that ... » we understand « and
the proof may be found in [7] ».

7.0 Some useful trivialities.

In order to prove that a morphism satisfies (MIj) or dually (EII), the following
obvious lemma or its dual or their corollary are frequently used.

LEMMA. Suppose that in the diagram

the morphism X -~ X" be epic. If the square and the upper triangle commute,
then also the lower triangle commutes.

COROL LARY. Suppose that in the diagram

X -~ X" be epic and A’ ~ A be monic. Then the diagram commutes i f f the square
und any one of the triangles commute.

7.1 Proof s relative to section 1.

PROOF OF I.1.1 The most of the categories listed in section 2 have monics
which are not monomorphisms.

Conversely the morphism A’-+ A satisfies (Mu) but not (MI) in the category
pictured by:

where:

(i) distinct letters (resp. arrows) denote different objects (resp. morphisms);
(ii) all triangles commute.
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PROOF. OF 1.2 It is known that if A2 ~ Al and A are monic, then so
is their composition A2 ~ At ~ A.

Take now any commutative diagram

with X ~ X" epic. Since satisfies there is a morphism X" -+ A,
such that the diagram

commutes. Again, since A2 ~ Al satisfies (Mll), there is a morphism X" ~ A2
such that the diagram

and therefore also the diagram

commutes. Hence the composition A2 ~ At ~ A satisfies (Mll).

PROOF OF 1.3 It is known that if the composition A2 ~ Al ~ A is monic,
then so is A2 --+ Al .

Take now any commutative square
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with X -+ X" epic. Since the composition A2 -+ A, ~ A satisfies MIl’ the diagram

which obviously commutes, can be filled in commutatively with a morphism
X" -+ A2 . Hence in the diagram

both the square and the upper triangle commute; then it follows by 7.0 that the
whole diagram commutes, so that 1.3 is proved.

PROOF OF 1.3.1 By definition, A’ -+ A is a coretraction iff there is a mor-

phism A -+ A’ such that the composition A’ -+ A -+ A’ be equal to idA, , which
is obviously a monomorphism. Hence 1.3 applies.

PROOF OF 1.3.2 The diagonal A -~ A X A and the iniections are

coretractions, so that 1.3.1 applies. 
i

PROOF OF 1.4 If A’ ---~ A is an epic monomorphism, then by (MII) there is
a morphism A -~ A’ such that the diagram

where the horizontal arrows are identity morphisms, commutes. In other words
A’ -~ A admits A - A’ as inverse, i.e. it is an isomorphism.

PROOF OF 1.5 An isomorphism is both a coretraction and a retraction; hence
by 1.3.1 and 1.3.1 * respectively it is both a monomorphism and an epimorphism.
The vice versa is a special case of 1.4.

7.2 Proofs relative to section 2.

PROOF. OF 2.1 Let us take the category of sets. It is known that, in this

category, the monics are the injections (the functions one-one into), and the epics
are the surjections (functions onto). That being stated, let A’ .-~ A be a monic;
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in order to prove that it satisfies (M¡¡), let

be any commutative square with X  X" an epic. Now, for each x" E X", the set

cp( f -1(x")) has at least one point because f is surjective; it has at most one point
because A’-3,. A is injective and the square commutes. The required function

X" -&#x3E;A’ is therefore at hand.
The same argument applies to the category of pointed sets. Similarly for

lattices.
With regard to the category of the correspondences in an abelian category,

remember that, in such a category, every monic is a coretraction (see, for example,
[3]) and hence a monomorphism (see our 1.3.1).

Finally, to the other categories listed in section 2.1, apply the following:

LEMMA. Let a be a category with zero morphisms, such that every epic
be the cokernel of some morphism. Then, in a, every monic is a monomorphism
(and every epic is an epimorphism) .

En effect, let

be any commutative square with X -+ X" an epic and A’ -+ A a monic; and let
Y -+ X any morphism which admits X -&#x3E; X" as cokernel. Since the composition
y -+ X -+ X" is zero, then so is Y -+ X -+ X" -+ A; since the square commutes
the same holds for Y --~ X -~ A’ 2013&#x3E; A; finally also Y 2013&#x3E; X 2013~ A’ is zero (because
A’ -+ A is monic). Hence, by the universal property of cokernels, X’ -+ A factors
through X -+ X", so that the conclusion follows from 7.0.

PROOF OF 2.2 Let us first consider the category of topological spaces. As in
the category of sets, monics are injections and epics, surjections.

Let A’ -+ A be a monomorphism and let A’ -+ I -+ A its factorization through
the image, so that I -~ A is the inclusion of I as a subspace of A and A’ --~ I
is epic. Hence, by (Mlj), the square

where the top row is the identity on A’, can be filled in commutatively with a



155

continuous function I -~ A’; hence A’ -~ I is an epic coretraction and therefore,
by 1.3.1 and 1.4, an isomorphism. In other words A’ -~ A is the composition of
an isomorphism, A’ --~ I, and the inclusion of a subspace of A, I -+ A.

Conversely, let A’ be a subspace of a topological space A and let A’ -+ A

be the inclusion. Then A’ ~ A is monic; in order to prove that it satisfies (MIr),
take any commutative square

with X ~ X" an epic and denote by F the forgetful functor from Topological
spaces to Sets. We have seen, in the proof of 2.1, that he square

can be filled in commutatively with a function FX" -+ FA’. Now any U’, open
in A’, can be expressed in the form U’ = A’ n U, U an open in A; further the
inverse image U" of U by means of FX" --~ FA is open in X" (because X" -~ A
is continuous). Finally, since FX -+ FX" is surjective and the square commutes, it

is easy to check that U" is also the inverse image of U’ by means of FX" -+ FA’;
this one is therefore the image under F of a continuous function X" - A’ which
fills in commutatively the starting square.

Let us now consider, for example, the category of topological groups. Once
again monics are injections and epics, surjections.

In order to prove that every monomorphism is, up to an isomorphism, the
inclusion of a subspace, the model used for topological spaces fits in again.

Conversely, to prove that every inclusion satisfies (MlI), let us denote by 1:
the usual commutative square

with X2013~X~ an epic and A’ ~ A our inclusion of A’ as a topological subgroup
of A; moreover let us consider the following commutative square of forgetful
functors:
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Now A’ - A in Groups 15) is again an inclusion so that (by 2.1) ~ in Groups can
be filled in commutatively in the usual way; on the other hand A’ -~ A is an

inclusion also in Top. spaces and therefore (by the homologous proof given above
for such category) 1: can be filled in commutatively in the usual way also in Top.
spaces. Because of the commutativity of the above square of functors, the same
thing happens also for 1: and the proof is complete.

Similar arguments apply to the other categories listed in 2.2.

PROOF OF 2.3 Let us consider the category of Hausdorff spaces and let F
be the forgetful functor from Hausdorff spaces to Sets. The monics are again the
injections, whereas the epics are the continuous functions X --~ X" such that
FX -&#x3E; FX" has an image dense in X" 16).

Given a monomorphism A’-&#x3E; A, let I be the closure in A, with its relative

topology, of the image of FA’ --~ FA; then A’ --~ A admits a unique factorization
A’ -~ I -~ A with A’ --~ I an epic and I --~ A the inclusion of I as a subspace of
A. Hence, by (Mll), the square

where the top row is the identity on A’, can be filled in commutatively with a
continuous function I -~ A’. It follows that A’ -+ I is an epic coretraction and

therefore, by 1.3.1 and 1.4, an isomorphism. In other words A’ is isomorphic to
a closed subspace of A.

Conversely, let A’ a closed subspace of A and let A’ -~ A the inclusion. In
order to prove that A’ - A satisfies (MII), given any commutative square

15) Here « A’ -+ A in Groups &#x3E;&#x3E; stands for « the image of A’-+ A in Groups
under the forgetful functor from Top. groups to Groups ». And so on.

16) Other admissible wordings for « the continuous ... in X" » are, e.g., the

following: « the continuous functions whose image in Sets in dense X" » (see
footnote 15); « the continuous functions whose set theoretical image is dense in

their codomain ». On the contrary, to avoid misunderstandings, such wordings as
« the continuous functions X -~ X" whose image is dense in X" » are not permis-
sible, why the categorical Image (in Hausdorff spaces) of the epic X -+ X" will
be X".



157

with X --+ X" an epic, let us first construct a function FX" - FA’ filling in com-
mutatively the square

It is sufficient to prove that the image of any under FX" ~ FA,
belongs to FA’. En effect if U is a neighbourhood of a C FA, its inverse image, V",
under FX" -~ FA is a neighbourhood of x", whose inverse image V, under
FX -+ FX", is not empty (because X ~ X" is epic). Hence the image U’ of V
under FX -~ FA’ is not empty; further, since the above square commutes, we have
U’ c U, so that a belongs to the adherence of A’, i.e. to A’, because it is closed.
The required function FX" ~ FA is so at hand. Now if H is closed in A’, it is

closed also in A (since A’ is so) and therefore also its inverse image K" under
FX" ~ FA is closed; but K" is also the inverse image of H under FX" ~ FA’
which is therefore the image under F of a continuous function filling in commu-
tatively the starting square. This complete the proof.

Similar arguments or similar techniques to that used for Top. groups, in the
proof of 2.2, apply to the other categories listed in 2.3.

PROOF OF 2.5 An ordered category is a category such that:

(i) for every couple of objects A2), there is at most one morphism
Al -+ A2 ;

(ii) if A2 and A2 ~ A, are morphisms, then A, = A2 .
Hence in an ordered category every morphism is both monic and epic. If

now A’-+ A is a monomorphism, applying (MlI) to the square

we get a morphism A -~ A’, so that (by (ii)) A = A’ and hence (by (i)) A’ - A
is the identity.

7.3 Proofs relative to section 3.

PROOF OF 3.1 It is known that equalizers are monic. Take now any commu-
tative square
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0153 0153

with X - X" an epic. Since K -+ A is an equalizer for A = B, K -+ A -+ B
p 0153 ~ p

is equal to K-+A-+B so that X --~ K -~ A -~ B is equal to X-+K-+A-+B;
0153 &#x3E;

hence X --~ X" -~ A -~ B is equal to X -+ X" -+ A -+ B (because the above square
a P

commutes) and then X" --~ A ~ B is equal to X~-)-A2013~B (because X -~ X" is

epic). Now the last equality yields that X" -+ A factors through K -~ A (because
a

of the universal property of K ~ A as equalizer for A = B). In other words
P

there exists a morphism X" --~ K such that the lower triangle in the diagram

commutes. Since also the square commutes the result follows from 7.0.

PROOF OF 3.1.1 It is known that is the equalizer of

A, XA2 ~ A1--~ A and A1 X A2 ~ A2 --~.A (where A, X A2 ~ A, and A, X A2 ~ A2
are the projections). Hence 3.1 applies.

PROOF. OF 3.2. It is known that, in our hypothesises, P -~ A~ is monic.
Take now any commutative square

with X - X" an epic. Then also the diagram

commutes; further, since satisfies (MII), it can be filled in commutati-

vely with a morphism X" -~ therefore the hypothesis that the right square is
cartesian implies, in particular, that X" -+ A2 factors through P -~ A2 ; in other
words there exists a morphism X" --~ P such that the lower triangle in the diagram

commutes. Since also the square commutes, the result follows by 7.0.
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PROOF OF 3.3 Let us state, briefly, A = lim Ai ; cc = lim (xi -
It is known that a is monic. In order to prove that a satisfies (Mu) take any
commutative square

with X -+ X" an epic. Since each A’~ -~ A= satisfies (MII), for each i there is a

morphism X" -~ A’i making commutative the diagram

Now, using the hypothesis that each A’i 2013~ A; is monic, it is easy to check that

the family is I-compatible; hence there is a unique morphism
X" -+ A’ such that X" -+ A -+ A’i be equal to X" - A’i for each i; therefore

X" -~ A’ -~ A’i -+ Ai is equal to X" 2013&#x3E; A -+Ai for each i and such a family of

morphisms from X" to Ai is I-compatible; this yields that X" -+ A’ -+ A is equal
to X" -+ A. The conclusion now follows by 7.0.

PROOF OF 3.3.1 The proof, in the case of limits over any category I, differs
from the previous one only in the meaning of K limit » and of « family I-com-
patible » .

PROOF OF 3.3.2 Apply 3.3 for I ordered by equality.

PROOF OF 3.4.1 Let A’ -+ A be any natural transformation in Ðl such that

A’i -+ Ai be a monomorphism for each object i in I. Then it is known that
A’ --~ A is monic. If now

is any commutative square in aI with X -+ X" an epic, since X --+ X" turns out
to be a pointwise epic, then for each object i in 7 there is a morphism Xlli -&#x3E; A’i
making commutative the diagram
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Now it is easy to check, by means of appropriate cubical diagrams, that the
family (X"i ~ A’i)i defines the required natural transformation X" -~ A’, so that
also (MII) is proved.

7.4 Proof s relative to section 4.

PROOF OF 4.0.1 Apply 7.0.

PROOF OF 4.0.2 En effect let be a morphism which fills in com-
mutatively the square in e%; then it is the image under T of a morphism X" - A’
(by definition of full functor) which fills in commutatively the square in a (since,
as it is known, a faithful functor reflects commutative diagrams).

PROOF OF 4.1 Consider a morphism A’ -~ A in a and suppose that
TA’ --~ TA be a monomorphism in we have to prove that A’ -~ A is a mo-

nomorphism.
a

Now A’ - A is monic by the hypothesis that T reflects monics. In order to
prove that it satisfies (MII) consider any commuative square

with X - X" an epic. Since T preserves epics we get a commutative square

with TX - TX" an epic, which can be filled in commutatively with a morphism
TX" - TA’ since, by hypothesis, TA’ - TA satisfies (MII). The conclusion now
follows applying (B), which is in any case satisfied because of 4.0.1 and 4.0.1 *.

PROOF QF 4.1.1 It is known that a faithful functor reflects monics and epics.
By 4.0.2 a full and faithful functor satisfies (A), (A*) and (B). Hence 4.1 (resp.
4.1 * ) applies.

PROOF OF 4.1.2 It is a particular case of 4.1.1.

PROOF OF 4.2 (a) implies (b): by 4.0.1.
(b) implies (c): it is known that a faithful functor reflects epics.
(c) implies (d): it is known that a functor, whith has a left adjoint, preser-

ves monics; hence 4.1 * applies.
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(d) implies (e): by (CO) and (C2) the triangle

commutes. Hence, if 5 is an epimorphism, it follows from 1.3* that Ta is an

epimorphism. Since T reflects epimorphisms, this means that a is an epimorphism.
(e) implies (f ): this follows by 
( f ) implies (a) : it is known that, in our hypothesises, T is faithful. Let us

now prove that T satisfies (A). Given a morphism X -~ A and a monic A’ -~ A in
a such that

commutes in e% (TX -~ TA’ being a suitable morphism of ~3) mapping by means
of S and making use of the naturality we get in a the following commu-
tative diagram

Now tpx satisfies (Eu) and A’ ~ A is monic, hence the diagram

can be filled in commutatively with a morphism X -+ A’, so that X -&#x3E; A factors

through A’ -~ A 1~) .

17) In order to prove that ( f ) implies (a) the hypothesis that S is a left adjoint
for T needs not. In fact it is sufficient to know that there are a functor S:
$ ~ a and a natural transformation ~: ST - Iq satisfying statement ( f ).
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PROOFS OF 4.2.1, 4.2.2, 4.2.3 The corollary 4.2.1 follows by 4.0.2 and 4.2;
4.2.2 is a special case of 4.2.1; 4.2.3 follows by 4.2.2*, since the functor Hausdorff
spaces -+ Topological spaces does not reflect monomorphisms (see 2.2 and 2.3).

PROOF OF 4.2.4 Remark that statement (b) of proposition 4.2 is self-dual;
then combine 4.2 and 4.2*.

PROOF. oF 4.3 Let A’ --~ A be a monomorphism in til. It is known that
TA’ -~ TA is monic in ~; in order to prove that it satisfies (MlI), take in ~&#x26;

any commutative square

with Y- Y" an epic. Mapping by means of S and using the naturality of 4)
we get in a the following commutative diagram

where SY - SY" is epic (because S, having a right adjoint, preserves epics). Now,
since by hypothesis A’- A satisfies (MII), there is a morphism SY" - A’ such
that the diagram

commutes (in a). Mapping by means of T and using the naturality of cp we
obtain in e% the following commutative diagram

Now the conclusion follows by (C5*).
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7.5 Proofs relative to section 5.

PROOF OF 5.1.1 For any ordered set E, let E be the set of all lower

segments 18) of E ordered by inclusion and let (PE : E -+ E be the function defined
by 1 y E E, (x E E).

Taking for granted that:

(a) For any ordered set E, E is a complete lattice;

(b) For any ordered set E, (pE is a monomorphism (in the category of

ordered sets), we have:

(i) Every complete lattice is an injective object (in the category of ordered
sets).

En effect suppose that in the diagram

a be a monomorphism (so that, for any a’~ , a’2 E A’, a’2 iff 

holds) and Q be a complete lattice. Then it is easily seen that the equation

defines an increasing function f : A -~ Q making commutative the diagram above.

(ii) Every injective object is a complete lattice (in the category of ordered
sets).

En effect, if Q is an injective object, since CPo: Q --+’d is a monomorphism
(see statement (b) above), the diagram

can be filled in commutatively with a morphism g : b -+ Q. Now it is easily seen
that, for any subset X of Q, g( U (po(x)) and g( n cpa(x» are respectively the least

xeX xex

i8) A lower segment of an ordered set E is a subset E of E, which the follo-
wing property

holds for.
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upper bound and the greatest lower bound of X in Q. Hence Q is a complete
lattice.

(iii) The category of ordered sets has enough injectives.
This is an obvious consequence of (a), (b) and (i).

PROOF OF 5.1.2 Let Q be any injective object (in the sense of Mitchell) in

the category of ordered sets. It is easily seen that Q cannot be empty. Take there-
fore and let A’, A2 be ordered sets having x2l as support
and ordered respectively by: x2 ; x2 _ xi . Let at last A’ ~ A1,
A’ ~ A2, A’ ~ Q be the canonical injections. Then with reference to the dia-

grams

it is easily seen that both xi hold in Q. Hence x, = x2 and Q
has just one element.

PROOF OF 5.2 Let Q be a retract of an injective Q’, and let Q ~ Q’ ~ Q a
retraction diagram (so that the composition is idQ). If A’ ~ A is a mono-

morphism and A’--&#x3E; Q is any morphism, then A’ ~ Q (which is equal to the

composition A’ ~ 0 ~ Q’-+ Q), by the injectivity of Q’ is equal to the com-

position A’ 2013~ A 2013~ Q’ -+ Q for some morphism A 2013&#x3E; Q’. This establishes the

injectivity of Q.

PROOF OF 5.3 If Q is injective, then given any monomorphism Q -+A there
is a morphism A -3o, Q such that Q-+ A ~ Q is idQ . In other words Q is an

absolute retract.

Conversely suppose that Q be an absolute retract, i.e. that every monomor-

phism Q--,&#x3E;A be a coretraction. If the category has enough injectives then we
may take A injective, so that Q is a retract of an injective and therefore, by 5.2,
an injective.

PROOF OF 5.4 By definition of product, a morphism X --~ Q is uniquely
determined by a family of morphisms X -&#x3E; Q; , 5 for each of which X ~ Qi is

equal to X ~ 0 ~ QI . Suppose that Qi be injective for each i, and let A’ ~ A
be a monomorphism. Then any family A ~ Qi , such that all the diagrams
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commute, determines a morphism A ~ Q with the required property.
The converse follows from 5.2, since (in a category with zero morphisms)

injections into products are coretractions.

PROOF OF 5.5 Given any injective Q in a, take any monomorphism B’ 2013~ B
0

and any morphism B’ -+ TQ in Since S preserves monomorphisms there is a

morphism in a making commutative the diagram

Hence also the diagram

commutes. Applying (C 5*), we see that TQ is injective.

PROOF OF 5.5.1 It is obvious that an injective in a category a is an injective
in any full subcategory.

The converse, in our hypothesises, is a special case of 5.5.

8. Appendix.

Consider the category ét generated by the following commutative
diagram
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where the composite morphisms from A to D, like those from B to

E, like thos from I to E are equal. Then the following statements

are only a matter of computation:
is canonical in the sense of Sonner [ 8 ] ;

(ii) A -+ B and B ~ C are extremal monomorphisms (ibid.);
(iii) the composition A - B - C is not an extremal monomor-

phism.
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