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AN EXISTENCE THEOREM FOR SOLUTIONS
OF SECOND ORDER NON-LINEAR

ORDINARY DIFFERENTIAL EQUATIONS
IN THE COMPLEX DOMAIN*)

STEVEN BANK

1. Introduction.

In this paper we treat second order differential polynomials
S~ (y) = I (x) ym (y’)j (y")k , where the coefficients fmjk (x) are

m, j, kaO

complex functions, defined and analytic in a sectorial region which
is approximately of the form,

(for some ~ ~ 0) and where as x ~ oo in this region, each non-zero
fmjk (x) has an asymptotic expansion in terms of logarithmic mono-
mzat8 (i. e. functions of the form

and real Thus the class of differential polynomials we treat con-

tains, in particular, those having rational functions for coefficients).
In (1 ; § 43] and [5; § 122], existence theorems were proved for solu-

*) This research was supported in part by the National Science Foundation
(GP 7374).
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tions (y) = 0 which are asymptotically equivalent to logarith-
mic monomials as x --~ o0 over a filter base consisting essentially
of the sectors (1) as 1 --+ oo. In this paper, we prove an existence

theorem (§ 3 below) for solutions of S~ (y) = 0 which are of larger
rate of growth than all logarithmic monomials as x --~ o0 over such
a filter base. (We are using here the concepts of asymptotic equi-
valence (-) and larger rate of growth ( &#x3E; ) as x --~ oo, introduced

in [4; § 13]. For the reader’s convenience, these concepts are re-

viewed in § 2 below).
For a given Q, the corresponding first order differential polynomial,

plays an important role in our existence theorem. More specifically, y
we are interested in the critical monomials of G (z) (i. e. those lo-
garithmic monomials N for which there is a function h - N such

that G (h) is not - G (N)). In ~1 ; §§ 21, 26], an algorithm was in-

troduced for finding the set of all critical monomials of a given
differential polynomial. To apply our existence theorem here, we look
for critical monomials N of G such that N &#x3E; x-1. (Thus N = ex-’+Yo

(log x)’, ... (logt x)’’t where (Yo , Y1 ~ ... , yt) is lexicographically greater
than (0, 0, ... , 0)). Then if (a, b) is an interval on which the function

I (T) = cos (yo 99 + argc) is positive, the theorem in § 3 below asserts
the existence, in sectorial subregions of the region (1), of at least
a one-parameter family of solutions of ,~ (y) = 0, each having the

form exp W for some W - N, provided certain subsidiary condi-

tions are fulfilled. (The solutions given by § 3 are shown to be au-
tomatically of larger rate of growth than all logarithmic monomials).
The subsidiary conditions are of two main types. One type requires
that N not be a critical monomial of certain other first order dif-

ferential polynomials. This type of condition is fulfilled in general,
since by [1; § 29 (b), 21, 17 (Remark (2))], we see that for any non-
zero first order differential polynomial, there are finitely many cri-

tical monomials such that any other critical monomial is a constant

multiple of one of these. The other type of condition is also seen

to be fulfilled in general since it requires that one or two logarith-
mic monomials which arise, do not have certain special forms. (In
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this connection, see § 2 (d) and Remark (c) after § 3). It should be

noted that it is easy to test the conditions in any given example,
since those of the first type can be tested using the algorithm in

[1 ; §§ 21, 26], while those of the second type can be tested by ins-
pection. Also it should be remarked that these types of conditions
are similar to those imposed in the existence theorems in [1 ; § 42]
and [4; § 127] for solutions of first order equations which are -to
logarithmic monomials. In fact, some of our conditions make it pos-
sible to apply, at the outset, a result in [4] to assert the existence
of a solution - N of the first order differential equation G (z) = 0.
The remaining conditions then enable us to use this solution of

G (z) = 0 to transform the second order differential equation Sa (y) = 0
into a quasi-linear form. Our conditions play an essential role in

effecting this transformation, since they permit us, at a crucial stage,
to assert the existence of a particular type of solution of a certain
second order non-homogeneous linear differential equation (see § 4).

Of course one can obtain information on the existence of so-

lutions ( y) = 0 which are of smaller rate of growth than all
logarithmic monomials, by making the change of variable y = zaw,
multiplying by a suitable power of  and then applying the theo-
rem in § 3 to the resulting equation.

In § 7, we apply our results to an example.

2. Concepts from [4, 6].

(a) [4; § 94]. For each non-negative real-valued
function g on (0, (b - a)/2), let E (g) be the union (over ð E (0, (b - a)/2))
of all sectors, a + 6  arg (x h (6))  b - 3 where h (6) = g (b)
exp (i (a + b)/2). The set of all E (g) (for all choices of g) is denoted

and is a filter base which converges to oo. Each E (g) is

simply-connected by [4 ; § 93]. If W is analytic in .E (g) then the

symbol W will stand for a primitive of ~ in .E (g). If x and xo

are in E (g), then the contour of integration for
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rectifiable path in E (g) from xo to x. A statement is said to hold

excelnt in ,fircitely many directions (briefly, e. f. d.) in b), if there

are finitely many points r, C ... in (a, b) such that the state-
ment holds in each of F (a, r1)’ F (r1 , r2)1 - - -, ,14’ (rq , b) separately.

(b) [4; § 13]. If f is analytic in some E (g), then f- 0 in

F(a, b) means that for any &#x3E; 0, there is a g1 such that 1 8
for all f  1 in F (a, b) means that in addition to f -~ 0,
all functions Bjk f -~ 0 where 8; f = (x log x ... log;-i x) f ’. Then

f 1 and f ~ f2 mean respectively, f1 / f2  1 ~ 7
f1 - f2 , f1 ’" cf2 for some constant c ~ 0, and finally either
f, If f  1, then by [4 ; § 28], (X log x ... logq xj f’  1

for all q ~ 0. If M = KxGo (log ... (logt then by simple calcu-
lation, If .lll is not constant, then it follows from

[4 ; § 28], that y  M implies ~’  lVl’. If for every real xa ,
we say f is trivial in F (a, b).

(c) [6 ; p. 247]. A logarithmic differential field (brietly an LDF)
over b), is a differential field D of functions (each analytic in
some E (g)), for which there is an integer q &#x3E; 0 such that D con-
tains all logarithmic monomials of rank C q (i. e. those of the form

(log ... (logq X)lq ), and such that every non-zero element of

D is - to a logarithmic monomial of rank  q. (For a fixed q, the
set of rational combinations of logarithmic monomials of rank ~ q,
is the simplest example of an LDF).

(d) [4 ; § 43, 100]. If in F (a, b), W is - to a monomial of the
form,

where k ~ 0 and t &#x3E; 0, then we say W is in the divergence class
in F (a, b). The indiciaL ficnction of W is the function on (a, b) defi-
ned by II’ ( ~P) (cp) = cos tg + arg .g ) where 30k is the Kronecker
delta. Clearly IF (W) has at most finitely many zeros unless k &#x3E; 0
and K is purely imaginary.

3. The Main Theorem :
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be a second order differential polynomial with coefficients in an LDF
over F(a,b). Let

Let N be a critical monomial of G such that (i) (ii)
IF (N) &#x3E; 0 on (a, b), (iii) N is not a critical monomial of z (a G/az) +
+ z’ (fJGj8z’), (iv) 8 GjBZ’ fl 0 and N is not a critical monomial of

a G/az’ , and (v) if A [p) is non-empty and r = max A - then N

is not a critical monomial of H (z) _ E (x) Zj (z’ + z2)k .

Let T = (N’IN) + (N)/az) (aG (N)/az’)-1 . (Then under the

assumptions (iii) and (iv), T is automatically in the divergence
class by [1 ; § 40 (b)]). We assume T satisfies the following three

conditions : (vi) (vii) if it is the case that T;14N,
say where a is a non-zero constant, then we require
that and (viii) if it

is the case that then we require that T is not - N’/N.
(see Remark (c) after proof ).

Then under these conditions, e. f. d. in ll’ (a, b) there exists a

function uo - N such that G (uo) = 0 and such that if xo is in the

domain of uo , 1 then the equation Q (y) = 0 possesses solutions
z

c exp uo for every constant c 0.

Xu

The solutions y* have the following properties :
(A) For every real a, y~‘ 
(B) For each c # 0, there is a function such that y*

is of the form exp We.
PROOF : In this proof, we will make use of the lemmas which

are stated and proved in §§ 49 5 and 6.

By conditions (iii) and (iv) (and § 6) it follows from [1 ; § 40 (b)]
that there exists a logarithmic. = monomial Q (x), such that
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Q (x) G (N --~- Nw) is normal (i. e. has the form

where in F (a, b), doo C 1, 1, d;o §§ 1 for j &#x3E; 1, lldo, is in the

divergence class, and there exists q ~ 1 such that for lc ~ 1 and

j + 7~ &#x3E; 2, we have d c d where Lq x = x log x x .
By differentiating (1) with respect to wand evaluating at w = 0,
we obtain, Q (N)/az) + N’ (a G (N)/8z’)) - 1 since 1. Simi-

larly, differentiating (1) with respect to w’ and evaluating at w = 0,
we obtain QN (a G (N)lâz’) ’V dOt. Thus clearly,

(2) (where T is as defined in the hypothesis).

By assumption, I F (T ) ~ 0. Letting I be any open subinterval of
(a, b) on which IF (T) is nowhere zero, it follows from [4 ; § 111] ]
(if or [4 ; § 117] (if that there exists a func.

tion wo  1 in F (I ) such that Q (x) G (N + Nwo) = 0. Letting
uo = N -f - we have,

Let xo be a point in the domain of uo and let y, = c exp

each constant c ~ 0. We now assert that

To prove (4), let a be given and let Zc = x-a Yc. Then by simple
calculation it is easily seen that zc is a solution of z - (uo -

= 0. But every non-zero solution of this equation is

&#x3E; 1 by ~3 ; p. 271, Lemma 61, since uo -- N and IF (N) &#x3E; 0
on I. Thus so 

Note that if A = the theorem is proved, for in this case
S~ (Yc) = (uo) = 0 and letting 6 be a value of log c, we have
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which is of the form Yc = exp Thus we

may assume A ~ (p).
We now write the equation SZ (y) = 0 in the form,

In what follows let c be a non-zero constant. Since y’ c = Yc uo and

y~~ == Yc (M + uo2), it follows that under the change of dependent
variable y = ye (1 -E- v) and multiplication by (5) is transfor-

med into an equation of the form,

where it is easily veritied that (7) - (13) below hold:

(7) Each is trivial (by (4)),

(8) Each is  some power of x (since it is true of uo and
each 
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Now by definition of r as being max (A - (p)), we have by (10),

where By hypothesis, N is not a cri-

tical monomial of H (z) = rr (z). Thus 12 (N) ~ 0 by [1 ; § 5], and
since U0 - N, we have Tr (uo) - Fr (N ). Since Fr (N ) clearly belongs
to an LDF (namely the field generated by the original and set of
logarithmic monomials of rank c rank N), and since rr (N) is not

zero, there is a logarithmic monomial B such that Tr (N) - B. Hence,

Now for each clearly (uo) is  some power of x (since
it is true of uo , uof and each Thus by (16), (rr (uo))-l Ft (uo) is
 some power of x for each t  r. But if t  r, then by (4), y~-t
is &#x3E; all powers of x. Hence (UO))-l 1~~  y~-t and so

§ (uo)  r Ycr-p for each t  r. Hence by (15) and (16),

From (13), we have,

But from (1),

Differentiating this relation with respect to z’ , and then eva-

luating at z = uo , we obtain (since uo = N + Nivo),
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and Ic 1. Thus clearly

so by (18), (19) and (20),

Finally, we determine golo · From (12), clearly

Differentiating (19) with respect to z and evaluating at z = uo ~
we obtain (since uo = N + Nuy),

We now COMPUte V2 - We have 1 and for j &#x3E; 1.
Thus since wo  1, we have djO woj-l  1 for j &#x3E; 1 . Now if

j ~ 1 and k ~ 17 then doi (Lq)k-l. Since 1/do1 is in the diver-

gence class, there exists t &#x3E; 0 such that lldoi &#x3E; Thus

do1  Zt. Letting = max (t, q), we have wo’ C since

Wo  1 (see § 2 (b)). Thus for j &#x3E; ~ 1, we have

(wo’)k  1, so clearly,

Thus by (23) and (24), we have

(where vi satisfies (25) and V2 satisfies (26)).

so (6) may be written,
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where by (7), (8), (14), (17), (22), we have in F(T),

(29) S100 is trivial and N 1 do1 .

Now since do1 is - to a logarithmic monomial, we have in F (a, b)
that one of the following must hold: d01 N’IN is &#x3E; 1, ~ 1 or  1.

We distinguish these three cases :

Case I : do1 N’/N &#x3E; 1. Henee V2  1f1 so we have,

We consider the equation,

which may be written

logarithmic monomial, (see § 2 (b)), so ·

Since II’ ((r - p) uo)  0 on I~, it follows by § 4, that e. f. d. in

F (I ), equation (31) has a solution vo where,

Thus by (4) (since r  P), vo is trivial, and hence,

Let J be any open subinterval of I, such that vo exists on

F (J). A simple calculation shows that vo’/vo = .lVl where ~I = (r
- p) Uo + and hence l~1,., (r - p) uo (see § 2 (b)). Thus since

vo solves (31), clearly, y
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We now subject equation (28) to the change of variable v vo + VO u,
and divide the result by vo . 0 Since v’ = vo 01 (u) where 01 (u) =

We denote this equation by

Now clearly, y

Iu view of (33), (34) and the fact that Sioo is trivial we see that

tooo is trivial in F (J). Now,

By (33) and (34), we may write t100 = (- Sooowo) + qi where q, is

trivial in ]j! (J). By (29) and the fact that vo = R1 where R1
satisfies (32), we obtain (r - p)2 Ndo1 . Now,

By (33) therefore = solo + where q2 is trivial in

F (J). But by (29) (and the fact that we see that

and so by (33) and (29), we have toos - Finally in view of
(33), (and the fact that each Sijk is  some power by (7) and
(8)), we clearly see that if i -~- j -~- k ~ 2 then tijk is trivial in
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F (J). Hence if we divide equation (36) by (r we obtain,

is trivial if 

Now let Wi = W2 = (~ - r) N. Define E2 = Wl 
From (42), a001 Wi y so in F (J). Now define E1 =

WI’ = (p - r) N’, we see that yYl’ ( W2 W12)-1 = N’/(p r)2 N3 which
is  1IN since x-1 (see § 2 (b)). But + W2-1 = 2/(jp 2013~~
and 2/(p - r) N by (42) so clearly E1  - W1/N. Thus
 1 in .,F (J ). Finally if we define Bo = aloo - (1 + E2 + Bi),

then Bo  1 since 1 · Since &#x3E; 0 on J for j = 1, 2, it

follows from § 5, that equation (41) possesses a solution u*  1 in

F (J). Thus the function v* = vo + vo u. is a solution of (28), and
so the function yc* = Yc (1 + v*) is a solution of ,~ (y) = 0- In view
of what I and J represent, it is clear that such a y/* exists e. f. d.

in Since vo is trivial by 33), v* is trivial in F (J). Thus
clearly and Part (A) follows from (4). Since yt = -~- v*),
clearly (yc*I’ = y~~ (uo + (VII)’ /(1 -~- v*)). Since v. is trivial in F (J), so
is (v*)’ (see §,2 (b)). Thus we may write (yc*I’ = Wd, where

Thus if x1 is a point in the domain of W~ , then for

some constont Since p~ .g ~ 0. Thus for

for any value of log~ which is of the

form exp We . This proves Part (B) in Case I.

Case II : In this case, where 6 is
a non-zero constant. By (2) and hypothesis (viii), 8 ~ 1. Thus in

(27), we have - 6)/ N so by (7),
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We again consider the equation (31). In this case, by (29) and (43),

As in Case 1, is of the form exp and in this case,

 N since (see § 2 (b)). Hence by § 4, e. f. d. in 

equation (31) possesses a solution VO = B2 where,

As in Case I, (33) holds. Let J be any open subinterval of I such

that vo exists on F (J). A simple calculation shows that vo’ jvo = M
where Thus, as in Case I, 
and since vo solves (31), we have that (34) holds. We now subject
equation (28) to the change of variable v = vo + vo u, and then
divide by vo . If we denote the result by

then as in Case I, the coefficients and too1 are given
by (37), (38), (39) and (40) respectively, and (in view of (33)), we
also have

In view of (29), (33) and (34), it follows from the representation
in (37) that tooo is trivial in h’ (J)~ and it follows from the repre-
sentation in (38), that t100 (- 80001vo) + q3 where q3 is trivial in

F (J). Since vo = R2 where JR2 is as in (44), we have using
(29) that t10o’V (r - p)2 Ndo1 . In view of (29) and (33), it follows

from the representation in (39) that toio - S010 + q4 where

q4 is trivial in .R (J ). Now 2MSOOt’V 2 (r - p) d01 by (29). But in

this case dOt&#x3E; 1/N since 1/do1 N x-1 (see 2 (b)). Thus

clearly from (43), toio - 2 (r - p) do1 . * Finally from (29), (33) and the
representation in (40), we see that N-1 d01 * Hence if we di-
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vide equation (45) by we obtain an equation,

is trivial if i + j + k # 1. But these are precisely the same asymp-
totic properties we found for the coefficients of (41) in Case I

(see (42)). Thus letting Wi = W2 = (~ - r) N, we see that if we

define E2 , Eo as in Case I, we will find that .E~  1 in F (J)
( j = 0, 1, 2), and so by § 5, it follows that equation (47) possesses
a solution u*  1 in F (J). Thus as in Case I, the equation (y) = 0
possesses the solution y,* = yc (1 -~- vo -~- vo ~~) e. f. d. in F (a, b).
The proof the solution yc* has the desired properties in this case
follows exactly as in Case I.

Casc III : do1  1. In this case, in (27) we have 
so we have

We again consider the equation (31). In this case by (29) and (49),

lldo, and N are both - to logarithmic monomials, one of the foll-

owing three cases must hold:
(a) C N, (b) &#x3E; N and (c) N. In Case (a), U-

so IF ( U) C 0 on I. In Case (b), U - l/do1 so by (2),
IF (U) is nowhere zero on I. In Case (c), lldo1 rv aN for some con-
stant a 0. By (2) and hypothesis (vii), a p - r so U N (a --
+ (r - p)) Nand 0 on I. Thus in all three cases F( U)  0.
Hence by § 41 e. f. d. in F (I), equation (31) possesses a solution

Vo = B3 where

As in Case I (33) holds. Let J be any open subinterval of I such

that v 0 exist on F (J). A simple calculation shows that 
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where M = (r - ~) uo + · Thus M ~ (r - p) uo , and since vo
solves (31), we have that (34) holds. We now subject equation (28)
to the change variable v = vo + vo u and then divide by vo . If we

denote the result by

then as in Case I, the coefficients tooo ~ 9 tioo tolo and tool are given
by (37), (38), (39), and (40) respectively, and (in view of (33)), we
also have

In view of (29), (33) and (34), it follows from the representation
in (37) that

and it follows from (38) that - (- Sooowo) + q5 where q5 is tri-

vial in F (J ). Since where R3 is as in (50), it follows

from (29) that

In view of (29) and (33) it follows from (39) that tolo +
+ where q6 is trivial in F (~T ). By (29), 2 (r-p) do1, 7
and by (49), N-1 · Let U # = (1 /N ) + 2 (r - p) I By hy-
pothesis (vii), lldoi is not - 2 ( p - r) N, so is ~ to either N-1 or

do1 and so is nontrivial. Hence clearly,

Finally from (29) and (33), it follows from (40), that

Hence if we divide equation (51) by (r -~) do1 U, we obtain an
equation
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where by (52)-(56), we have in F (J),

To proceed any further, we must consider each of the pos-
sibilities for the asymptotic behavior of U. Since lldot are

~ to logarithmic monomials, one of the following cases must hold
in h’ (a, b) :  N, 1/do1 &#x3E; N, 1/do1 We distinguish these

three subcases.

Subcase A : Ildo1  N. Thus in this subcase, U - (r - p) N
and U # N 2 (r - p) * Hence by (58) and (59), 1, 
- 2/(r p) N, 1/(r p)21V 2 and aijk is trivial if i + j -- k 1.

But these are precisely the same asymptotic properties we found
for the coefficients of (41) in Case I (see (42)). Thus exactly as in
Case I (i. e. by letting W= W2 = ( p - r) N, and defining E1 , 
as in Case I), we can apply § 5 to show that equation (57) pos-
sesses a solution u*  1 in .F’ (J ). Thus S~ (y) = 0 possesses the so-
lution y* = -~- vo -~- v. u*) in F (J) and hence e. f. d. in F (a, b).
The proof that yt has the desired properties in this case follows
exactly as in Case I.

Subcaae B : lldo, &#x3E; N. Thus in this subcase, U - 1/doi and

Thus by (58) and (59), we have 19 aoio - 1 /(r - p) N,
do1/(r - p) N. Let W, = (p - r) N and W2 De-

fine E2 = aOO1 Wl W2 - 1 · Then .E2  1, in F (J) since clearly

aooi Wi 1. Now (aolo+(l + E2) + W2 +
+ WI’(W2 WI2)-I)). By,this subcase, W2-1 C wi-i. Also, 
= do1 N’/(r - p) N2 which is also  Wl-1 since by this case

Hence since - W,-l , we see that Ei C - W, Wl
so E1  1 in F (J). Finally if we define jE7o = a100 - (1 + E2 + Ei)
then F (J) since a100’V 1. Thus since &#x3E; 0 on J
while on J (since by (2) and

by assumption (vi)), it follows from § 5 that e. f. d. in F (J ),
equation (57) possesses a solution u*  1. In view of what J
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and I represent, clearly such a u* exists e. f. d. in F (a, b). Thus
(28) possesses the solution vl = vo + vo u~", and hence (y) = 0

possesses, e. f. d. in F (a, b), the solution y* = y, (1 -~- vo -E- vo u*).
The proof that the solution yt has the desired properties follows
exactly as in Case I.

Suboase C ; N. Thus there is a non-zero constant a

such that Since l/do1 we have by assumption (vii)
that,

(60) 2 ( ~ - r)) and 0 where A = a + (r - p).

In this subcase, clearly and ~~-(y-p2(~2013~))/o~ so by
(58) and (59) we have 1, aolo - (0 + 2 (r - p))/(r - p) Â.N, aOOi I"V

and is trivial for i -- j -- 1 1. Let W1
- (~ - r) N and W2 = - Define E2 = W2 - 1. Then
.E2  1 in F (J) since aool W, 1. Now define E1 = - Wi +
+ (1 -- ( Wl + W2-1 + Wl 2)-l)). Clearly, since 2 =

0 + (~’ -1~), we have Wi + W2-1 = (a + 2 (r 1~))l~ (1~ - r) N.
Now Wl" ( W2 W12)-l = N’12 (r - p) N3 which is  Wl-1 + W2-1
since by this subcase N’/N3 ~ do1 N’IN2 which is by this
case. Since solo - - ( Wl 1 + W2 1) clearly, we have that El 
C - WI (W1-1 + so El  1 in F (J). Finally if we define

Eo = aloo - (1 + E2 + El), then Eo (J) since 1 ·

Thus since IF &#x3E; 0 on J, while IF ( W2) ~ 0 on J (in view
of (60) and the fact that Ih’ (W2) _ - IF (2N)), it follows from

§ 5 that e. f. d. in F (J), equation (57) possesses a solution u*  1.

In view of what J and I represent, clearly such a u* exists e. f. d.

in F (a, b). Thus (28) possesses the solution v* = vo + vo u*, and
hence Q (y) = 0 possesses, e. f. d. in F (a, b), the solution yc* =
= Yc (1 + vo + vo u*). The proof that the solution yc* has the desired
properties follows exactly as in Case I. This concludes the proof
of the theorem.

REMARKS : (a) If I is any open subinterval of (a, b) on which
IF (T) &#x3E; o, then in view of (2), it follows from [4; § 111J that
the equation Q (x) G (N + Nw) = 0 actually possesses a whole

one-parameter family of solutions  1 in .F ( I ), By using this family
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for wo in the proof, it is clear that e. f. d. in F (I ), we can

actually expect a two-parameter family of solutions of Q (y) = 0,

each having the form for some W - N.

(b) In each case in the proof we showed that for each c ~ 0,
the equation Q (y) = 0 possesses an exact solution 

x

where y, = c exp uo , u~ C 1 and v, = R~ for some Rc - to a
I

XO

logarithmic monomial. This representation clearly gives more infor-

mation about yt than either of the statements y* - y, or y~= egp W
for some Wc - N, and furtermore, is useful in estimating how good
an approximation y, is to the exact solution 

(c) In general one can make no specific statement about the
relation between N and its corresponding T. In fact for any given
logarithmic monomials N and T*, where T* is in the divergence
class, one can always produce a second order S~ (y), whose correspon-
ding G (z) has N as a critical monomial (which automatically satisfies
(iii), (iv) and (v) of § 3), and where T* is the corresponding T for N.
To see this, consider Q (y) = N) yy" - N) (y’)2 -E- 
-(N’/T~N2))yy’-y2. Here 
and hence G (llrw) = (w’IT*) + w - 1. Since T* is in the divergence
class, an easy application of [1; § 26] to G (Nw), followed by [1; § 30 (b)]
shows that N is a critical monomial of G satisfying (iii) by § 6.

Clearly (iv) and (v) are also satisfied. A simple calculation shows

that T* = (N’IN) + (0 G (N)/az) (BG (N)/az’)-1. In view of this exam-
ple, one can view the situations where or Tx5 N’/N (I, e. those
where one would have to verify (vii) or (viii) of § 3), as being some-
what special situations.

4. LEMMA : Let W, V and .H- be functions - to logarithmic
monomials in some F (1). Let and W - - TT. (Then clearly
W -~- Y ~ V, so W + V is also in the divergence class). Let IF( 
and LF ( W + V) ~ 0. Let wo be a function of the form exp f V.
Then e. f. d. in F (1), the equation + v’ = Hwo possesses a
solution vo = Rwo where R - + V ).



294

PROOF : Let zo = .F.fwo . Under the change of variable za = v’,
the equation

Under the change of dependent variable followed by
division by xzo , 7 equation (b) becomes,

where U = W ~- V + (H’/H) + ( W ’/ W ) + x-1. Now since W - - V,
clearly W -~- V is - to a logarithmic monomial which and

hence &#x3E; x-1. Since H and W are - to logarithmic monomials, H’IH
and W’/ W are (see § 2 (b)). Thus,

Hence in some element of I’ (I ), U is nowhere zero, so (c) may be
written u + u’/ U = By (d),  1 and 0. Letting
J be any open subinterval of I on which IF (U) is nowhere zero,
it follows from (3 ; p. 271, Lemma 3] that there is a function ul  1

in F (J) such that ul + 1/x U. But xul  1 (see § 2 (b)), so
Now clearly the function solution of

(b). Let Ji be any open subinterval of J on which is nowhere

zero. Since z. is of the form V, and W/W + V (by

(d)), it follows by [2; § 10 (b)] that the equation v’ possesses
a solution vo = Rwo where V) in .F (J1). (Note : [2 ;
§ 10 (b)] was proved under the hypothesis for some

t &#x3E; 0, but it is easily seen that the exact same proof holds if the

is replaced by the condition that V be ~ to a

logarithmic monomial which is &#x3E; x-1), Then vo is clearly a solution
of (a) proving the lemma.

5. LEMMA : (a) where 

and A2 are analytic in some F (I). Let Wi, W2 be ~ to logarithmic
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monomials is F(I ). Define E2 El and .Eo as follows :

where Wj is the operator 1fTj y = y - y’/ W~ .

where aooo and (for i + j &#x3E; 2) are trivial in .F (I ), and where
4S (y) is a second order linear differential polynomial for which there
exist functions W, and W2 in the divergence class in F (I ) (see § 2
(d)) and functions E1, E2 each  1 in 1~ (I ), such that (1) above
holds. Then for any open subinterval J of I on which both IF (WI)
and IF ( W2) are nowhere zero, the equation tp (y) = 0 possesses at
least one solution y* C 1 in F (J).

PROOF : Part (a) is proved by directly computing the right side
of (1) and showing that (1) holds if E2 , E1 and Eo are defined as
in the statement.

To prove (b), let y = W1 y and d2 y = W2 Wi y. A
simple calculation shows that y’ and y" are linear polynomials in

and (with coefficients which are each  some power

of x). Thus when is written as a polynomial in the we

obtain (using (1)),

where each bmnq is trivial (since each is trivial). Since BO E1, E2
are each  1 in I’ (I ), it follows directly from the remark after

[5 ; § 99] (which states that formulas (99.6) and (99.7) are sufficient
for a strong factorization sequence), that ( W1, is a strong facto-
rization sequence (see [5; § 88 (b)]) for tp (y). Hence if J is any open
subinterval of ~T on which both IF(W,) and are nowhere
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zero, then by [5; § 99, Part 5], the equation P (y) = 0 possesses at
least one solution y*  1 in F (J), proving (b).

6. LEMMA. : Let G (z) = ,¿ g1J Zi (z’) ~ have coefflicients in an ZDF
over F (a, b). Let N be a critical monomial of G (z). Then N is a

simple non-parametric critical monomial of G (as defined in [1 ~ §§ 28
(d), 14]) if and only if N is not a critical monomial of =

PROOF : (For notation and definitions used in this proof, see

[1; §§ 7, 9, 28]). Let N have exponent fl and multiplicity m in G.
Let H (z) = G (Nz), say H (z) ~ hij (x) zi (z’) j. By [1 ; § 30 (b)], 1 is

a critical monomial of g having exponent P and multiplicity m.
Now for each s h 0, there is a logarithmic monomial Q (x) such

that [1 ~ s, (2c, v) =- I rij (u) va (v’) j, where

(where is the jth iteration of the exponential function). Thus

by [1; § 27], for s sufficiently large,
(b) is trivial if j and 1 is a root of multiplicity

m of C (v) = ~ rip (oo) vi, (where rip (oo) is the constant defined by :
rio (oo) = 0 if  1, while if ri,~ "; 1 ~ (oo)).

Now let A(z)=F(Nz). Then clearly, we have 
Thus for all s &#x3E; 0, there is a logarithmic monomial .R (x) such that
[ 1, s, A] (u, v) (v’) j, where

Letting B (u) = 1~ (es (u))/Q (es (u)), we have by (a) and (c) that

Now assume N is not critical of .h (z). Then by [1; § 30 (b)], 1
is not critical of 11.. Now if P were &#x3E; 0, then in view of (b) and

(d), clearly [1~.4](~1) would be trivial, so by ~1; §§ 3, 11 (b)], 1
would be critical of 11 which is a contradiction. Thas fl = 0 proving
hat N is non-parametric by [1; § 28]. In view of (b) and the fact
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that fl = 0, we may write (d) as,

where all coefficients of 1p are trivial. If m ~ 1, then 1 is a root of

d C/dv, so by (e) and [1; §§ 3, 11 (b)i, we would again obtain the

contradiction that 1 is critical of 11. Thus m = 1, so N is simple also.
Conversely, suppose N is simple and non-parametric in G. Then

~8 = 0, so (e) holds. Since nt = 1, does not have 1 as a root.

Thus by [1; § 12 (b)], 1 is not a critical monomials of 11, so N is

not critical of 1-’ by [1; § 11 (a)], proving the lemma.

7. EXAMPLE : The example we consider here illustrates the fact
that in the theorem of § 3, only the terms of degree p (and in a
negative way, those of degree r) play an essential role, since in

this example the terms of degree C r are essentially arbitrary.
Consider the example,

where n is any integer &#x3E; 2, t is any strictly positive real number,
1jJ is any finite sum of logarithmic monomials, r is any non-negative
integer C n + 1, m and q are any non-negative integers such that
m + q c r and where 11 is any second order differential polynomial
with coefficients in an LD.F’ over F (- ~~ n), each of whose terms

has total degree ~~20131 in y, y’, y". In this case, G (z) and .H~ (z)
of § 3 are as follows: G (z) = zn+2 - (ZI)2 - 2z2 z’ - z4 + X-3 (log x)t z,
and .H {z) = y (x) zm (z’ + z2)q. Using [1; § 26], we find that G (z) has
the (n + 1) simple, non-parametric (see § 6) critical monomials con-

sisting of Mi = X-1 (log X)t/3, hC2 = M1 , M3 - M1 and the

(rc - 2) nd roots of unity. Using [1; §§ 21, 2fi~~ we find that .g has
the one critical monomial xm if q &#x3E; 0, and no critical monomials

if q = 0. Since BO/8z’ = - 2z’ - 2z2, we find that 8Gj8z’ has the
one critical monomial x-1.

Now consider M1, and Clearly IF - 1 while

IF (lVl2) = IF (M3) _ - 1 /2. Thus M1 is the only one of these three
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which satisfies (ii) of § 3. For we now compute the function T

of § 3. Since 8 G/8z = (n + 2) - 4zz’ - 4z3 -~-- x-3 (log an easy
calculation shows that T - (3/2) x-1 (log x)113. Thus IF (T) « 1. Howe-
ver, we see that so we must verifiy (vii) of § 3. But here

6 = 3/2, so clearly p - r, 2 ( p - r)] (since p - r is a positive
integer), and + (r - p)) is either + 1 or - 1 depending
on whether p - If  3/2 (i. e. p = r + 1) &#x3E; 3/2. Thus by
§ 3, we can conclude that e. f. d. in F (-- ~z, 7t) the equation 92 (y) = 0

possesses a one parameter family of solutions y~ = egp Wc where
~11.
Now let N be any (n - 2) nd root of unity, say N = eia where
 a  ~. For N, we now compute the function T of § 3. Since

N’z-2 = 1, an easy calculation shows that T’V (1 - (n/2)) N, so since N
is a constant, clearly II’ (T ) ~ 0. However, since we must

again verify (vii) of § 3. But here a = 1 - (n/2), so a  0 since

n &#x3E; 2. Thus clearly a ~ p - r, 2 ( p - r)), and since (0 + (r - ~)) N
is a costant monomial, clearly Now 

= Cos (~ + a). Thus by determining the largest open subintervals

of (- ~c, ~z) on which IF (N) is positive, we obtain the following
conclusions by § 3; If - ~ a ~ n/2, then e. f. d. in .F (- a - 
- a + ~/2)y the equation Q (y) = 0 possesses a one-parameter family
of solutions exp 7, where V, - N. If C a a , (respectively,

- 7t ~ a ~ - ~z/2), then e. f. d. in each of F ( - n, - a + 7t/2) and
F (- a + 3~/2, ~) separately (respectively, F (- ~z, - a - 3n/2) and
F (- a - ~/2, n) separately), the equation S~ (y) U possesses a one

parameter family of solutions exp where V, - N.

All solutions found in this example are &#x3E; all logarithmic mo-
nomials by § 3 (A).
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