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O N R A D I C A L R I N G S

CHRISTIAN W. KROENER *)

Introduction.

If J (R) denotes the Jacobson radical of a ring is said to

be a radical ring (in the sense of Jacobson) if R = J ( R). Radical

rings occupy a position intermediate between nil rings and semira-
dical rings. In general these three classes of rings are distinct.

However it is well known that in the presence of the minimum

condition for left ideals (d. c. c.) these three classes coincide with

the class of nilpotent rings.
Radical rings differ from nil and semiradical rings among other

things by the fact that subrings need not be of the same type, but
subrings are always semiradical rings. The converse question of
embedding a given semiradical in a radical ring was raised by An-
drunakievitch [1] J who gave a criterion similar to the Ore condition.
In this paper we give several other conditions which lead to the

same result. They give further evidence that radical rings play the
same role with respect to quasi multiplication (x o y = x + y - xy)
as simple rings with d. c. c. for left ideals with respect to ordinary
multiplication. We also show that if a ring l~ can be embedded in

a radical ring Q (R), its matrix ring I~n can also be embedded and

‘~ (Rn) = (‘~ (R))n. ·

*) Indirizzo dell’A. : Mathematisches Institnt der Universität 66 Saarbriicken 15.
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I. Basic Definitions and Notations.

Let I~ denote an associative not necessarily commutative ring ..R.

DEFINITION 1. Let a, b E R. The binary operation o : .I~ 
defined by (a, b) -~ a o b + b - ab is called quasi multiplication.
a o b is called the quasi product of a, b.

DEFINITION 2. ac E .R is called left (right) semiradical if a o x =

It is easy to see that this definition is equivalent to the follow-
ing : ax = x (xa = x) implies x = 0.

a E R is called semiradical if it is left and right semiradical. R
is called semiradical if every a E ~ is semiradical.

DEFINITION 3. An element a E 1~ is called left (right) radical if
there exists an element a, E 1 such that a,’ o a = 0 (a o ar = 0).
a,l (ar) is called left (right) quasi inverse of a.

We remark : if a is both left and right radical then a’ = a’

is unique.
An element a E R is called radical if it is left and right radi-

cal. Its unique quasi inverse is denoted by ac’. R is called radical

if every a E 1~ is radical.

Remark 1. A semiradical ring forms a monoid, a radical ring
a group with respect to quasi multiplcation.

Remark 2. The definitions of semiradical and radical element

are as in Andrunakievitch [1]. In the Englisch literature a radical
element is usually called quasi regular. (Perlis [1], Jacobson [4]).
However the term « quasi-regular * seems to be inappropriate for
the foll owing reasons:

We recall that a E R is called regular (Jacobson [5], Herstein
[3]) if it is not a left or right zero divisor with respect to ordi-
nary multiplication. It is the semiradical element rather than the

radical element which should be called quasi regular i. e. regular
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with respect to quasi multiplication because it is not a left or right
zero divisor with respect to quasi multiplication. A radical ele-

ment should then be called a quasi unit because it has a quasi
left and right inverse. This term is further justified by the following
result of Andrunakievitch : In a principal quasi ideal ring every
element x can be represented as a quasi product of prime factors
and this representation is unique up to radical elements.

Although « quasi regular &#x3E;&#x3E; and «quasi unit » in the sense

just mentioned are more closely related to the properties of quasi
multiplication, we will use - to avoid confusion - the terms semi-
radical element, radical element and quasi inverse as defined above.

Let Z denote the ring of rational integers.

DEFINITION 4. A subset I c R is called a left quasi ideal of
R if

In a similar way one defines right and two sided quasi ideals.
Two sided quasi ideals will simply be called quasi ideals.

Remark 3. Every ring contains the quasi ideals R and 0

(the empty set), which satisfy the above conditions trivially. The-
formulation of condition (ii) is motivated by the desire for distri

butivity with respect to quasi multiplication.

Remark 4. The significance of quasi ideals lies in the fact

that they arise as « quasi kernels &#x3E;&#x3E; of homomorphism in the same

way as ordinary ideals arise as kernels of homomorphism. (Theorem
8 [1]). To include the empty set as quasi ideal we added the con-
dition on the identity of R :
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If a ring R without identity is mapped by a homomorphism
onto a ring R* the set of all elements mapped onto the iden-

tity of R* will be a quasi ideal I. Conversely, for every quasi
ideal I of R there exists a homomorphism onto a ring I~’~ such

that the elements of I and only those are mapped onto the iden-

lity of R*.

PROOF. If R* does not have an identity, the quasi ideal

I = iP and we may take R* = R in the converse. If 1 E R* one

verifies that the set of elements of .R mapped on to 1 satisfies

the conditions of Definition 4. If I- 4= 0 is a quasi ideal of R one
shows that # is an ideal of B in the ordinary
sense, that in R = I~/ I’* the elem ent I is of the form a + I* for

any a E I and constitutes the identity of R.
It can be seen easily that if R contains an identity there is

a 1 - 1 correspondence between (left) ideals of Rand nonempty
(left) quasi ideals of .R. For if A is a left ideal of R, then 1 - A =
- I E At is a nonempty left quasi ideal of R and if A + 0
is a left quasi ideal of R then 1 A is a left ideal of 1~. This

also shows that conditions imposed on quasi ideals imply condi-
tions on ideals and vice versa in rings with identity.

DEFINITION 5. The left quasi ideal generated by a subset

M c R is the intersection of all left quasi ideals of R containing M.
It is easy to show that it consists of all finite sums of the

form ~q~ (rz o where ri E M, mi E lVl, qi E Z such that Eqi = 1.
In particular, the left quasi ideal generated by m E R will

consist of all elements of the form r o E 1~. It will be called

left principal ideal and will be denoted by 1~ o 

Remark 5. The ring R = R o 0. In a radical ring every non-
empty left quasi ideal is a left principal quasi ideal, since every
non-empty left quasi ideal coincides with .R. In [1] it is shown

that in the ring of even integers every non-empty left quasi ideal
is a left principal quasi ideal.

DEFINITION 6. The sum A + B of two left quasi ideals A, B
is the left quasi ideal generated by the union of the sets A, B.
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Apparently A -~- B =

This may be extended to infinite sums.

DEFINITION 7. A sum A = ¿ Ai of left quasi ideals is said
ie I

to be direct if for each (i, j) E I , I 0, i ~ j.

DEFINITION 8. The product A o B of two left quasi ideals A, B
is the left quasi ideal generated by all product a o b, a E A, b E B.

Apparently A o B =

Remacrk 6. As for ordinary ideals one can introduce the maxi-
mum and minimum condition for left quasi ideals and show their

equivalence to the ascending chain condition (a. c. c.) and descen-

ding chain condition (d. c. c.) for left quasi ideals, respectively.

DEFINITION 9. R is called quasi simple if there exist no two

sided quasi ideals in l~ other than R and W.

II. Left Quasi Quotient Riiigs,

It will be seen that the embedding of a given semiradical ring
in a radical ring resembles the well known formation of quotient
rings. We shall therefore start more generally be defining left quasi
quotient rings.

DEFINITION. A ring Q is called a left quasi quotient
ring of B if the following conditions are satisfied:

(i) If a E R is semiradical, then a is radical in Q (R).
(ii) Every element x E ~ (R) is of the form a’ o b, where

a, b E R, a semiradical, a’ the quasi inverse of a in Q.
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LEMMA 1. A necessary and sufficient condition that a ring R
have a left quasi quotient ring Q (R) is: for every semiradical

b E l~ and every a E R there exists a semiradical E R

such that bi o a = a1 o b. The ring Q (R) is uniquely determined
up to isomorphism by .R.

PROOF. If Q (R) exists then for b E .1~ semiradical, a o b’ E Q,
hence o b’ - bi o aI, with bl semiradical in R, a, E R. Thus b, o a =

= ai o b and the condition is necessary. This condition is also

sufficient : Let S denote the set of semiradical elements of R. Clearly
~S is closed under quasi multiplication. One verifies that if b1 o d =
= d1 o b, where then also d 1 E ,S. Consider B x S =
= ~(a, b) a E Let (a, b), (c, d) E R X ~S. By assumption there
exist bi d1 E such that d1 o b - b1 o d. Define (a, b) cD (c, d)
if and only if o al di o b) _ (b1 o c, bi o d). One checks that oo
is an equivalence relation independent of the choice of bi , d1 E l~.
In Q (R) = (R x define sum and quasi product in the following
way:

where d1 o b = b1 o d

where a1 o d = d1 o 
As usual one verifies that addition and quasi multiplication

are well defined. If we denote the class represented by (a, b) by

a and define sum and quasi product of the new symbols byb
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then one can show that (C~ (R), +,0) satisfies the following laws :

(i) (Q (R), +) is an abelian group

for all x, y, z E Q (R). It is a trivial exercise to show that this is

equivalent to the fact that (Q (R), + , .) is a ring.

Finally, the subring R of all elements of the form is a ring
0

isomorphic to .R. For

Furthermore

Thus

. 11 a
If we identify R wIL h R we may write a instead of a  7 hence

0

R c Q (R). Since

(i) for every semiradical a E 1~ there exists an element a’ - ~ E Q (R)
a

such that a’ o a = 0 = a oa’ and
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ii every element : E R can be written in the form a - ob Q b b

the ring Q ( R) is a left quasi quotient ring of R.
If R1 and R2 have left quasi quotient rings Q (R1) and Q (1~2)

it is easy to see that any isomorphism S of R1 onto R2 determines
an isomorphism Q ( R1) onto Q (R2) having the form b’ o a -~ ~S (a),
a, b E R, b semiradical.

In the same way we may also define a right quasi quotient
ring. It seems likely that the existence of a right quasi quotient
ring is independent of the existence of a left quasi quotient ring.
At the moment, however, we can only prove the following.

PROPOSITION 1. If a ring possesses a left and a right quasi
quotient ring then they coincide.

PROOF. Let Q ( R) be the left quasi quotient ring of R,
x = b’ o a- E b E R, b semiradical. Since the right quasi quo-
tient ring (1~) exists there are elements a, b E R, b semiradical such

Then 

x o b’ thus x E Q (R). Similarly one shows 9 (le).

PROPOSITION 2. If .1~ possesses a left quasi quotient ring Q (R)
then every left quasi ideal of’ R which contains a semi-

radical element possesses a left quasi quotient ring Q (I ) and
= Q (R

PROOF. Let x E Q (R). Then x = b’ o a, a, b E semiradical,.

Let c E I be semiradical. By the lemma there exist c1 E 1~, b1 se-

miradical such that c, o b = b1 o c. Since b, c semiradical, ci is

too. Moreover we can find semiradical such that r o (e, 0 a) _
= s o c. Thus
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where and z = s o c E I. Clearly
Q (I ) C Q (-R)·

For later use we include here a technical

LEMMA 2. Suppose 1~ possesses a left quasi quotient ring Q (1~).
... , yn E Q (R) there exists a semiradical b E .R and ai

... , a~ E l~ such that b o yi = ai (i --- 1, ... , n).

PROOF. If y1 , ... , yn E Q ( R), there exist semiradical elements

... , such that bi o yi - xi (i -_-_ 1, ... , n).
We use induction on n ; n = 1 is true by assumption. Suppose there
exist semiradical s E R, and ... , such that s 0 Yi = zi (i = 1, ...
... , n - 1). By Lemma 1 we can find c, d E R, c semiradical, such that
b=c o s=d o bn. o s o yi=c 1,...
... , n - 1 ) b o yn = d o bn o yn = d o xn = a~ . Clearly b is semiradi-
cal and b, ai E 1~.

III. Radical Rings as Let Quasi Quotieiit Rings.

THEOREM 1. The following conditions on R are equivalent.
(i) R is semiradical and for a, b E R there exist a, , b1 E R such that

bi o a - a1 o b
(ii) semiradical and does not contain any infinite direct sums

of left quasi ideals
(iii) R satisfies (1) every non-empty left quasi ideal oj R contains a

semiradical element and (2) R does not contain any infinite di-

rect sums of left quasi ideals

(iv) R possesses a left quasi quotient ring Q zvhich is radical ring.

PROOF.

(i) &#x3E; (ii) the condition on the element of .R implies that every
two non-empty left quasi ideals have a non-empty intersection

(ii) &#x3E; (iii) trivial
(iii) &#x3E; (iv) there exists some left quasi ideal I # W in R such

that any two non-empty left quasi ideals of .R lying in I have
non-empty intersection. If not, there are two non-empty left

quasi ideals I1 , I2 of R such that il n 12 = oo If also in 11
there exists two non-empty left quasi ideals of 1~, say Iii, I12
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with empty intersection then Iii + I12 direct sum

of left quasi ideals in I~. Continuing this way with I11 we can
produce longer and longer direct sums, contradicting assump-
tion (2) on R. Thus exists. Suppose A, B are non-empty
left quasi ideals of l~. Let x E I be semiradical and consider

A o x, B o x, non-empty left quasi ideals of .R lying in .1. By
the above hence there exist a E A, b E B such
that a o x = b o x, which implies a = b E A n B, hence A n B
=~= 0. Now let a, b E R, b semiradical. Then 

implies that the left quasi ideal 3 is non-

empty. There exists a semiradical b1 E M such that bi o a = a1 o b
and R possesses a left quasi quotient ring Q (R) by lemma 1.

Finally, y we show Q ( R) is radical ring. Let L ~ ~ be any left
quasi ideal of Q 

It is easy to see that L = Q o (I~ n L) and that L n R 
is a left quasi ideal of R. Let y E be semiradical, then

gives L = Q (R). It follows that

every x EQ (R) is left radical, hence it is radical. Thus Q (.R) is
a radical ring.

(iv) &#x3E; (i) R C Q (R) is semiradical, since Q (R) radical. The rest
follows from lemma 1.

The equivalence (i)  &#x3E; (iv) was shown first by Andrunakie-
vitch. By a result of Kurotchkin [6] I~ is a radical ring if and only
if it is a quasi simple ring with d. c. c. on left quasi ideals. The
equivalence (iii)  &#x3E; (iv) establishes therefore a very close analogue
to the first Goldie theorem : A prime ring R possesses a left quo-
tient ring Q which is a simple ring with d. c. c. on left ideals if

and only if R satisfies (1) the a. c. c. on left annihilators and (2)
does not contain any infinite direct sums of left ideals.

THEOREM 2. If R is a semiradicat ring in z,vhich every non-emlnty
left quasi ideal is a left principal quasi ideal, then R possesses a
left quasi quotient ring which is a radical ring.

PROOF. Let a, b E R and consider R o a, R o b.
by assumption. Thus we have the following

relations.
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Using (1) and (2) in (3) we obtain

Since R is semiradical this implies

Multiplying (4) by b1 and al respectively, we get:

Subtraction of (6) from (5) gives :

Since

we may write
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which upon right quasi multiplication by d establishes x o b = y o a
where

and E R, pt qj E Z as determined by (1), (2) and (3). By
Theorem 1 (i) l~ possesses a left quasi quotient ring which is a ra-

dical ring~.
As example for Theorem 2 we may take the ring of even inte-

gers E which can be embedded in Q (E ) = ’ a2m+l )
radical ring.

Finally we turn to the n x n matrix ring Rn over I~. It is

well known that if R is a radical ring so is because 

[5]. The following theorem is a generalization of this result.

THEOREM 3. If’ R possesses a left quasi quotient ring which is
a radical ring, then Rn is 8emiradica,1, possesses a left quasi quotient
-ring is also radical and Q = (Q (R))n .

PROOF. The monomophism R - Q (R) induces a monomophism
Rn ~ (Q (R))n . But (Q (R))n is radical so Rn is semiradical. Clearly
Q (Rn) C (Q (R))n . Now let Y = (Yij) E ( Q (R))n. We must determine

B E Rn such that B o Y - A 

Since yij E Q (R) there Xij E R such that

By Lemma 2 we can find b E E R such that
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Claim : B = where

Clearly We show B o Y = A E Rn
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Let r # s,
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Thus B o Y E hence ( Q (R))n C Q (R,).
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