RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

MARCO GRANDIS

Il sistema spettrale di un complesso multiplo

Rendiconti del Seminario Matematico della Università di Padova, tome 40 (1968), p. 252-298

http://www.numdam.org/item?id=RSMUP 1968 40 252 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1968, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

IL SISTEMA SPETTRALE DI UN COMPLESSO MULTIPLO

di Marco Grandis *)

Sia A un complesso doppio di R-moduli, $(A^c)_{c \in \mathbb{Z}^2}$ la sua gra duazione, d_4 e d_2 i differenziali (di gradi (1,0) e (0,1)).

Detto Ω l'insieme parzialmente ordinato per inclusione dei segmenti destri di \mathbf{Z}^2 (cioè dei sottoinsiemi α di \mathbf{Z}^2 tali che se $a \in \alpha$, $b \in \mathbf{Z}^2$ e $a \leq b$ allora $b \in \alpha$) si ha una filtrazione crescente $(A_{\alpha})_{\alpha \in \Omega}$ di A su Ω ponendo

$$A_{\alpha} = \sum_{c \in \alpha} A^{c}.$$

Apuò quindi pensarsi come un $R\text{-}\mathrm{complesso}$ semplice (per contrazione) \varOmega filtrato ; ad esso associamo il sistema spettrale costituito dai moduli graduati

(1)
$$\mathcal{E}_{\alpha\beta\gamma\delta}(A) = Im(H(A_{\beta}/A_{\delta}) \longrightarrow H(A_{\alpha}/A_{\gamma}))$$

 $(\alpha, \beta, \gamma, \delta \in \Omega; \alpha \supset \beta \supset \delta; \alpha \supset \gamma \supset \delta)$ e da opportuni omomorfismi di grado 0 e 1. Questo contiene le due sequenze spettrali di A, e altri invarianti di omotopia.

^{*)} Lavoro eseguito nell'ambito dell'attività del gruppo di ricerca matematico n^0 20 (Algebra Omologica) del C. N. R.

Indirizzo dell'A.: Istituto Matematico dell'Università, Via L. B. Alberti 4, 16132 Genova.

Più in generale fissato un sottoinsieme ω di \mathbf{Z}^m ($m \geq 1$) e detto Ω l'insieme dei suoi segmenti destri, si definisce analogamente il sistema spettrale relativo ad ω di ogni complesso m-uplo di R-moduli avente supporto in ω . I casi notevoli sono ovviamente $\omega = \mathbf{N}^m$ (complessi di cocatene) e $\omega = -\mathbf{N}^m$ (complessi di catene).

Un tale sistema si può considerare ogniqualvolta sia dato un complesso filtrato su un insieme preordinato Ω ; fu introdotto da Deheuvels [3] per filtrazioni continue, ad uso della teoria di Morse.

Questo lavoro concerne il sistema spettrale di un complesso m-uplo a valori in una categoria abeliana.

La parte I considera i sistemi spettrali da un punto di vista assiomatico (nº 1) e loro proprietà generali (nº 2); l'ambiente è una qualunque categoria abeliana. Sia gli assiomi che il teor. 2.1 mostrano l'importanza delle quaterne decrescenti (α , β , γ , δ) tra quelle considerate in (1).

La parte II riguarda i complessi multipli, inizialmente di R-moduli. Si definisce come qui accennato il sistema spettrale (relativo ad ω) di un complesso m-uplo avente supporto in ω (n⁰ 3). Il calcolo dei termini del sistema è ricondotto, mediante isomorfismi canonici (nº 4) e decomposizioni in somma diretta (nº 6) a quello degli $\mathcal{E}_{\alpha\beta\gamma\delta}^{n}(A)$ provenienti da quaterne $(\alpha, \beta, \gamma, \delta)$ n-ridotte (n^{0}) e connesse (nº 6); le quaterne decrescenti vengono ricondotte a quaterne dello stesso tipo. Formule di calcolo sono date al nº 7: in particolare per complessi doppi (m = 2) e per certe quaterne si dà una formula in cui intervengono i differenziali d_1 e d_2 anzichè il differenziale totale (teor. 7.2). L'invarianza omotopica dei funtori $\mathcal{E}^n_{\alpha\beta\gamma\delta}$ è esaminata al n^o 8: per complessi doppi si dà una caratterizzazione molto semplice (8.3) delle quaterne $(\alpha, \beta, \gamma, \delta)$ per cui $\mathcal{E}_{\alpha\beta\gamma\delta}^n$ è invariante; per complessi multipli solo una condizione sufficiente (8.2), ricavata mediante gli isomorfismi del nº 4 da 8.1; quest'ultimo sostanzialmente traduce per i termimi del sistema il noto teorema di invarianza omotopica dei termini E^2 di un modulo differenziale filtrato. Il \mathbf{n}^0 9 introduce i funtori N_r^a , M_r^a ($a \in \omega$, $r \ge 1$; invarianti per $r \ge 2$) e, per m=2, esemplifica per essi e per i termini $E_r^{p,q}$, " $E_r^{q,p}$ delle due sequenze spettrali la formula detta (7.2).

Il nº 10 estende la trattazione della parte II a complessi multipli a valori in una categoria abeliana, mediante il teorema di immersione piena di Freyd-Mitchell; ω deve essere « trasversalmente finito » (Parte II, Convenzioni) oppure la categoria deve possedere somme dirette numerabili.

Molte dimostrazioni delle prime due parti sono rimandate alla III, costituita da quelle e da alcuni lemmi necessari ad esse ma non al discorso.

Convenzioni. \mathcal{A} indica sempre una categoria abeliana, $G(\mathcal{A})$ la categoria degli oggetti graduati di tipo \mathbb{Z} su \mathcal{A} , cioè successioni $(A^n)_{n\in\mathbb{Z}}$ di oggetti di \mathcal{A} , con morfismi di grado 0 (ancora abeliana); $\overline{G}(\mathcal{A})$ la categoria \mathbb{Z} -graduata (Buchsbaum [1], p. 4) avente gli stessi oggetti di $G(\mathcal{A})$ e morfismi di ogni grado. Uno schema graduato S (o schema di diagramma graduato) è dato da un insieme I (vertici), da insiemi Φ_n (frecce di grado n) per ogni intero n, e da applicazioni $D_n: \Phi_n \to I \times I$ (direzioni); è ovvio cosa si intenda per diagramma di schema S a valori in una categoria \mathbb{Z} -graduata; la commutatività potrà richiedersi solo se S è uno schema graduato omogeneo (cioè tale che due qualunque sue frecce composte di egual origine ed estremo abbiano egual grado). Ogni funtore è inteso covariante. Con n si indica sempre un intero (relativo).

PARTE I. — SISTEMI SPETTRALI

1. Sistemi di omologie relative e sistemi spettrali.

I. Sia Ω un insieme preordinato (dotato cioè di una relazione \leq riflessiva e transitiva): per ogni intero $r \geq 1$ indicheremo con Ω^r la potenza cartesiana r-esima di Ω dotata dell'ordine prodotto, e con Ω_r il sottoinsieme preordinato di quella costituito dalle r-uple decrescenti; Ω_* indica poi il sottoinsieme di Ω^4 formato dalle quaterne $(\alpha, \beta, \gamma, \delta)$ tali che $\alpha \geq \beta \geq \delta$, $\alpha \geq \gamma \geq \delta$; ovviamente $\Omega_4 \subset \Omega_*$.

- II. Diremo sistema di omologie relative su Ω a valori in $\mathcal A$ l'assegnazione dei seguenti dati nella categoria graduata $\overline{G}(\mathcal A)$:
 - a) un oggetto $H(\alpha,\beta)=(H^n(\alpha,\beta))_{n\in\mathbb{Z}}$ per ogni $(\alpha,\beta)\in\Omega_2$
- b) un morfismo $H(\alpha,\beta) \xrightarrow{u} H(\alpha',\beta')$ di grado 0, se $(\alpha,\beta) \le (\alpha',\beta')$ in Ω_2
- c) un morfismo $H(\alpha,\beta) \xrightarrow{d} H(\beta,\gamma)$ di grado 1, se $(\alpha,\beta,\gamma) \in \Omega_3$ soggetti a questi assiomi:

(OP.1) se
$$(\alpha, \beta) \in \Omega_2$$
, $H(\alpha, \beta) \xrightarrow{u} H(\alpha, \beta)$ è il morfismo identico

(OP.2) se
$$(\alpha,\beta) \le (\alpha',\,\beta') \le (\alpha'',\,\beta'')$$
 in $\,\varOmega_2^{}\,,\,$ il diagramma

$$H\left(\alpha,\,eta
ight) \longrightarrow H\left(\alpha',\,eta'
ight) \longrightarrow H\left(\alpha'',\,eta''
ight)$$

di morfismi u è commutativo

(OP.3) se $(\alpha, \beta, \gamma) \leq (\alpha', \beta', \gamma')$ in Ω_3 , il diagramma

$$H(\alpha, \beta) \xrightarrow{d} H(\beta, \gamma)$$

$$\downarrow u \qquad \qquad \downarrow u$$

$$H(\alpha', \beta') \xrightarrow{d} H(\beta', \gamma')$$

è commutativo

(OP.4) se
$$(\alpha, \beta, \gamma) \in \Omega_3$$
, il triangolo
$$H(\alpha, \beta) \xrightarrow{\quad d \quad} H(\beta, \gamma)$$

$$\stackrel{u \sim}{\longleftarrow} H(\alpha, \gamma) \stackrel{f}{\not\vdash} u$$

è esatto.

- III. Diremo invece sistema spettrale su Ω a valori in $\mathcal A$ quello costituito dai dati (sempre in $\overline{G}(\mathcal A)$):
 - a) un oggetto $\mathcal{E}_i = \mathcal{E}_{\alpha\beta\gamma\delta}$ se $i = (\alpha, \beta, \gamma, \delta) \in \Omega_*$
 - b) un morfismo $\mathcal{E}_i \xrightarrow{u} \mathcal{E}_{i'}$ di grado 0, se $i \leq i'$ in Ω_*

 $\begin{array}{c} c) \ \ \text{un morfismo} \ \ \mathcal{E}_{\alpha\beta\gamma\delta} \stackrel{d}{\longrightarrow} \mathcal{E}_{\gamma\delta\varkappa\lambda} \ \ \text{di grado} \ \ 1, \ \ \text{se} \ \ (\alpha, \ \beta, \ \gamma, \ \delta) \ \ \text{e} \\ (\gamma, \ \delta, \ \varkappa, \ \lambda) \ \ \text{stanno in} \ \ \Omega_{\bigstar} \end{array}$

e dagli assiomi:

(SP.1) se
$$i \in \Omega_*$$
, $\mathcal{E}_i \xrightarrow{u} \mathcal{E}_i$ è il morfismo identico

(SP.2) se $i \leq i' \leq i''$ in \mathcal{Q}_* , il diagramma di morfismi u

$$\underbrace{\mathcal{E}_{i} \to \mathcal{E}_{i'} \to \mathcal{E}_{i''}}_{!}$$

è commutativo

(SP.3) se $(\alpha, \beta, \gamma, \delta) \le (\alpha', \beta', \gamma', \delta')$ e $(\gamma, \delta, \varkappa, \lambda) \le (\gamma', \delta', \varkappa', \lambda')$ in Ω_* , il diagramma:

$$\begin{array}{ccc}
\mathcal{E}_{\alpha\beta\gamma\delta} & \xrightarrow{d} & \mathcal{E}_{\gamma\delta\varkappa\lambda} \\
\downarrow u & & \downarrow u \\
\mathcal{E}_{\alpha'\beta'\gamma'\delta'} & \xrightarrow{d} & \mathcal{E}_{\gamma'\delta'\varkappa'\lambda'}
\end{array}$$

è commutativo

(SP.4) se $(\alpha, \beta, \gamma, \delta, \varkappa) \in \Omega_5$, è esatta la sequenza

$$0 \to \mathcal{E}_{\alpha\gamma\delta\varkappa} \xrightarrow{u} \mathcal{E}_{\alpha\beta\delta\varkappa} \xrightarrow{u} \mathcal{E}_{\alpha\beta\gamma\varkappa} \to 0$$

(SP.5) se $(\alpha, \beta, \gamma, \delta, \varkappa, \lambda) \in \Omega_6$, è esatta la sequenza

$$\mathbf{0} \longrightarrow \mathcal{E}_{\alpha\beta\gamma\varkappa} \overset{u}{\longrightarrow} \mathcal{E}_{\alpha\beta\gamma\delta} \overset{d}{\longrightarrow} \mathcal{E}_{\gamma\delta\varkappa\lambda} \overset{u}{\longrightarrow} \mathcal{E}_{\beta\delta\varkappa\lambda} \longrightarrow \mathbf{0}$$

(SP.6) se $(\alpha, \beta, \gamma, \delta) \in \Omega_*$, i morfismi $\mathcal{E}_{\beta\beta\delta\delta} \xrightarrow{u} \mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha\alpha\gamma\gamma}$ sono rispettivamente epi e mono.

Osservo che in (SP.4,5) le condizioni sugli indici sono necessarie per l'esistenza degli oggetti e morfismi presenti. (SP.6) è indipendente dagli altri assiomi, mentre sarebbe conseguenza di (SP.2, 4,5) se ci si limitasse a quaterne decrescenti.

IV. I sistemi di entrambi i tipi sono particolari diagrammi in $\overline{G}(\mathcal{A})$: lo schema graduato dei sistemi di omologie parziali, ad esempio, ha vertici in Ω_2 , frecce di grado 0 in $(\Omega_2)_2$, frecce di grado 1 in Ω_3 , e le direzioni indicate; sono quindi automaticamente definiti i morfismi, in entrambi i casi, come traslazioni di diagrammi (tra sistemi considereremo solo morfismi di grado 0).

Scrivendo $\mathcal{E}_{\alpha\beta\gamma\delta}$ supporremo d'ora innanzi che $(\alpha, \beta, \gamma, \delta) \in \Omega_*$, scrivendo $\mathcal{E}_{\alpha\beta\gamma\delta} \stackrel{u}{\to} \mathcal{E}_{\alpha'\beta'\gamma'\delta'}$ che $(\alpha, \beta, \gamma, \delta) \leq (\alpha', \beta', \gamma', \delta')$ in Ω_* .

Teorema 1.1. Ad ogni sistema di omologie relative H su Ω a valori in $\mathcal A$ si può associare il sistema spettrale $\mathcal E$ così costituito :

$$- \qquad \mathcal{E}_{\alpha\beta\gamma\delta} = \operatorname{Im}\left(H\left(\beta,\,\delta\right) \xrightarrow{u} H\left(\alpha,\,\gamma\right)\right)$$

— il morfismo $\mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha'\beta'\gamma'\delta'}$ è definito per restrizione da $H(\alpha, \gamma) \xrightarrow{u} H(\alpha', \gamma')$, in virtù del diagramma commutativo :

(1)
$$\begin{array}{ccc} H\left(\beta,\delta\right) & \xrightarrow{u} & H\left(\alpha,\gamma\right) \\ \downarrow u & & \downarrow u \\ H\left(\beta',\delta'\right) & \xrightarrow{u} & H\left(\alpha',\gamma'\right) \end{array}$$

— il morfismo $\mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{d} \mathcal{E}_{\gamma\delta\varkappa\lambda}$ si ottiene per restrizione dal diagramma commutativo:

(2)
$$\begin{array}{cccc} H (\beta, \delta) & \stackrel{u}{\longrightarrow} & H (\alpha, \gamma) \\ \downarrow d & & \downarrow d \\ & \downarrow u & \downarrow d \\ H (\delta, \lambda) & \stackrel{u}{\longrightarrow} & H (\gamma, \varkappa) \end{array}$$

Inoltre ad ogni morfismo $(f_{\alpha\beta})_{(\alpha,\beta)\in\Omega_2}$ tra sistemi di omologie relative $H,\ H'$ si può associare un morfismo tra i sistemi spettrali associati definendo $f_{\alpha\beta\gamma\delta}((\alpha,\beta,\gamma,\delta)\in\Omega_*)$ per restrizione dal diagramma commutativo:

(3)
$$H(\beta, \delta) \xrightarrow{u} H(\alpha, \gamma)$$

$$\downarrow f_{\beta\delta} \qquad \qquad \downarrow f_{\alpha\gamma}$$

$$H'(\beta, \delta) \xrightarrow{u} H'(\alpha, \gamma)$$

Si ha così un funtore della categoria dei sistemi di omologie relative in quella dei sistemi spettrali (su Ω , a valori in \mathcal{A}). Dim. al n^0 11.

È invece immediato riconoscere che se \mathcal{E} è un sistema spettrale si ottiene un sistema di omologie relative limitandosi agli oggetti $H(\alpha, \beta) = \mathcal{E}_{\alpha\alpha\beta\beta}$ ed ai morfismi u, d inerenti a quelli; l'assioma (OP.4) è soddisfatto, come ovvia conseguenza dell'esattezza delle sequenze:

$$0 \to \mathcal{E}_{\alpha\alpha\beta\gamma} \xrightarrow{u} \mathcal{E}_{\alpha\alpha\beta\beta} \xrightarrow{d} \mathcal{E}_{\beta\beta\gamma\gamma} \xrightarrow{u} \mathcal{E}_{\alpha\beta\gamma\gamma} \to 0$$

$$\parallel \qquad \qquad \parallel$$

$$0 \leftarrow \mathcal{E}_{\alpha\alpha\beta\gamma} \leftarrow \frac{u}{\mathcal{E}_{\alpha\alpha\gamma\gamma}} \leftarrow \mathcal{E}_{\alpha\beta\gamma\gamma} \leftarrow 0$$

ottenute da (SP.5) e (SP.4). Un morfismo di sistemi spettrali ristretto alle quaterne decrescenti $(\alpha, \alpha, \beta, \beta)$ fornisce poi un morfismo di sistemi di omologie relative.

V. Questi funtori realizzano un'equivalenza tra le due categorie, come segue dagli isomorfismi naturali:

(4)
$$Im (H(\alpha, \beta) \xrightarrow{u} H(\alpha, \beta)) = H(\alpha, \beta)$$

(5)
$$Im (\mathcal{E}_{\beta\beta\delta\delta} \xrightarrow{u} \mathcal{E}_{\alpha\alpha\gamma\gamma}) = \mathcal{E}_{\alpha\beta\gamma\delta}$$

ottenibili rispettivamente da (OP.1) e (SP.2,6).

VI. Esempi.

a) Sia A un complesso Ω -filtrato a valori in \mathcal{A} , cioè un oggetto $A = (A^n)_{n \in \mathbb{Z}}$ di $\overline{G}(\mathcal{A})$ munito di un endomorfismo d di grado 1 a quadrato nullo, e di una filtrazione $(A_a)_{a \in \Omega}$ di sottooggetti di A

compatibili con il differenziale. Ad A si può associare un sistema di omologie relative su Ω a valori in $\mathcal A$ ponendo:

- se
$$(\alpha, \beta) \in \Omega_2$$
, $H(\alpha, \beta) = H(A_\alpha/A_\beta)$

— se $(\alpha, \beta) \leq (\alpha', \beta')$ in Ω_2 , il morfismo di grado 0

$$H(A_{\alpha}/A_{\beta}) \xrightarrow{u} H(A_{\alpha'}/A_{\beta'})$$

è indotto dalle inclusioni $A_{\alpha} \subset A_{\alpha'}$, $A_{\beta} \subset A_{\beta'}$

— se $(\alpha, \beta, \gamma) \in \Omega_3$, il morfismo di grado 1

$$H(A_{\alpha}/A_{\beta}) \xrightarrow{d} H(A_{\beta}/A_{\gamma})$$

è il connettivo associato alla sequenza accorciata esatta di complessi:

$$0 \longrightarrow A_{eta}/A_{\gamma} \longrightarrow A_{lpha}/A_{\gamma} \longrightarrow A_{lpha}/A_{eta} \longrightarrow 0.$$

Gli assiomi sono notoriamente soddisfatti.

Il sistema spettrale che se ne deduce per 1.1:

$$\mathcal{E}_{\alpha\beta\gamma\delta}(A) = Im \left(H(A_{\beta}/A_{\delta}) \xrightarrow{u} H(A_{\alpha}/A_{\gamma})\right)$$

sarà detto sistema spettrale di A, e indicato complessivamente (morfismi u, d compresi) con $\mathcal{E}(A)$. Ovviamente per ogni morfismo $f:A \to B$ tra complessi Ω -filtrati è definito un morfismo $\mathcal{E}(f):\mathcal{E}(A) \to \mathcal{E}(B)$ di sistemi spettrali: \mathcal{E} si presenta quindi come funtore (additivo) della categoria dei complessi Ω -filtrati su \mathcal{A} in quella dei sistemi spettrali su Ω a valori in \mathcal{A} .

Per $\Omega = \mathbf{Z}$, con l'ordine opposto al naturale, il sistema generalizza la sequenza spettrale del complesso filtrato A; infatti per $r \geq 1$, e p, q interi qualunque:

(6)
$$E_r^{p,q}(A) = Im(H^{p+q}(A_p/A_{p+r}) \to H^{p+q}(A_{p-r+1}/A_{p+1})) =$$

$$= \mathcal{E}_{p-r+1, p, p+1, p+r}^{p+q}(A)$$

(per l'isomorfismo sfruttato efr. Cartan-Eilenberg [2], p. 318) e il differenziale della sequenza spettrale si identifica a quello del sistema mediante gli isomorfismi detti.

- b) Sia A un complesso m-uplo a valori in \mathcal{A} ; detto Ω l'insieme dei segmenti destri di \mathbf{Z}^m , si definisce in modo ovvio una filtrazione $(A_{\alpha})_{\alpha \in \Omega}$ del complesso semplice ottenuto da A per contrazione, e quindi, come in a), un sistema spettrale associato ad A, contenente le m sequenze spettrali di quello e altri invarianti d'omotopia; lo studio della situazione qui accennata verrà fatto nella parte II.
- c) Sia X uno spazio topologico, $(X_a)_{a \in \Omega}$ una filtrazione decrescente di X indiciata su un insieme preordinato Ω , H^* una teoria di coomologia per coppie di spazi topologici per cui le coppie $(X_{\beta}, X_a), (\alpha, \beta) \in \Omega_2$, siano ammissibili (cfr. Eilenberg-Steenrod, Foundations of Algebraic Topology). Si ottiene un sistema di omologie relative ponendo $H(\alpha, \beta) = H^*(X_{\beta}, X_a)$, e definendo i morfismi u come indotti da inclusioni, i morfismi d mediante il cobordo di una tripla; (OP.4) è la sequenza esatta di coomologia della tripla $(X_{\gamma}, X_{\beta}, X_a)$ (loc. cit, p. 29).
- d) Sia dato un funtore coomologico $T=(T^n)_{n\in\mathbb{Z}}$ (Grothendieck [5], p. 140) di una categoria abeliana \mathcal{A}' in \mathcal{A} , e un oggetto A di \mathcal{A}' munito di una Ω -filtrazione crescente $(A_a)_{a\in\Omega}$: questa situazione generalizza a), dove \mathcal{A}' è la categoria dei complessi su \mathcal{A} e T è la coomologia. Anche qui si può definire un sistema di omologie relative su Ω a valori in \mathcal{A} :

$$H^n(\alpha, \beta) = T^n(A_{\alpha}/A_{\beta})$$

e di conseguenza un sistema spettrale.

VII. I sistemi di omologie relative furono introdotti, per quanto a me noto, da Eilenberg [4] e ripresi da Cartan-Eilenberg [2] (per $\Omega = \mathbf{Z} \cup \{-\infty, +\infty\}$ e con in più un assioma di parziale convergenza) allo scopo di dedurne sequenze spettrali. Deheuvels [3], cui è dovuto il nome, ne ricavò invece un « sistema di omologie parziali » più vasto, comprendente oltre agli $\mathcal{E}_{\alpha\beta\gamma\delta}$ qui considerati

anche gli oggetti $\mathcal{D}_{\alpha\beta\gamma\delta}$ immagini del morfismo composto

$$H(\alpha, \gamma) \xrightarrow{u} H(\alpha, \beta) \xrightarrow{d} H(\beta, \delta).$$

Lavorando su $\Omega = \mathbf{R} \cup \{-\omega, -\infty, +\infty, +\omega\}$, per applicazioni alla teoria di Morse, egli provò un teorema di completezza di tale sistema (teor. 4 p. 40), che pare non sussistere se Ω non è totalmente ordinato.

2. Proprietà fondamentali dei sistemi spettrali.

- I. Sia dato un sistema spettrale \mathcal{E} su Ω (insieme preordinato) a valori nella categoria abeliana \mathcal{A} .
 - a) Come già detto, se $(\alpha, \beta, \gamma) \in \Omega_3$ il triangolo

$$\mathcal{E}_{\alpha\alpha\beta\beta} \xrightarrow{d} \mathcal{E}_{\beta\beta\gamma\gamma}$$

$$u \qquad \qquad \swarrow u$$

è esatto (n^0 1, IV).

- b) I morfismi $\mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha\beta'\gamma\delta'}$ sono mono, mentre gli $\mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha'\beta\gamma'\delta}$ sono epi: segue da (SP.6,1,2).
- c) Se $\beta \leq \gamma$, $\mathcal{E}_{\alpha\beta\gamma\delta} = 0$: poichè $\mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha\gamma\gamma\delta}$ è un monomorfismo per b), basta provare che $\mathcal{E}_{\alpha\gamma\gamma\delta} = 0$; in effetti per (SP.4,1) c'è la sequenza esatta di morfismi identici:

$$0 \longrightarrow \mathcal{E}_{\alpha\gamma\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha\gamma\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha\gamma\gamma\delta} \longrightarrow 0.$$

- d) Se $\beta \leq \gamma'$, $(\mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha'\beta'\gamma'\delta'}) = 0$: segue da c) e dalla fattorizzazione di u: $\mathcal{E}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}_{\alpha'\beta\gamma'\delta} \xrightarrow{u} \mathcal{E}_{\alpha'\beta'\gamma'\delta'}$.
- II. Il seguente teorema consente di individuare sequenze spettrali entro il sistema:

TEOREMA 2.1. I morfismi consecutivi

(2)
$$\mathcal{E}_{\alpha\beta\gamma\delta} \stackrel{d}{\longrightarrow} \mathcal{E}_{\gamma\delta\varkappa\lambda} \stackrel{d}{\longrightarrow} \mathcal{E}_{\varkappa\lambda\mu\nu}$$

hanno composizione nulla; se $(\alpha, \beta, \gamma, \delta)$ e $(\varkappa, \lambda, \mu, \nu)$ sono decrescenti il quoziente di omologia della (2) è isomorfo a $\mathcal{E}_{\beta\delta\varkappa\mu}$ (isomorfismo naturale per mappe di sistemi spettrali, e compatibile con i morfismi u). Dim al n^0 11.

È facile vedere che se una delle quaterne esterne di (2) non è decrescente il teorema può non sussistere, anche se \mathcal{E} proviene da un doppio complesso. Questo fatto, oltre agli assiomi (SP.4,5), motiva l'attenzione prestata alle quaterne decrescenti nella parte II.

Da 2.1 si deduce un nuovo legame tra $\mathcal E$ ed il sistema H associato :

COROLLARIO 2.2. Se $(\alpha, \beta, \gamma, \delta) \in \Omega_4$, $\mathcal{E}_{\alpha\beta\gamma\delta}$ è naturalmente isomorfo all'omologia di

$$H(\alpha, \beta) \xrightarrow{d} H(\beta, \gamma) \xrightarrow{d} H(\gamma, \delta)$$

dove $H(\alpha, \beta) = \mathcal{E}_{\alpha\alpha\beta\beta}$. L'isomorfismo è compatibile con i morfismi u.

III. Nel caso che sia $\Omega = \mathbb{Z}$, con l'ordine opposto al naturale, si ricava ancora da 2.1 che, posto (per p, q, r interi, $r \geq 1$):

$$\begin{split} &-E_r^{p,q}=\mathcal{E}_{p-r+1,p,p+1,p+r}^{p+q}\\ &-(d_r^{p,q}\colon E_r^{p,q}\!\!\to\!\!E_r^{p+r,q-r+1})\!=\!(\mathcal{E}_{p-r+1,p,p+1,p+r}^{p+q}\!\!\stackrel{d}{\longrightarrow}\!\!\mathcal{E}_{p+1,p+r,p+r+1,p+2r}^{p+q+1})\\ &-E_r=(E_r^{p,q})_{(p,q)\in\mathsf{Z}^2}\qquad d_r=(d_r^{p,q})_{(p,q)\in\mathsf{Z}^2}\end{split}$$

si ha $H(E_r, d_r) = E_{r+1}$ e quindi una sequenza spettrale (E_r, d_r) , secondo la definizione di Mac Lane [6], p. 345. Se inoltre \mathcal{E} è il sistema spettrale $\mathcal{E}(A)$ di un complesso **Z**-filtrato A, la sequenza spettrale trovata non è altro che quella di A, come visto nell'esempio a) del n^0 1, VI.

IV. Quanto alla composizione di morfismi u,d del sistema si può provare (ma qui non servirà) che se Ω è filtrante a sinistra e a destra (cioè dati $\alpha, \beta \in \Omega$ esistono $\gamma, \delta \in \Omega$ tali che $\gamma \leq \alpha \leq \delta$, $\gamma \leq \beta \leq \delta$) il morfismo di composizione di grado n

$$\mathcal{E}_{\alpha\beta\gamma\delta} \longrightarrow \mathcal{E}_{\alpha'\beta'\gamma'\delta'}$$

è al più unico; se n=0 esiste se e solo se $(\alpha, \beta, \gamma, \delta) \leq (\alpha', \beta', \gamma', \delta')$ e coincide con il relativo morfismo u; se n=1 esiste se e solo se $\gamma \leq \alpha'$, $\delta \leq \beta'$, ed è dato dalla diagonale del diagramma commutativo:

$$\begin{array}{ccc}
\mathcal{E}_{\alpha\beta\gamma\delta} & \xrightarrow{d} \mathcal{E}_{\gamma\delta\varkappa\lambda} \\
\downarrow u & \downarrow u \\
\mathcal{E}_{\mu\nu\alpha'\beta'} & \xrightarrow{d} \mathcal{E}_{\alpha'\beta'\gamma'\delta'}
\end{array}$$

(dove $\varkappa \leq \delta$, γ' ; $\lambda \leq \varkappa$, δ' ; $\nu \geq \beta$, α' ; $\mu \geq \alpha$, ν); infine se n > 1 esiste sempre ed è nullo. Di conseguenza ogni diagramma di morfismi u, d su schema omogeneo è commutativo.

PARTE II. — IL SISTEMA SPETTRALE DI UN COMPLESSO MULTIPLO

Convenzioni. Sia $m \geq 1$; \mathbf{Z}^m è parzialmente ordinato da:

$$(p_1,\ldots p_m) \leq (q_1,\ldots q_m) < \Longrightarrow p_1 \leq q_1,\ldots p_m \leq q_m.$$

Sia ω un sottoinsieme di \mathbf{Z}^m che resterà fisso in tutta questa parte; $\boldsymbol{\mathfrak{C}}$ è l'operatore complementare in \mathbf{Z}^m , $\boldsymbol{\mathfrak{C}}_\omega$ in ω . Ω indicherà sempre l'insieme dei segmenti destri di ω , cioè di quei sottoinsiemi α di ω tali che se $a \in \alpha$, $b \in \omega$ e $a \leq b$ allora $b \in \alpha$. Ω è l'insieme dei chiusi (risp. aperti) di ω per la topologia d'ordine sinistra (risp. destra); se $\varphi \subset \omega$, indicheremo con φ (risp. φ^*) la chiusura di φ in tale topologia; diremo che φ è localmente chiuso in ω se lo è per l'una o l'altra delle topologie dette; condizioni equivalenti sono $\varphi = \varphi \cap \varphi^*$,

oppure:

$$(a, b \in \varphi, c \in \omega, a < c < b)$$
 implies $c \in \varphi$.

 Ω è parzialmente ordinato per inclusione, ed è un reticolo. Un elemento $i=(\alpha,\beta,\gamma,\delta)$ di Ω_* (cfr. 1,I) sarà detto semplicemente quaterna (relativa ad ω), e quaterna decrescente se è tale, ossia se sta in Ω_4 ; la relazione d'ordine in Ω^4 sarà ancora scritta \subset : Ω_* e Ω_4 sono sottoreticoli di Ω^4 , essendo

$$(\alpha, \beta, \gamma, \delta) \cap (\alpha', \beta', \gamma', \delta') = (\alpha \cap \alpha', \beta \cap \beta', \gamma \cap \gamma', \delta \cap \delta')$$

e analogamente per l'unione (o, più esattamente, estremo superiore).

Per ogni intero n, ω_n indica l'insieme dei punti $(p_1, ... p_m)$ di ω tali che $p_1 + ... + p_m = n$; inoltre $\omega'_n = \omega_{n-1} \cup \omega_n$, $\omega''_n = \omega_n \cup \omega_{n+1} = \omega'_{n+1}$; diremo che ω è trasversalmente finito se ω_n è finito per ogni intero n.

Diremo contigui due punti di \mathbf{Z}^m aventi distanza euclidea eguale ad 1; una spezzata di $\varphi \subset \mathbf{Z}^m$ è una successione finita $(a_r)_{0 \leq r \leq \overline{r}}$ di di punti di φ tale che a_r e a_{r+1} siano contigui per $0 \leq r < \overline{r}$; R_{φ} indica la relazione di equivalenza in φ generata dalla relazione nelle variabili a e b « a e b sono elementi contigui di φ »: in altre parole aR_{φ} b equivale a dire che esiste una spezzata di φ « congiungente » a e b.

La base canonica di \mathbb{Z}^m su \mathbb{Z} sarà scritta $(e_h)_{1 \leq h \leq m} : e_1 = (1, 0, \dots 0)$ etc.; i punti contigui ad $a \in \mathbb{Z}^m$ sono quindi gli $a \pm e_h$.

Nei numeri 3 9 di questa parte la categoria ambiente è la categoria \mathcal{G}^R dei moduli (sinistri) su un anello R; al nº 10 i risultati sono estesi ad una qualunque categoria abeliana \mathcal{A} (purché ω sia trasversalmente finito, oppure \mathcal{A} abbia somme dirette numerabili). Per motivi pratici si dirà R-modulo graduato un R-modulo A munito di una graduazione $(A^n)_{n \in \mathbb{Z}}$ (famiglia di sottomoduli di cui A è somma diretta): si sostituisce cioè G (\mathcal{G}^R) con una categoria equivalente; modifiche analoghe per complessi di R-moduli, etc.

3. Definizione del sistema spettrale di un complesso multiplo.

I. Sia A un complesso m-uplo di R-moduli: A è un R-modulo munito di una graduazione $(A^c)_{c \in \mathbb{Z}^m}$ di tipo \mathbb{Z}^m , e di endomorfismi

 d_h di grado e_h ($1 \le h \le m$) a quadrato nullo e commutanti:

$$d_h d_k = d_k d_h$$
 (= 0 se $h = k$).

Accanto a questi differenziali considereremo i \overline{d}_h :

(1)
$$\overline{d}_h x = (-1)^{p_1 + \dots + p_{h-1}} d_h x$$
, se $x \in A^{p_1, \dots p_m}$

ancora a quadrato nullo ma anticommutanti: $\overline{d}_h \overline{d}_k = -\overline{d}_k \overline{d}_h$.

Diremo supporto di A il sottoinsieme $\sigma(A)$ di \mathbf{Z}^m costituito dai punti c tali che $A^c \not= 0$; analogamente se $x \in A$, l'insieme $\sigma(x)$ dei punti c tali che x^c (componente di x in A^c) sia non nullo è il supporto di x. I complessi m-upli di R-moduli con supporto contenuto in ω costituiscono una categoria abeliana $C^m(R,\omega)$; $C^m(R,\mathbf{N}^m)$ è ad es. la categoria dei complessi m-upli di cocatene, mentre $C^m(R,-\mathbf{N}^m)$ è isomorfa alla categoria dei complessi m-upli di catene.

II. Ad ogni oggetto A di $C^m\left(R,\omega\right)$ si può associare per « contrazione » un complesso semplice Ω -filtrato di R moduli \widetilde{A} munendo l'R-modulo A di :

— graduazione semplice:
$$(A^n)_{n \in \mathbb{Z}}$$
 dove $A^n = \sum_{c \in \omega_n} A^c$

- differenziale:
$$d = \sum_{h=1}^{m} \overline{d}_{h}$$

- filtrazione:
$$(A_{\alpha})_{\alpha \in \Omega}$$
 dove $A_{\alpha} = \sum_{c \in \alpha} A^{c}$.

Diremo sistema spettrale (relativo ad ω) $\mathcal{E}(A)$ di A il sistema spettrale del complesso Ω -filtrato \widetilde{A} (1, VI, a); nei nⁱ 3·9 di questa parte \mathcal{E} sarà considerato, salvo contrario avviso, come funtore di $C^m(R,\omega)$ nella categoria dei sistemi spettrali su Ω a valori in \mathcal{G}^R , gli \mathcal{E}_i come funtori di quella in $\overline{\mathcal{G}}(\mathcal{G}^R)$, i morfismi u,d come morfismi funtoriali tra gli \mathcal{E}_i .

III. La filtrazione $(A_{\alpha})_{\alpha \in \Omega}$ è più fine delle m filtrazioni canoniche $({}^hF_r A)_{r \in \mathbb{Z}}$, perché se $1 \leq h \leq m$ e $r \in \mathbb{Z}$:

$${}^{h}F_{r} A = A_{\varrho_{h}(r)}$$

dove $\varrho_h(r) = \{(p_1, \dots p_m) \mid (p_1, \dots p_m) \in \omega, p_h \geq r\}$; di conseguenza (per quanto detto in 1, VI, a)) il sistema spettrale di A contiene le m sequenze spettrali di A:

$$^{h}E_{r}^{p,q}(A) = \mathcal{E}_{\alpha\beta\gamma\delta}^{p+q}(A)$$

dove $\alpha = \varrho_h (p - r + 1)$, $\beta = \varrho_h (p)$, $\gamma = \varrho_h (p + 1)$, $\delta = \varrho_h (p + r)$. Notare che α , β , γ , δ dipendono da ω per definizione di ϱ_h , e che per la validità della (3) è sufficiente che il sottoinsieme ω di \mathbb{Z}^m contenga il supporto di A. Per m = 2 si scriverà E, E anziché E, E.

IV. Il sistema spettrale contiene altri invarianti di omotopia di A (cfr. \mathbf{n}^0 8); un esempio è dato dagli N_r^a , M_r^a del \mathbf{n}^0 9. Il calcolo degli $\mathcal{E}_i^n(A)$ è invece affrontato nei \mathbf{n}^i 4.7; un primo risultato è la formula

(4)
$$\mathcal{E}_{\alpha\beta\gamma\delta}(A) = \frac{A_{\beta} \cap d^{-1} A_{\delta}}{A_{\gamma} + dA_{\alpha}} \, ^{1})$$

fornita dalla seguente proposizione, e valida per ogni complesso $\overline{\Omega}$ ·filtrato di R·moduli ($\overline{\Omega}$ essendo un qualunque insieme preordinato).

PROPOSIZIONE 3.1. I funtori H ed \mathcal{E} , definiti sulla categoria dei complessi Ω -filtrati di R-moduli, sono rispettivamente isomorfi ai funtori H', \mathcal{E}' dati da:

$$\begin{split} &-H^{\prime}\left(\alpha,\beta\right)A = \frac{A_{\alpha} \cap d^{-1} A_{\beta}}{dA_{\alpha} + A_{\beta}} \qquad \mathcal{E}_{\alpha\beta\gamma\delta}^{\prime}(A) = \frac{A_{\beta} \cap d^{-1} A_{\delta}}{A_{\gamma} + dA_{\alpha}} \ ^{1}) \\ &-H^{\prime}\left(\alpha,\beta\right)A \xrightarrow{u} H^{\prime}\left(\alpha^{\prime},\beta^{\prime}\right)A \qquad e \qquad \mathcal{E}_{\alpha\beta\gamma\delta}^{\prime}(A) \xrightarrow{u} \mathcal{E}_{\alpha^{\prime}\beta^{\prime}\gamma^{\prime}\delta^{\prime}}^{\prime}\left(A\right) \end{split}$$

¹) Quoziente generalizzato : se H e K sono sottomoduli di A, H/K = = (H+K)/K per definizione.

sono indotti dall'omomorfismo identico di A

$$- H'(\alpha, \beta) A \xrightarrow{d} H'(\beta, \gamma) A \quad e \quad \mathcal{E}'_{\alpha\beta\gamma\delta}(A) \xrightarrow{d} \mathcal{E}'_{\gamma\delta\varkappa\lambda}(A)$$
 sono indotti dal differenziale di A

— se $f: A \longrightarrow B$ è un omomorfismo di complessi $\overline{\Omega}$ -filtrati di R-moduli, $H'(\alpha, \beta) A \xrightarrow{f_{\alpha\beta}} H'(\alpha, \beta) B$ e $\mathcal{E}_{\alpha\beta\gamma\delta}(A) \xrightarrow{f_{\alpha\beta\gamma\delta}} \mathcal{E}'_{\alpha\beta\gamma\delta}(A)$ sono indotti da f.

Pure isomorfi sono i funtori H ed H', \mathcal{E} ed \mathcal{E}' , definiti su C^m (R,ω) .

DIM. Se A è un complesso $\overline{\Omega}$ -filtrato e $(\alpha, \beta) \in \overline{\Omega}_2$:

$$\begin{aligned} \operatorname{Ker}\left(A_{\alpha}/A_{\beta} \xrightarrow{d} A_{\alpha}/A_{\beta}\right) &= \left(A_{\alpha} \cap d^{-1} A_{\beta}\right)/A_{\beta} \\ \operatorname{Im}\left(A_{\alpha}/A_{\beta} \xrightarrow{d} A_{\alpha}/A_{\beta}\right) &= \left(dA_{\alpha} + A_{\beta}\right)/A_{\beta} \\ \operatorname{H}\left(A_{\alpha}/A_{\beta}\right) &= \frac{A_{\alpha} \cap d^{-1} A_{\beta}}{dA_{\alpha} + A_{\beta}}. \end{aligned}$$

Questo isomorfismo è naturale e compatibile con i morfismi u,d; quindi:

$$\begin{split} \mathcal{E}_{\alpha\beta\gamma\delta}\left(A\right) &= Im\left(H\left(A_{\beta}/A_{\delta}\right) \xrightarrow{u} H\left(A_{\alpha}/A_{\gamma}\right)\right) \\ &= Im\left(\frac{A_{\beta} \cap d^{-1} A_{\delta}}{dA_{\beta} + A_{\delta}} \xrightarrow{u} \frac{A_{\alpha} \cap d^{-1} A_{\gamma}}{dA_{\alpha} + A_{\gamma}}\right) \\ &= \frac{(A_{\beta} \cap d^{-1} A_{\delta}) + dA_{\alpha}}{dA_{\alpha} + A_{\gamma}} = \mathcal{E}'_{\alpha\beta\gamma\delta}(A). \end{split}$$

isomorfismo esso pure naturale e compatibile con i morfismi u, d. c.v.d.

COROLLARIO 3.2. Se A è un complesso Ω -filtrato di R-moduli (oppure un oggetto di C^m (R, ω)) il morfismo $\mathcal{E}^n_{\alpha\beta\gamma\delta}(A) \xrightarrow{u} \mathcal{E}^n_{\alpha'\beta'\gamma'\delta'}(A)$ è:

- monomorfismo se e solo se $A_{\beta}^{n} \cap d^{-1} A_{\delta} \cap (dA_{\alpha'} + A_{\gamma'}) \subset dA_{\alpha} + A_{\gamma}$
- epimorfismo se e solo se $A_{\beta'}^n \cap d^{-1} A_{\delta'} \subset (A_{\beta} \cap d^{-1} A_{\delta}) + dA_{\alpha'} + A_{\gamma'}$
- nullo se e solo se $A^n_\beta \cap d^{-1} A_\delta \subset dA_{\alpha'} + A_{\gamma'}$.

4. Isomorfismi di n-equivalenza e morfismi generalizzati.

I. Se $i = (\alpha, \beta, \gamma, \delta)$ è una quaterna e n un intero, diremo nocciolo n-esimo di i l'insieme $\vartheta = (\beta - \gamma) \cap \omega_n$, e coppia n-esima di i la coppia (ζ, η) di sottoinsiemi di ω :

$$\zeta = {
m saturato} \ {
m di} \ \vartheta \ {
m per} \ R_{\zeta'} \ , \ {
m dove} \ \zeta' = (\alpha - \gamma) \cap \omega'_n \ ^2 \ , \ {
m deve} \ \eta' = (\beta - \delta) \cap \omega''_n \ .$$

Ovviamente $\vartheta = \zeta' \circ \eta' = \zeta \circ \eta$.

Diremo n equivalenti $(i \underset{n}{\sim} j)$ due quaterne aventi la stessa coppia *n*-esima. La fig. 1 mostra, per m=2, $\omega=\mathbb{Z}^2$, $i=(\varrho_1(1),\varrho_1(3),\varrho_1(4),\varrho_2(4),\varrho_3(4),\varrho_4(4),\varrho$ $\varrho_{4}(6)$, n=7, le zone ζ ed η :

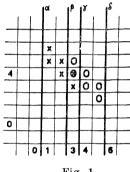


Fig. 1

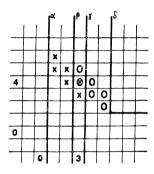


Fig. 1'

Come sempre si farà in queste figure i punti di Z² sono rappresentati da quadrati elementari del «reticolo» ivi tracciato (il punto (p,q) corrisponde all'intersezione tra la striscia verticale p e la striscia orizzontale q); il segno \times (risp. 0) in un quadrato significa che il punto di \mathbb{Z}^2 che esso rappresenta sta in ζ (risp. η). La quaterna decrescente i considerata in fig. 1 è notevole perché $\mathcal{E}_i^n = {}'E_3^{3, n-3}$ (cfr. 3.(3)); in questo caso si ha $\zeta = \zeta'$ e $\eta = \eta'$; non così in fig. 1'. Le due quaterne sono n-equivalenti per ogni $n \geq 7$.

²) Ossia: ζ è l'insieme dei punti di ζ' equivalenti a punti di ϑ secondo $R_{\zeta'}$ cioè (cfr. convenzioni della parte II) dei punti di ζ' connettibili a punti di ϑ mediante una spezzata contenuta in ζ' .

TEOREMA 4.1. Se i, j sono quaterne n-equivalenti, anche $i \cap j$ e $i \cup j$ sono n-equivalenti ad esse ³). Dim. al n^0 12.

TEOREMA 4.2. Se i, j sono quaterne n-equivalenti e $i \subset j$, il morfismo funtoriale $\mathcal{E}_i^n \stackrel{"}{\longrightarrow} \mathcal{E}_j^n$ è isomorfismo. Dim. al n^0 12.

II. Da 4.1 e 4.2 si ha immediatamente che, se i, j sono quaterne n-equivalenti, il seguente diagramma commutativo di morfismi funtoriali:

$$\begin{array}{ccc}
\mathcal{E}_{i}^{n} & \xrightarrow{u_{1}} & \mathcal{E}_{i}^{n} \cup j \\
\downarrow u_{3} & & \uparrow u_{4} \\
\mathcal{E}_{i}^{n} \cap j & \xrightarrow{u_{2}} & \mathcal{E}_{j}^{n}
\end{array}$$

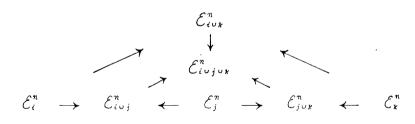
è formato da isomorfismi, e definisce quindi un isomorfismo funtoriale

(2)
$$v_{ij}^n : \mathcal{E}_i^n \to \mathcal{E}_j^n \qquad (v_{ij}^n = u_4^{-1} u_1 = u_2 u_3^{-1})$$

che diremo isomorfismo di n-equivalenza. Se $i \subset j, v_{ii}^n$ è un morfismo u.

COROLLARIO 4.3. Se Γ è una classe di n-equivalenza di Ω_* , $(v_{ij}^n)_{(i,j)\in\Gamma^2}$ è un sistema transitivo di isomorfismi per i funtori $(\mathcal{E}_i^n)_{i\in\Gamma}$.

Dim. Se i, j, k sono quaterne n-equivalenti, dal seguente diagramma commutativo di isomorfismi u:



si ricava facilmente $v_{ik}^n = v_{jk}^n v_{ij}^n$.

c.v.d.

Abbiamo così provato che \mathcal{E}^n_i dipende solo dalla classe di n-equivalenza di i in Ω_{\star} .

³⁾ Non è invece generalmente vero che $\stackrel{\sim}{n}$ sia compatibile con la struttura reticolare di Ω_* .

III. Gli omomorfismi u, v si possono generalizzare nel seguente modo. Se i, j sono quaterne diremo che i < j se esistono due quaterne i', j' tali che:

(3)
$$i \sim i', \quad i' \subset j', \quad j' \sim j^{-4}$$
.

In tal caso si può definire un morfismo $w_{ij}^n:\mathcal{E}_i^n \to \mathcal{E}_j^n$ mediante la composizione:

$$\mathcal{E}_{i}^{n} \xrightarrow{v} \mathcal{E}_{i'}^{n} \xrightarrow{u} \mathcal{E}_{j'}^{n} \xrightarrow{v} \mathcal{E}_{j}^{n}.$$

Il morfismo non dipende da i', j' perché se i'', j'' sono nelle stesse condizioni, $i \underset{n}{\sim} i' \cup i''$ e $j \underset{n}{\sim} j' \cup j''$ per 4.1, onde il diagramma:

dove le mappe verticali sono contemporaneamente morfismi $u \in v$, è a maglie elementari commutative (anche per 4.3), e quindi è commutativo. Ciò prova che i morfismi w sono ben definiti.

IV. Ovviamente se $i \subset j$, w_{ij}^n è un morfismo u, mentre se $i \approx j$, $w_{ij}^n = v_{ij}^n$. Per i morfismi w non sussiste l'unicità della composizione; ad es. il morfismo composto

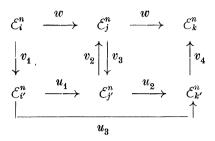
$$\mathcal{E}^{n}_{\alpha\beta\gamma\delta} \xrightarrow{u} \mathcal{E}^{n}_{\alpha\alpha\alpha\alpha} \xrightarrow{v} \mathcal{E}^{n}_{\delta\delta\delta\delta} \xrightarrow{u} \mathcal{E}^{n}_{\alpha\beta\gamma\delta}$$

è sempre nullo, mentre $\mathcal{E}^n_{\alpha\beta\gamma\delta} \xrightarrow{\iota} \mathcal{E}^n_{\alpha\beta\gamma\delta}$ è non nullo se $\mathcal{E}^n_{\alpha\beta\gamma\delta}$ non lo è; esempi più notevoli si possono ricavare dalle rappresentazioni di somma diretta del n⁰ 6. Però:

Proposizione 4.4. Se $i \approx i'$, $j \approx j'$, $k \approx k'$ in Ω_* , e $i' \subset j' \subset k'$, allora $w_{jk}^n w_{ij}^n = w_{ik}^n$.

⁴⁾ $\stackrel{\blacktriangleleft}{\sim}$ è riflessiva e non transitiva (in genere); estesa per transitività si banalizza : qualunque siano le quaterne $(\alpha, \beta, \gamma, \delta)$, $(\alpha', \beta', \gamma', \delta')$ si ha : $(\alpha, \beta, \gamma, \delta) \subset (\alpha, \alpha, \alpha, \alpha) \sim_n (\delta', \delta', \delta', \delta') \subset (\alpha', \beta', \gamma', \delta')$.

Dim. Abbiamo un diagramma



a maglie commutative, ove v_2 e v_3 sono isomorfismi reciproci per 4.3; allora $w_{jk}^n w_{ij}^n = v_4 u_3 v_4$ coincide con w_{ik}^n , per definizione di quest'ultimo.

PROPOSIZIONE 4.5. Se i < j in Ω_* e i noccioli n-esimi di i e j non si incontrano, $w_{ij}^n = 0$. Se il nocciolo n-esimo di i è vuoto, $\mathcal{E}_i^n = 0$.

DIM. Il morfismo w è dato da una composizione del tipo (4); i noccioli n-esimi di i', j' non si incontrano, essendo $i \sim i'$, $j \sim j'$. Posto $i' = (\alpha, \beta, \gamma, \delta), j' = (\alpha', \beta', \gamma', \delta')$ si ha:

$$(\beta - \gamma) \circ (\beta' - \gamma') \circ \omega_n = \emptyset$$

quindi $\beta \cap \omega_n \subset ((\beta - \gamma) \cap \omega_n) \cup \gamma \subset \gamma' \cup \gamma = \gamma'$ (sfruttando $\beta \subset \beta'$, $\gamma \subset \gamma'$) e di conseguenza $A_{\beta}^n \subset A_{\gamma'}$; 3.2 prova allora che il morfismo u di $\mathcal{E}_{i'}^n$ in $\mathcal{E}_{j'}^n$ è nullo, onde $w_{ij}^n = 0$. Il secondo asserto segue dal primo per i = j.

V. Si può infine osservare che per m=1 e $\omega=\mathbf{Z},\,\Omega_*$ ha cinque classi di n-equivalenza per ogni intero n, delle quali solo due danno luogo ad invarianti omotopici: il funtore nullo e l'omologia in grado n; infatti, se i è una quaterna relativa a \mathbf{Z} e (ζ,η) è la sua coppia n-esima, sono possibili i seguenti casi:

1)
$$\zeta = \eta = \varnothing$$
: $\mathcal{E}_i^n(A) = 0$

2)
$$\zeta = \eta = \{n\}:$$
 $\mathcal{E}_i^n(A) = A^n$

3)
$$\zeta = \{n-1, n\}, \ \eta = \{n\}:$$
 $\mathcal{E}_i^n(A) = \operatorname{Coker}(A^{n-1} \xrightarrow{d} A^n)$

4)
$$\zeta = \{n\}, \eta = \{n, n+1\}:$$
 $\mathcal{E}_{i}^{n}(A) = \operatorname{Ker}(A^{n} \xrightarrow{d} A^{n+1})$

5)
$$\zeta = \{n-1, n\}, \eta = \{n, n+1\} : \mathcal{E}_i^n(A) = H^n(A).$$

Poiché per m=1 Ω è totalmente ordinato, la quaterna i può sempre supporsi decrescente per 2, I, c). Ciò non vale per $m \geq 2$, anche a meno di n-equivalenza: cfr. fig. 4'.

5. Riduzione del calcolo di \mathcal{E}_i^n : quaterne n-ridotte.

I. Se $i = (\alpha, \beta, \gamma, \delta)$ è una quaterna, diremo coppia di i la coppia $(\alpha - \gamma, \beta - \delta)$ di sottoinsiemi di ω ; viceversa data una coppia (φ, ψ) di sottoinsiemi di ω , diremo che essa è ammissibile (risp. stretta) se proviene da una quaterna (risp. quaterna decrescente) nel modo detto. Se due quaterne hanno egual coppia sono n-equivalenti per ogni intero n.

Proposizione 5.1. Una coppia (φ, ψ) di sottoinsiemi di ω è ammissibile se e solo se :

- a) φ , ψ sono localmente chiusi in ω
- b) $\varphi^* \cap \psi \subset \varphi \cap \psi$.

In tal caso tra le quaterne che hanno coppia (φ, ψ) ce n'è una minima $(\alpha', \beta', \gamma', \delta')$ ed una massima $(\alpha'', \beta'', \gamma'', \delta'')$ date da:

(1)
$$\alpha' = \overline{\varphi} \cup \overline{\psi}, \ \beta' = \overline{\psi}, \ \gamma' = \alpha' - \varphi^*, \ \delta' = \beta' - (\varphi \cup \psi)^*$$

(2)
$$\delta'' = \mathbf{G}_{\omega} ((\varphi \cup \psi)^*), \gamma'' = \mathbf{G}_{\omega} (\varphi^*), \beta'' = \delta'' \cup \overline{\psi}, \ \alpha'' = \gamma'' \cup \overline{\varphi} \cup \overline{\psi}.$$

Se $\varphi \subset \omega'_n$, $\psi \subset \omega'_n$ per un opportuno intero n, la coppia (φ, ψ) è ammissibile.

Dim. al n^0 13.

PROPOSIZIONE 5.2. Una coppia ammissibile (φ, ψ) di sottoinsiemi di ω è stretta se e solo se $\varphi \cup \psi$ è localmente chiuso in ω . In tal caso

tra le quaterne decrescenti che ad essa danno luogo ce n'è una minima $(\alpha', \beta', \gamma', \delta')$ ed una massima $(\alpha'', \beta'', \gamma'', \delta'')$ date da:

$$(3) \ \alpha' = \overline{\varphi} \cup \overline{\psi}, \ \beta' = \alpha' - (\varphi - \psi)^*, \ \gamma' = \alpha' - \varphi^*, \ \delta' = \alpha' - (\varphi \cup \psi)^*$$

$$(4) \quad \pmb{\delta}'' = \pmb{\mathfrak{f}}_{\omega} \, ((\varphi \cup \psi)^*), \gamma'' = \pmb{\delta}'' \cup \widecheck{\psi - \varphi}, \beta'' = \pmb{\delta}'' \cup \widecheck{\psi}, \alpha'' = \pmb{\delta}'' \cup \widecheck{\varphi} \cup \widecheck{\psi}.$$

Dim. al n^0 13.

Proposizione 5.3. Per ogni intero n la coppia n-esima di una quaterna (risp. quaterna decrescente) è ammissibile (risp. stretta).

Dim. al nº 13.

II. Diremo n-ridotta una quaterna (decrescente o no) per cui la coppia e la coppia n-esima coincidono. Se $(\alpha, \beta, \gamma, \delta)$ è ridotta relativamente a due interi distinti n, n' allora $\beta - \gamma \subset \omega_n \cap \omega_{n'} = \emptyset$ ed essa è ridotta relativamente ad ogni intero. Intuitivamente si può dire che tra le quaterne n-equivalenti ad una data quelle n-ridotte sono « le più semplici »; ne esistono sempre per il seguente corollario delle tre precedenti proposizioni.

COROLLARIO 5.4. Se i è una quaterna (risp. quaterna decrescente) esistono quaterne (risp. q. decrescenti) n-ridotte n-equivalenti ad i, ed esse sono tutte e sole le quaterne (risp. q. decrescenti) aventi per coppia la coppia n-esima (ζ, η) di i; tra esse ce n'è una minima ed una massima date dalle formule (1) e (2) di 5.1 (risp. (3) e (4) di 5.2) per $\varphi = \zeta, \psi = \eta$. Dim. al nº 13.

Il calcolo di \mathcal{E}_i^n può quindi sempre effettuarsi sostituendo ad i una quaterna i_0 n-ridotta, decrescente se i lo è. Inoltre $\mathcal{E}_{i_0}^{n'} = 0$ per ogni intero $n' \neq n$ (per 4.5), e quindi, come R-moduli:

$$\mathcal{E}_i^n = \mathcal{E}_{i_0}^n = \mathcal{E}_{i_0}.$$

La minima quaterna (risp. q. decrescente) 7-ridotta 7-equivalente

alla quaterna della fig. 1 è rappresentata in fig. 2' (risp. 2''): leggere α' , β' , γ' , δ' con l'aiuto di 5.1 (risp. 5.2), per $\varphi = \zeta$, $\psi = \eta$.

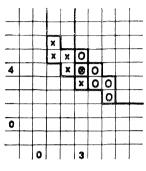


Fig. 2'

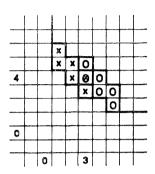


Fig. 2"

III. Infine una coppia (ζ, η) di sottoinsiemi di ω si dice *n-ridotta* se è ammissibile e le quaterne di cui è coppia sono *n-*ridotte; ciò equivale a dire (anche per 5.1) che:

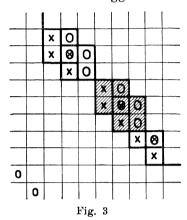
- a) $\zeta \subset \omega'_n$ e $\eta \subset \omega''_n$
- b) ζ (risp. η) è il saturato di $\zeta \cap \eta$ per R_{ζ} (risp. R_{η}). Essa è stretta se e solo se $\zeta \cup \eta$ è localmente chiuso in ω (5.2).

6. Riduzione del calcolo di \mathcal{E}_i^n : quaterne n-ridotte connesse.

I. Sia $i = (\alpha, \beta, \gamma, \delta)$ una quaterna n-ridotta, $(\zeta, \eta) = (\alpha - \gamma, \beta - \delta)$ la sua coppia. Consideriamo la relazione di equivalenza R_i in $\zeta \cup \eta$, generata dalla relazione nelle variabili $a \in b$:

 R_i (che scriveremo anche $R_{\zeta\eta}$) è più fine di $R_{\zeta \cup \eta}$. Poniamo ancora $\Xi_i = (\zeta \cup \eta)/R_i$, insieme delle classi di equivalenza di R_i ; se ω è trasversalmente finito, $\zeta \cup \eta$ e Ξ_i sono finiti.

Nella fig. 3 (dove $m=2, \omega=\mathbb{Z}^2$) i è la quaterna decrescente 9-ridotta minima che dà luogo alla coppia (ζ, η) ivi segnata (cfr. 5.2); Ξ_i ha tre elementi distinti dal tratteggio:



II. Utilizziamo \mathcal{Z}_i per decomporre il funtore \mathcal{E}_i^n in somma diretta.

PROPOSIZIONE 6.1. Sia i una quaterna (risp. q. decrescente) n-ridotta, (ζ, η) la sua coppia; per ogni $\xi \in \Xi_i$ la coppia $(\zeta \cap \xi, \eta \cap \xi)$ è n-ridotta (risp. n-rid. stretta); dette i'_{ξ} e i''_{ξ} rispettivamente le quaterne minima e massima di cui $(\zeta \cap \xi, \eta \cap \xi)$ è coppia si ha: $i'_{\xi} \subset i \subset i''_{\xi}$. Dim. al n^0 14.

TEOREMA 6.2. Se i è una quaterna n-ridotta e A un oggetto di $C^m(R, \omega)$, gli omomorfismi (cfr. 6.1):

(2)
$$\mathcal{E}_{i'_{\xi}}^{n}(A) \xrightarrow{u} \mathcal{E}_{i}^{n}(A) \xrightarrow{u} \mathcal{E}_{i''_{\xi}}^{n}(A), \qquad \xi \in \Xi_{i}$$

sono una « rappresentazione completa di somma diretta » 5), naturale per morfismi di C^m (R, ω). Dim. al \mathbf{n}^0 14.

⁵⁾ Una famiglia $M_{\lambda} \xrightarrow{v_{\lambda}} M \xrightarrow{v_{\lambda}} M'_{\lambda} (\lambda \in \Lambda)$ di R-omomorfismi è una rappresentazione completa di somma diretta se:

a) $v_{\mu} u_{\lambda}$ è isomorfismo se $\lambda = \mu$, nullo se $\lambda \neq \mu$

b) la somma dei sottospazi $Im u_1$ di $M \in M$.

In tal caso la famiglia dei monomorfismi u_{λ} dà una rappresentazione di M come somma diretta degli M_{λ} ; viceversa data una tale rappresentazione è immediato derivarne una completa.

COROLLARIO 6.3. Se nelle stesse ipotesi i è decrescente, dette j'_{ξ} e j''_{ξ} rispettivamente le quaterne (n-ridotte) decrescenti minima e massima di cui $(\zeta \cap \xi, \eta \cap \xi)$ è coppia, $j'_{\xi} \not = i \not = j''_{\xi}$ e gli omomorfismi

(3)
$$\mathcal{E}_{j'_{\xi}}^{n}(A) \xrightarrow{w} \mathcal{E}_{i}^{n}(A) \xrightarrow{w} \mathcal{E}_{j'_{\xi'}}^{n}(A), \qquad \xi \in \Xi_{i}$$

sono una rappresentazione completa di somma diretta 5), naturale.

DIM. Se $\xi \in \Xi_i$, le quaterne j'_{ξ} , j''_{ξ} , i'_{ξ} , i'_{ξ} (cfr. 6.1) sono *n*-equivalenti avendo egual coppia $(\zeta \cap \xi, \eta \cap \xi)$; la tesi segue allora immediatamente da 6.2 e dalla definizione dei morfismi w (4, III). c. v. d.

Sulla fig. 3 è facile individuare i sottoinsiemi $\zeta \cap \xi, \eta \cap \zeta$ e quindi le quaterne $i'_{\xi}, i''_{\xi}, j''_{\xi}$. Si può altresì vedere che le relazioni $j'_{\xi} \leqslant i \leqslant j''_{\xi}$ possono non essere inclusioni.

III. Diremo che una quaterna n-ridotta i è connessa se \mathcal{Z}_i ha un solo elemento; per 6.2, 6.3 il calcolo di \mathcal{E}_i^n può sempre effettuarsi sostituendo ad i quaterne n-ridotte e connesse, decrescenti se i è tale. Una coppia n-ridotta (ζ, η) sarà detta connessa se le quaterne di cui è coppia sono tali : ciò equivale a dire che la relazione $R_{\zeta\eta}$ è sempre vera in $\zeta \cup \eta$.

7. Alcune formule per il calcolo di $\mathcal{E}_i^n(A)$.

I. Sia A un oggetto di $C^m(R,\omega)$; si è già visto (cfr. 3.1) l'isomorfismo naturale:

(1)
$$\mathcal{E}_{\alpha\beta\gamma\delta}(A) = \frac{A_{\beta} \cap d^{-1} A_{\delta}}{A_{\gamma} + dA_{\alpha}}$$

valido anche per complessi filtrati su un qualunque insieme preordinato. Solo per complessi m-upli abbiamo invece:

PROPOSIZIONE 7.1. Per ogni quaterna $(\alpha, \beta, \gamma, \delta)$ c'è un isomorfismo naturale:

(2)
$$\mathcal{E}_{\alpha\beta\gamma\delta}(A) = \frac{A_{\beta-\gamma} \cap (A_{\beta \cap \gamma} + d^{-1} A_{\delta})}{A_{\beta-\gamma} \cap (A_{\gamma} + dA_{\alpha})} {}^{6})$$

⁶) $A_{\beta-\gamma}$ e A_{ϑ} sono sottomoduli graduati di A, ma in genere non sottocomplessi. I quozienti delle formule (2), (3) sono generalizzati (cfr. nota ¹)); ordinari se $(\alpha, \beta, \gamma, \delta)$ è decrescente.

e quindi:

(3)
$$\mathcal{E}_{\alpha\beta\gamma\delta}^{n}(A) = \frac{A_{\vartheta} \cap (A_{\beta \cap \gamma} + d^{-1} A_{\delta})}{A_{\vartheta} \cap (A_{\gamma} + dA_{\alpha})} \quad {}^{6})$$

dove $\vartheta = (\beta - \gamma) \cap \omega_n$ è il nocciolo n-esimo della quaterna data. Dim. al n^0 15.

II. Per complessi $doppi\ A$ in $C^2(R,\omega)$ vale poi la seguente formula (4), in cui intervengono i differenziali parziali d_1 e d_2 anziché quello totale, come nelle precedenti. Viene usato l'ordine traverso in \mathbb{Z}^2 :

$$(p,q) < (p',q') < >> (p \le p' \& q \ge q').$$

Per esso gli ω'_n sono totalmente ordinati.

TEOREMA 7.2. Sia m=2, i una quaterna, (ζ, η) la sua coppia n-esima; se ζ e η sono finiti e il nocciolo n-esimo $\vartheta=\zeta \circ \eta$ è costituito dal solo punto c, c'è un isomorfismo (naturale per mappe di $C^2(R, \omega)$):

(4)
$$\mathcal{E}_{i}^{n}(A) = \underbrace{(d_{2}^{-1} d_{1} d_{2}^{-1} \dots B_{p} \cap d_{1}^{-1} d_{2} d_{1}^{-1} \dots B_{q})^{c}}_{(d_{1} d_{2}^{-1} d_{1} \dots B_{r+1} + d_{2} d_{1}^{-1} d_{2} \dots B_{s+1})^{c}}$$

dove:

(5)
$$p = Card \{a \mid a \in \eta - \vartheta, a < c\}, \ q = Card \{a \mid a \in \eta - \vartheta, a > c\}$$
$$r = Card \{a \mid a \in \zeta - \vartheta, a < c\}, \ s = Card \{a \mid a \in \zeta - \vartheta, a > c\}$$

e $B_h = A$ se h è pari, $B_h = 0$ se h è dispari. Se p (risp. q, r, s) è nullo il termine corrispondente in (4) va sostituito con A (risp. A, 0, 0). Dim. al n^0 15.

Osservo che una coppia n-ridotta (ζ, η) tale che $\zeta \cap \eta$ sia costituito da un punto è connessa; se ω è trasversalmente finito ζ ed η sono automaticamente finiti. In pratica pare che 7.2 (eventualmente mediante le decomposizioni in somma diretta del n^0 6) copra tutti i casi interessanti per complessi doppi; la formula si può comunque estendere ad una qualunque quaterna, ciò che non sarà qui fatto per evitare di introdurre complicate notazioni.

8. Invarianza omotopica dei funtori \mathcal{E}_i^n .

I. Una condizione sufficiente è data dal:

TEOREMA 8.1. Sia $i = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ una quaterna decrescente tale che gli antecedenti immediati 7) in ω di ogni punto di α_r ($1 < r \le 4$) stiano in α_{r-1} ; il funtore \mathcal{E}_i è allora invariante per omotopie di $C^m(R, \omega)$.

DIM. Siano $f,g:A\to B$ morfismi omotopi di $C^m(R,\omega)$: sono dati i morfismi graduati $s_h:A\to B$ di grado $-e_h\ (1\le h\le m)$ tali che

$$f-g=\sum_{h=1}^{m}s_h\;\overline{d}_h+\overline{d}_h\,s_h\,,\qquad s_h\;\overline{d}_k+\overline{d}_k\,s_h=0\;\;\mathrm{se}\;h \neq k.$$

Sia A' l'R-modulo differenziale ${\bf Z}$ -filtrato ottenuto munendo A del differenziale totale d e della filtrazione $(F_p\,A)_{p\,\in\,{\bf Z}}$ così definita :

(1)
$$F_p A = \begin{cases} A & \text{se } p < 1 \\ A_{a_p} & \text{se } 1 \leq p \leq 4 \\ O & \text{se } p > 4. \end{cases}$$

Analogamente si definisce B' (le filtrazioni sono crescenti rispetto all'ordine opposto al naturale su \mathbb{Z}); f e g sono compatibili con la struttura detta; $s = \sum\limits_{h=1}^m s_h \colon A' \to B'$ è un omomorfismo verificante:

$$f - g = sd + ds$$
 $s(F_p A) \subset F_{p-1} B$

cioè è un'omotopia di ordine ≤ 1 delle mappe $f, g: A' \rightarrow B'$, secondo la terminologia di Cartan-Eilenberg [2], p. 321.

Inoltre c'è un isomorfismo naturale

$$\mathcal{E}_{i}^{n}(A) = \operatorname{Im}\left(H\left(A_{\alpha_{1}}/A_{\alpha_{4}}\right) \to H\left(A_{\alpha_{1}}/A_{\alpha_{3}}\right)\right)$$

$$= \operatorname{Im}\left(H\left(F_{2}A/F_{4}A\right) \to H\left(F_{4}A/F_{3}A\right)\right) =$$

$$= \mathcal{E}_{1234}\left(A'\right) = E_{2}^{2}\left(A'\right)$$

⁷) Gli antecedenti immediati di un punto a di \mathbb{Z}^m sono ovviamente quelli contigui, ovvero i punti $a = e_h$ $(1 \le h \le m)$.

La prop. 3.1 del testo citato (p. 321) prova quindi la tesi. c. v. d. Diremo omotopicamente stabili le quaterne verificanti la condizione detta in 8.1. Per 4.3:

COROLLARIO 8.2. Se i è una quaterna n-equivalente ad una quaterna omotopicamente stabile, \mathcal{E}_i^n è invariante d'omotopia.

II. Per m=2 vale una caratterizzazione dei funtori invarianti \mathcal{E}_i^n , che non ho potuto estendere ad m>2 (per m=1 cfr. n^0 4, V):

TEOREMA 8.3. Se m=2 e la quaterna $i=(\alpha, \beta, \gamma, \delta)$ soddisfa la condizione:

(O_n) se $(p, q) \in (\beta - \gamma) \cap \omega_n$ allora (p - 1, q), (p, q - 1), (p + 1, q), (p, q + 1) stanno in $(\alpha - \delta) \cup \mathbf{C} \omega$

il funtore \mathcal{E}_{i}^{n} è invariante per omotopie di $C^{2}(R,\omega)$. Tale condizione è anche necessaria se l'anello R non è nullo. Dim. al n^{0} 16.

La condizione (O_n) verte esclusivamente sulla coppia n-esima (ζ, η) di i: infatti i la verifica se e solo se

(0') se $a \in \zeta \cap \eta$, i punti di ω contigui ad a stanno in $\zeta \cup \eta$.

Quindi se (O_n) è soddisfatta da i lo è anche da tutte le quaterne n-equivalenti ad i, e inoltre se i è n-ridotta anche dalle i'_{ξ} , i'_{ξ} $(\xi \in \mathcal{Z}_i)$ di 6.1.

III. Il teorema 8.3 non è conseguenza di 8.2: basta considerare la coppia 3-ridotta in fig 4', che soddisfa (O'), non è stretta per 5.2. e quindi (5.3) non è coppia terza di alcuna quaterna decrescente; anche limitandosi a quaterne decrescenti, la coppia 5-ridotta stretta della fig. 4"

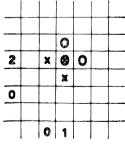


Fig. 4'

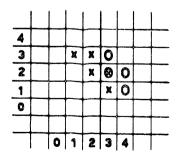


Fig. 4"

verifica (O') ma non esistono quaterne omotopicamente stabili di cui essa sia coppia quinta 8).

- 9. Gli invarianti ${}^{h}E_{r}^{p,q}$, M_{r}^{a} , N_{r}^{a} .
 - I. Siano p,q interi, $r \ge 1$, $1 \le h \le m$. Si è visto (n⁰ 3) che:

$${}^{h}E_{r}^{p,\,q} = \mathcal{E}_{\alpha\beta\gamma\delta}^{p+q}$$

dove $\alpha = \varrho_h(p-r+1)$, $\beta = \varrho_h(p)$, $\gamma = \varrho_h(p+1)$, $\delta = \varrho_h(p+r)$; tali funtori sono quindi (cfr. 8.1) invarianti d'omotopia per $r \geq 2$, come ben noto. Il nº 7 fornisce formnle di calcolo per essi; in particolare per ogni complesso doppio A di R-moduli:

$${}^{\prime}E_{r}^{p,q}(A) = \frac{(d_{2}^{-1} \ 0 \ \cap (d_{1}^{-1} \ d_{2})^{r-1} \ A)^{p,q}}{((d_{1} \ d_{2}^{-1})^{r-1} \ 0 + d_{2} \ A)^{p,q}} \quad {}^{9})$$

(3)
$$"E_r^{q, p}(A) = \frac{((d_2^{-1} d_1)^{r-1} A \cap d_1^{-1} 0)^{p, q}}{(d_1 A + (d_2 d_1^{-1})^{r-1} 0)^{p, q}}$$

dove $(d_1 d_2)^{r-1} A$, ad esempio, è un'abbreviazione per

$$d_1^{-1} d_2 \dots d_1^{-1} d_2 A$$

in cui $d_1^{-1} d_2$ sia ripetuto r-1 volte.

⁸⁾ Supponiamo per assurdo che esista una tale quaterna $(\alpha, \beta, \gamma, \delta)$; $(1, 3) \in \zeta \subset \alpha - \gamma$, quindi $(1, 4) \in \alpha$; $(1, 4) \in \gamma$ perché altrimenti starebbe in $(\alpha - \gamma) \cap \omega_5$ e, essendo contiguo ad $(1, 3) \in \zeta$, starebbe anch'esso in ζ ; allora pure $(2, 4) \in \gamma$ e, per la stabilità, $(2, 3) \in \beta$; ma $(2, 3) \in \zeta \subset \alpha - \gamma$, onde sta anche in $(\beta - \gamma) \cap \omega_5 = \zeta \cap \gamma$, il che è falso.

⁹) Infatti, preso $\omega = \mathbb{Z}^2$ (non si hanno ipotesi sul supporto di A), si applica 7.2 alla quaterna $(\alpha, \beta, \gamma, \delta)$ considerata in (1) per h = 1, osservando (cfr. fig. 1) che il nocciolo (p + q)-esimo di questa è il punto (p, q) e che le formule 7. (5) danno per essa i numeri: 1, 2 (r - 1), 2 (r - 1), 1.

II. Ovviamente avendo informazioni sul supporto di A le formule date si possono in certi casi semplificare; se ad esempio A è un complesso (doppio) di cocatene, preso $\omega = N^2$ si ottiene da 7.2:

$$'E_r^{2,0}(A) = \frac{(d_2^{-1} \ 0 \ n \ d_1^{-1} \ 0)^{2,0}}{(d_1 \ d_2^{-1} \ d_1 \ d_2^{-1} \ 0)^{2,0}} \qquad (r \ge 3).$$

III. Sia ora, per m arbitrario, $a \in \omega_n$; detta e = (1, ... 1) l'identità moltiplicativa di \mathbb{Z}^m , poniamo:

$$N_r^a = \mathcal{E}_{\alpha'\beta'\gamma'\delta'}^n$$

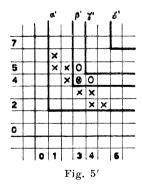
$$M_r^a = \xi_{\alpha''\beta''\gamma'\delta''}^n$$

dove:

$$\alpha' = (a - (r - 1) e)^{-}, \ \beta' = \overline{a}, \ \gamma' = (a + e)^{-}, \ \delta' = (a + re)^{-}$$

$$\alpha'' = \mathbf{G}_{\omega} ((a - re)^{*}), \ \beta'' = \mathbf{G}_{\omega} ((a - e)^{*}), \ \gamma'' = \mathbf{G}_{\omega} a^{*}, \ \delta'' = \mathbf{G}_{\omega} ((a + (r - 1) e)^{*}).$$

 N_r^a e M_r^a sono invarianti d'omotopia per $r \ge 2$ (8. 1). Le quaterne considerate (tutte decrescenti) e le loro coppie n-esime sono esemplificate nelle fig. 5' e 5" rispettivamente, per m=2, $\omega=\mathbb{Z}^2$, r=3, a=(3,4) e, di conseguenza, n=7:



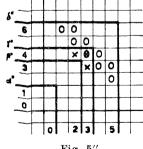


Fig. 5"

Si può osservare che le quaterne $(\alpha', \beta', \gamma', \delta')$ e $(\alpha'', \beta'', \gamma'', \delta'')$ sono n-equivalenti rispettivamente a $(\alpha', \beta', \emptyset, \emptyset)$ e $(\omega, \omega, \gamma'', \delta'')$. IV. Sia ora m=2, a=(p,q). Esaminando le quaterne considerate in (1), (5), (6), si riconosce che c'è un diagramma (commutativo) di morfismi u:

$$N_r^{p,q} \longrightarrow 'E_r^{p,q} \ \downarrow \qquad \downarrow \ "E_r^{q,p} \longrightarrow M_r^{p,q}$$

V. Per un complesso doppio A valgono le formule (ottenute da 7.2):

$$N_r^{p, q}(A) = \frac{(d_2^{-1} \ 0 \ n \ d_1^{-1} \ 0)^{p, q}}{((d_1 \ d_2^{-1})^{r-1} \ 0 + (d_2 \ d_1^{-1})^{r-1} \ 0)^{p, q}}$$

(9)
$$M_r^{p, q}(A) = \frac{((d_2^{-1} d_1)^{r-1} A \cap (d_1^{-1} d_2)^{r-1} A)^{p, q}}{(d_1 A + d_2 A)^{p, q}} .$$

10. Estensione ad una categoria abeliana arbitraria.

I. Sia \mathcal{A} una categoria abeliana, $C^m(\mathcal{A}, \omega)$ la categoria, ancora abeliana, degli m-complessi a valori in \mathcal{A} e supporto in ω : un oggetto è una famiglia $(A^c)_{c \in \mathbb{Z}^m}$ di oggetti di \mathcal{A} , ove $A^c = 0$ se $c \notin \omega$, munita di endomorfismi d_h di grado e_h $(1 \leq h \leq m)$ a quadrato nullo e commutanti. Si definiscono i $\overline{d_h}$ come al n^0 3.

Supponiamo che ω sia trasversalmente finito, oppure $\mathcal A$ abbia somme dirette numerabili: si potrà allora porre per ogni intero n:

$$A^n = \bigoplus_{c \in \omega_n} A^c$$

e ottenere così un oggetto $(A^n)_{n \in \mathbb{Z}}$ di $\overline{G}(\mathcal{A})$; esso può essere dotato di un differenziale (cioè endomorfismo di grado 1, a quadrato nullo) d così definito: $A^n \xrightarrow{d} A^{n+1}$ è determinato dai morfismi

$$\sum\limits_{m}^{h=1}\widetilde{d}_{h}:A^{c}
ightarrow A^{n+1}, \qquad \qquad c\in\omega_{n}$$

dove \widetilde{d}_h è la composizione

$$A^{c} \xrightarrow{\overline{d}_{h}} A^{c+e_{h}} \xrightarrow{\text{iniez.}} A^{n+1}.$$

Infine una Ω -filtrazione crescente $(A_{\alpha})_{\sigma \in \Omega}$ del complesso semplice costruito si ha ponendo:

$$A_{\alpha} = (A_{\alpha}^{n})_{n \in \mathbb{Z}}, \text{ dove } A_{\alpha}^{n} = \bigoplus_{c \in \alpha \bigcap \omega_{n}} A_{c}.$$

Quindi, nelle ipotesi dette su ω od \mathcal{A} , è definito il funtore contrazione di $C^m(\mathcal{A}, \omega)$ nella categoria dei complessi Ω -filtrati a valori in \mathcal{A} , e di conseguenza, per 1, VI, a), il funtore \mathcal{E} su $C^m(\mathcal{A}, \omega)$.

II. Quanto detto in questa II parte per \mathcal{G}^R si può ora estendere ad \mathcal{A} , in alcuni punti per traduzione immediata, ma soprattutto facendo ricorso al teorema di immersione piena di Freyd-Mitchell (cfr. [7], teor. 7.2 p. 151).

Per 6.2 si conviene che una famiglia $M_{\lambda} \stackrel{u_{\lambda}}{\longrightarrow} M \stackrel{v_{\lambda}}{\longrightarrow} M'_{\lambda}$ ($\lambda \in \Lambda$) di morfismi in \mathcal{A} è una rappresentazione completa di somma diretta se :

- a) $v_{\mu}u_{\lambda}$ è isomorfismo se $\lambda = \mu$, nullo se $\lambda \neq \mu$
- b) $(M_{\lambda} \stackrel{u_{\lambda}}{\longrightarrow} M$ è una rappresentazione di somma diretta.

Se Λ è finito la condizione b) può sostituirsi con:

$$b')\sum_{\lambda}u_{\lambda}\,v'_{\lambda}=1_{M},\,\,\mathrm{dove}\,\,\,v'_{\lambda}=(v_{\lambda}\,u_{\lambda})^{-1}\,v_{\lambda}\,.$$

Osservo infine che la prima condizione di 3.2 dovrà essere scritta:

$$A^n_\beta \wedge d^{-1} A^{n+1}_\delta \wedge (dA^{n-1}_{\alpha'} \vee A^n_{\gamma'}) \subset dA^{n-1}_\alpha \vee A^n_\gamma$$

poichè qui non si può confrontare ad es. A_{β}^{n} , oggetto di \mathcal{A} , con $A_{\delta} = (A_{\delta}^{n})_{n \in \mathbb{Z}}$, oggetto di $G(\mathcal{A})$. Modifiche analoghe per il resto di 3.2, etc.

PARTE III. — DIMOSTRAZIONI

11. Dimostrazioni dei numeri 1 e 2.

Lemma 11.1. Nella categoria abeliana $\mathcal A$ sia dato il diagramma commutativo :

(1)
$$A \xrightarrow{\alpha} B \\ \downarrow^{\delta} \quad \downarrow^{\beta} \\ E \xrightarrow{\epsilon} C \xrightarrow{\gamma} D \\ \downarrow^{\zeta} \not\vdash^{\gamma} \eta$$

con riga e colonna esatte e $\eta\beta = 0$. Allora la sequenza:

$$0 \longrightarrow Im \ \beta \alpha \stackrel{\iota}{\longrightarrow} Im \ \beta \stackrel{\gamma'}{\longrightarrow} Im \ \gamma \beta \longrightarrow 0$$

dove i è l'inclusione e y' è indotto da y per restrizione, è esatta.

DIM. Per il metateorema 2.8 di [7], p. 101, basta provare l'asserto per $\mathcal{A} = \mathcal{G}$, categoria dei gruppi abeliani.

Decomponiamo $\sigma = \beta \alpha$, β , $\tau = \gamma \beta$ nelle fattorizzazioni:

$$A \xrightarrow{\sigma'} Im \ \sigma \xrightarrow{\sigma''} C, \quad B \xrightarrow{\beta'} Im \ \beta \xrightarrow{\beta''} C, \quad B \xrightarrow{\tau'} Im \ \tau \xrightarrow{\tau''} D.$$

Che ι sia mono e γ' epi è ovvio; inoltre $\gamma' \iota = 0$ perché:

$$\tau'' \gamma' \iota \sigma' = \gamma \beta \alpha = \gamma \varepsilon \delta = 0$$

e σ' è epi, τ'' mono. Resta da provare che $\operatorname{Ker} \gamma' \subset \operatorname{Im} \iota = \operatorname{Im} \beta \alpha$. Sia $c \in \operatorname{Ker} \gamma' \subset \operatorname{Im} \beta \subset C$: sarà $c = \beta b$, $b \in B$, e poiché $\gamma c = \gamma' c = 0$ si avrà pure $c = \varepsilon e$, $e \in E$; allora $\zeta e = \eta \varepsilon e = \eta c = \eta \beta b = 0$ perché $\eta \beta = 0$ per ipotesi; per l'esattezza della colonna esiste $a \in A$ tale che $e = \delta a$. e quindi:

$$c = \varepsilon e = \varepsilon \delta a = \beta \alpha a \in Im \beta \alpha.$$

c.v.d.

Il lemma generalizza il lemma 1.1 di Cartan-Eilenberg [2], p. 316 (porre $E=A,\ \delta=1_A,\ F=0,\ \zeta=\eta=0$), e facilità molto la seguente dimostrazione.

DIMOSTRAZIONE DI 1.1. I primi tre assiomi ed il sesto sono

ovviamente verificati da \mathcal{E} . (SP. 4) è provato in ogni dimensione n dal lemma 11.1 applicato al diagramma (a valori nella categoria abeliana \mathcal{A}):

$$H^{n}\left(\gamma,\varkappa\right) \xrightarrow{u} H^{n}\left(\beta,\varkappa\right) \xrightarrow{u_{1}} H^{n}\left(\alpha,\varkappa\right)$$

$$\downarrow^{u} \qquad \downarrow^{u_{0}} \qquad \swarrow^{u_{2}}$$
 $H^{n}\left(\gamma,\delta\right) \xrightarrow{u} H^{n}\left(\alpha,\delta\right) \xrightarrow{u} H^{n}\left(\alpha,\gamma\right)$

$$\downarrow^{d} \qquad \swarrow^{d_{0}}$$
 $H^{n+1}\left(\delta,\varkappa\right)$

(i morfismi supplementari u_1 , u_2 provano che: $d_0\,u_0=(d_0\,u_2)\,u_1=0$). (SP.5) si ottiene « incollando » per ogni intero n le sequenze esatte:

$$0 \to \mathcal{E}^{n}_{\alpha\beta\gamma\varkappa} \xrightarrow{u} \mathcal{E}^{n}_{\alpha\beta\gamma\delta} \to \mathcal{D}^{n+1}_{\beta\gamma\delta\varkappa} \to 0$$
$$0 \to \mathcal{D}^{n+1}_{\beta\gamma\delta\varkappa} \to \mathcal{E}^{n+1}_{\gamma\delta\varkappa\lambda} \xrightarrow{u} \mathcal{E}^{n+1}_{\beta\delta\varkappa\lambda} \to 0$$

(per $\mathcal{D}_{\beta\gamma\delta\varkappa}$ cfr. n⁰ 1, VII) che si ottengono applicando il lemma detto ai due diagrammi:

$$H^{n}(\beta, \varkappa) \xrightarrow{u} H^{n}(\beta, \delta) \xrightarrow{u} H^{n}(\beta, \gamma)$$

$$\downarrow^{u} \qquad \downarrow^{u} \qquad \swarrow^{u}$$

$$H^{n}(\alpha, \varkappa) \xrightarrow{u} H^{n}(\alpha, \gamma) \xrightarrow{d} H^{n+1}(\gamma, \varkappa)$$

$$\downarrow^{u} \qquad \swarrow^{u}$$

$$H^{n}(\alpha, \beta)$$

$$H^{n}(\beta, \delta) \xrightarrow{d} H^{n+1}(\delta, \lambda) \xrightarrow{u} H^{n+1}(\delta, \varkappa)$$

$$\downarrow^{u} \qquad \downarrow^{u} \qquad \swarrow^{u}$$

$$H^{n}(\beta, \gamma) \xrightarrow{d} H^{n+1}(\gamma, \varkappa) \xrightarrow{u} H^{n+1}(\beta, \varkappa)$$

$$\downarrow^{d} \qquad \swarrow^{u}$$

$$H^{n+1}(\gamma, \delta)$$

Si osservi che, per (OP. 3), le immagini delle composizioni

$$H^{n}\left(eta,\delta\right) \stackrel{u}{\longrightarrow} H^{n}\left(lpha,\gamma\right) \stackrel{d}{\longrightarrow} H^{n+1}\left(\gamma,arkappa
ight)$$
 $H^{n}\left(eta,\delta\right) \stackrel{d}{\longrightarrow} H^{n+1}\left(\delta,\gamma\right) \stackrel{u}{\longrightarrow} H^{n+1}\left(\gamma,arkappa
ight)$

sono entrambe $\mathcal{O}_{\beta\gamma\delta k}^{n+1}$.

c.v.d.

Passiamo ora al nº 2.

LEMMA 11.2. Dato il diagramma a valori in \mathcal{A} :

$$(3) \qquad \qquad A \underset{E}{\swarrow} \alpha \underset{\delta}{\swarrow} B \qquad \qquad B$$

con diagonali esatte e $\beta \alpha = 0$, c'è un isomorfismo

$$H(A \xrightarrow{\alpha} E \xrightarrow{\beta} B) \longrightarrow Im \ \delta \gamma$$

naturale per traslazioni del diagramma (3).

DIM. $H(A \xrightarrow{\alpha} E \xrightarrow{\beta} B) = Ker \beta/Im \alpha = Im \gamma/Ker \delta$ per l'esattezza delle diagonali ; c'è uno ed un solo isomorfismo $(Im \gamma/Ker \delta) \to Im \delta \gamma$ che rende commutativo il diagramma :

(4)
$$Im \ \gamma \xrightarrow{\delta'} Im \ \delta \gamma$$

$$\downarrow^{\pi}$$

$$Im \ \gamma / Ker \ \delta$$

dove δ' è l'epimorfismo definito da δ per restrizione e π è la proiezione canonica. Inoltre ogni traslazione di (3) dà una traslazione di (4) e quindi anche dell'isomorfismo detto.

DIMOSTRAZIONE di 2.1. Che la composizione sia nulla risulta dal diagramma commutativo:

$$\begin{array}{ccc} \mathcal{E}_{\alpha\beta\gamma\delta} & \xrightarrow{d} & \mathcal{E}_{\gamma\delta\varkappa\lambda} & \xrightarrow{d} & \mathcal{E}_{\varkappa\lambda\mu\nu} \\ \downarrow u & & \downarrow u & \downarrow u \\ \downarrow u & & \downarrow u \\ \mathcal{E}_{\alpha\alpha\alpha\mu} & \xrightarrow{d} & \mathcal{E}_{\alpha\alpha\varkappa\lambda} & \xrightarrow{d} & \mathcal{E}_{\varkappa\lambda\mu\nu} \end{array}$$

Supposto $(\alpha, \beta, \gamma, \delta)$ e $(\alpha, \lambda, \mu, \nu)$ decrescenti, consideriamo per ogni intero n il diagramma in \mathcal{A}

per 11.2 e (SP.5) c'è un isomorfismo naturale:

$$H\left(\mathcal{E}_{\alpha\beta\gamma\delta}^{n-1} \stackrel{d}{\longrightarrow} \mathcal{E}_{\gamma\delta\kappa\lambda}^{n} \stackrel{d}{\longrightarrow} \mathcal{E}_{\kappa\lambda\mu\nu}^{n+1}\right) = Im\left(\mathcal{E}_{\gamma\delta\kappa\mu}^{n} \stackrel{u}{\longrightarrow} \mathcal{E}_{\beta\delta\kappa\lambda}^{n}\right)$$

e, sfruttando il diagramma commutativo:

$$\begin{array}{ccc}
\mathcal{E}_{\gamma\delta\kappa\mu}^{n} \stackrel{u'}{\longrightarrow} \mathcal{E}_{\beta\delta\kappa\mu}^{n} \stackrel{u''}{\longrightarrow} \mathcal{E}_{\beta\delta\kappa\lambda}^{n} \\
\underline{\qquad \qquad } \\
\underline{\qquad \qquad } \\
\end{array}$$

dove u' è epi, u'' mono (2, I, b), si ha la tesi.

c.v.d.

12. Dimostrazioni del nº 4.

Sarà utile per questo numero e per i successivi notare che se $a \in \omega_n$, $b \in \omega_{n'}$ e a < b allora n < n'; se a < b < c in $\omega_n' \cup \omega_n''$ allora $a \in \omega_{n-1}$, $b \in \omega_n$, $c \in \omega_{n+1}$ e tali punti sono contigui; ogni sottoinsieme di ω_n' è localmente chiuso in ω .

Dimostrazione di 4.1. Siano $i_1=i,\,i_2=j,\,i_3=i$ o $j,\,\,i_4=i$ u $j,\,\,$ e per $1\leq r\leq 4$:

 (ζ_r, η_r) : coppia *n*-esima di i_r .

Per ipotesi $\zeta_4 = \zeta_2$, $\eta_4 = \eta_2$, $(\vartheta_4 = \vartheta_2)$. Quindi, essendo:

$$\vartheta_3 = (\beta_1 \mathrel{\cap} \beta_2 - \gamma_1 \mathrel{\cap} \gamma_2) \mathrel{\cap} \omega_n \,, \,\, \vartheta_4 = (\beta_1 \mathrel{\cup} \beta_2 - \gamma_1 \mathrel{\cup} \gamma_2) \mathrel{\cap} \omega_n$$

si ha:

$$\begin{split} \vartheta_1 &= \vartheta_1 \cap \vartheta_2 = (\beta_1 - \gamma_1) \cap (\beta_2 - \gamma_2) \cap \omega_n \subset \vartheta_3 \ , \vartheta_4 \\ \vartheta_4 &= \vartheta_4 \cup \vartheta_2 = ((\beta_4 - \gamma_4) \cup (\beta_2 - \gamma_2)) \cap \omega_n \supseteq \vartheta_3 \ , \vartheta_4 \end{split}$$

cioè $\vartheta_1 = \vartheta_2 = \vartheta_3 = \vartheta_4$; chiameremo ϑ tale sottoinsieme.

Proviamo che $\zeta_1=\zeta_3=\zeta_4$, sfruttando le relazioni di immediata verifica :

$$\zeta_1' \cap \zeta_2' \subset \zeta_3', \zeta_4'$$
 $\zeta_1' \cup \zeta_2' \supset \zeta_3', \zeta_4'.$

Si deve provare che se $(a_r)_{0 \le r \le \tilde{r}}$ è una spezzata di ω'_n avente $a_0 \in \vartheta$, e φ è l'insieme dei suoi punti, allora :

$$\varphi \subset \zeta_1 < \Longrightarrow \varphi \subset \zeta_3 < \Longrightarrow \varphi \subset \zeta_4$$
.

Ora: $\zeta_1 \subset \zeta_1' \cap \zeta_2' \subset \zeta_3'$, ζ_4' quindi $\varphi \subset \zeta_1$ implica $\varphi \subset \zeta_3$, ζ_4 , ovviamente. Viceversa sia $\varphi \subset \zeta_3$ (risp. ζ_4) e proviamo che $\varphi \subset \zeta_1$ per induzione su \overline{r} ; se $\overline{r} = 0$ ciò è ovvio; supponiamolo vero per $\overline{r} = 1 \geq 0$ e proviamolo per \overline{r} : per l'ipotesi d'induzione $\varphi = \{a_{\overline{r}}\} \subset \zeta_1$, e $a_{\overline{r}} \in \zeta_3$ (risp. ζ_4) che è contenuto in $\zeta_1' \cup \zeta_2'$; essendo $a_{\overline{r}}$ contiguo ad $a_{\overline{r}-1} \in \zeta_4 = \zeta_2$ ne viene che $a_{\overline{r}} \in \zeta_4 = \zeta_2$, e quanto affermato è vero.

L'eguglianza $\eta_1 = \eta_3 = \eta_4$ si prova in modo analogo (cambiare ζ_r con η_r , ζ_r' con η_r' , ω_n' con ω_n'').

DIMOSTRAZIONE DI 4.2. Sia $i=(\alpha,\beta,\gamma,\delta), j=(\alpha',\beta',\gamma',\delta'), (\zeta,\eta)$ la coppia n-esima comune di $i=j,\ \vartheta=\zeta\cap\eta$ il nocciolo n-esimo. Per 3.2 è sufficiente provare che:

a)
$$A_{\beta}^{n} \cap (dA_{\alpha'} + A_{\gamma'}) \subset dA_{\alpha} + A_{\gamma}$$

b)
$$A_{\beta'}^n \cap d^{-1} A_{\delta'} \subset (A_{\beta} \cap d^{-1} A_{\delta}) + A_{\gamma'}$$
.

Proviamo a). Sia $x \in A_{\beta}^n \cap (dA_{\alpha'} + A_{\gamma'})$: allora x = y + dz dove $y \in A_{\gamma'}^n$ e $z \in A_{\alpha'}^{n-1}$; poniamo inoltre:

$$z' = \sum_{a \in \zeta} z^a$$
 (supposto: $\sigma(z') = \sigma(z) \cap \zeta$)

onde x=y+d (z-z')+dz', dove $dz' \in dA_{\alpha}$, e basta provare che y+d $(z-z') \in A_{\gamma}$. Sia $a \in \sigma$ (y+d (z-z')) e supponiamo per assurdo

che $a \notin \gamma$; ci sono due casi.

— Se $a \notin \beta$ allora $x^a = 0$ e quindi:

$$(dz')^a = -(y + d(z - z'))^a \neq 0$$

deve perciò esistere un antecedente immediato 7) b di a in $\sigma(z') \subset \subset \zeta \subset \alpha$; allora anche a, maggiore di b (in ω) sta in $\alpha: a \in (\alpha - \gamma) \cap \omega_n'$, ed essendo a contiguo a $b \in \zeta$ sta anch'esso in $\zeta: a \in \zeta \subset \alpha' - \gamma'$; allora $y^a = 0$ e quindi $(d(z - z'))^a \neq 0$: esiste perciò un antecedente immediato c di a tale che $(z - z')^c \neq 0$. Ora: $c \in \sigma(z - z') \subset \sigma(z) \subset C \cap \omega_{n-1}$, e $c \notin \gamma'$ perché $c < a \in \zeta \subset \alpha' - \gamma'$: di conseguenza $c \in (\alpha' - \gamma') \cap \omega_n'$ ed essendo c contiguo ad $a \in \zeta$, ne viene che $c \in \zeta$, assurdo perché $c \in \sigma(z - z')$.

— Se invece $a \in \beta$ si ha subito $a \in (\beta - \gamma) \cap \omega_n = \emptyset \subset \zeta$, cioè $a \in \zeta$ e l'assurdo si prova come prima.

Proviamo b). Sia $x \in A_{\beta'}^n \cap d^{-1} A_{\delta'}$: posto

$$y = \sum_{a \in \eta} x^a$$

 $x-y\in A_{\gamma'}$ perché se $a\in\sigma(x)$ e $a\notin\gamma'$ allora $a\in(\beta'-\gamma')$ o $\omega_n=\vartheta\subset\eta$. Basta quindi provare che $y\in A_{\beta}\cap d^{-1}$ A_{δ} per avere la tesi. Ma $y\in A_{\beta}$ perché $\sigma(y)=\sigma(x)$ o $\eta\subset\beta$; sia $a\in\sigma(dy)$ e supponiamo per assurdo che $a\notin\delta$.

Poiché $(dy)^a \neq 0$ esiste un antecedente immediato b di a in $\sigma(y) \subset \eta \subset \beta$; allora anche a, essendo maggiore di b in ω , sta in β : $a \in (\beta - \delta) \cap \omega_{n+1}$ e, per la contiguità di a con $b \in \eta$, $a \in \eta$. Sia ora c un qualunque antecedente immediato di a, e proviamo che $x^c = y^c$; se $x^c = 0$ ciò è ovvio, per cui si può supporre $c \in \sigma(x) \subset \beta'$; ma $c < a \notin \delta'$ quindi $c \in (\beta' - \delta') \cap \omega_n$; poiché poi c è contiguo ad $a \in \eta$, ne viene $c \in \eta$ e $x^c = y^c$, come volevasi. Allora $(dx)^a = (dy)^a \neq 0$, quindi $a \in \delta'$ perché per ipotesi $x \in d^{-1}A_{\delta'}$, e ciò è assurdo perché $a \in \eta \subset \beta' - \delta'$.

13. Dimostrazioni del n. 5.

DIMOSTRAZIONE DI 5.1. Sia $(\alpha, \beta, \gamma, \delta)$ una quaterna, $(\varphi, \psi) = (\alpha - \gamma, \beta - \delta)$ la sua coppia : φ, ψ sono allora localmente chiusi in ω e :

$$\varphi^* \circ \overline{\psi} = (\alpha - \gamma)^* \circ (\beta - \delta)^- \subset (\mathbf{C}_\omega \gamma)^* \circ \overline{\beta} = \beta - \gamma = \varphi \circ \psi.$$

Viceversa supponiamo che (φ, ψ) verifichi a) e b), e definiamo la quaterna $i' = (\alpha', \beta', \gamma', \delta')$ come in 5.(1):

$$\alpha' = \overset{-}{\varphi} \circ \overset{-}{\psi}, \; \beta' = \overset{-}{\psi}, \; \gamma' = \alpha' - \varphi^*, \; \delta' = \beta' - (\varphi \circ \psi)^*$$

la coppia di tale quaterna è (φ, ψ) :

$$\begin{aligned} \alpha' - \gamma' &= \alpha' - (\alpha' - \varphi^*) = \alpha' \cap \varphi^* = (\overline{\varphi} \cap \varphi^*) \cup (\overline{\psi} \cap \varphi^*) = \\ &= \varphi \cup (\varphi \cap \psi) = \varphi \end{aligned}$$

$$\begin{split} \beta' - \delta' &= \beta' - (\beta' - (\varphi \cup \psi)^*) = \beta' \cap (\varphi \cup \psi)^* = \\ &= (\stackrel{\frown}{\psi} \cap \varphi^*) \cup (\stackrel{\frown}{\psi} \cap \psi^*) = (\psi \cap \varphi) \cup \psi = \psi \end{split}$$

onde (φ, ψ) è ammissibile; se poi $i = (\alpha, \beta, \gamma, \delta)$ è una qualunque quaterna avente per coppia (φ, ψ) , $i' \subset i$ perché:

$$\alpha' = \overline{\varphi \cup \psi} \subset \overline{\alpha} = \alpha \qquad \beta' = \overline{\psi} \subset \overline{\beta} = \beta$$
$$\gamma' = \alpha' - \varphi^* \subset \alpha - \varphi = \alpha - (\alpha - \gamma) = \gamma$$
$$\delta' = \beta' - (\varphi \cup \psi)^* \subset \beta - \psi = \beta - (\beta - \delta) = \delta.$$

Dimostrazione analoga per la quaterna massima. L'ultima affermazione è pressoché immediata sfruttando le condizioni a) e b). c.v.d.

DIMOSTRAZIONE DI 5.2. Sia $(\alpha, \beta, \gamma, \delta)$ una quaterna decrescente, $(\varphi, \psi) = (\alpha - \gamma, \beta - \delta)$ la sua coppia : allora $\varphi \circ \psi$ coincide con $\alpha - \delta$, che è localmente chiuso in ω . Viceversa sia (φ, ψ) una coppia ammissibile con $\varphi \circ \psi$ localmente chiuso in ω , e definiamo la quaterna decrescente $i' = (\alpha', \beta', \gamma', \delta')$ come in 5.(3); come visto in 5.1, $\alpha' - \gamma' = \varphi$; inoltre sfruttando le condizioni a, b) di 5.1:

$$\beta' - \delta' = (\alpha' - (\varphi - \psi)^*) - (\alpha' - (\varphi \cup \psi)^*) =$$

$$= (\alpha' \cap (\varphi \cup \psi)^*) - (\varphi - \psi)^* = (\varphi \cup \psi) - (\varphi - \psi)^* =$$

$$= \psi - (\varphi - \psi)^*$$

ma:

$$\begin{split} (\varphi - \psi)^* &= (\varphi - (\varphi \circ \psi))^* = (\varphi - (\varphi^* \circ \overline{\psi}))^* \subset (\varphi^* - \overline{\psi})^* = \\ &= \varphi^* - \overline{\psi} \subset \mathbf{G} \ \psi \end{split}$$

quindi $\beta' - \delta' = \psi$, e (φ, ψ) è ammissibile; se poi $(\alpha, \beta, \gamma, \delta)$ è una qualunque quaterna decrescente avente coppia (φ, ψ) , abbiamo $\alpha' \subset (\alpha, \gamma') \subset \gamma$ (per 5.1) e:

$$\beta' = \alpha' - (\varphi - \psi)^* \subset \alpha - (\alpha - \beta) = \beta$$

$$\delta' = \alpha' - (\varphi \cup \psi)^* \subset \alpha - (\alpha - \delta) = \delta.$$
 c.v.d.

DIMOSTRAZIOME DI 5.3. Sia $i=(\alpha,\beta,\gamma,\delta)$ una quaterna, (ζ,η) la sua coppia n-esima : essa è ammissibile per l'ultimo asserto di 5.1 ; per 5.2 resta da provare che se i è decrescente $\zeta \cup \eta$ è localmente chiuso in ω : siano $a,b \in \zeta \cup \eta$, $c \in \omega$, a < c < b : si deve provare che $c \in \zeta \cup \eta$. Poiché $\zeta \cup \eta \subset \omega'_n \cup \omega''_n$ i tre punti sono contigui e $a \in \omega_{n-1}$, $c \in \omega_n$, $b \in \omega_{n+1}$; quindi $a \in \zeta \subset \alpha - \gamma$, $b \in \eta \subset \beta - \delta$ e di conseguenza $c \in (\alpha - \delta) \cap \omega_n$; ma $(\alpha - \delta) = (\alpha - \gamma) \cup (\beta - \delta)$ perché i è decrescente, per cui a sta in ζ oppure in η .

DIMOSTRAZIONE DI 5.4. Sia i una quaterna, (ζ, η) la sua coppia n-esima. Se $i_0 = (\alpha_0, \beta_0, \gamma_0, \delta_0)$ è una quaterna avente per coppia (ζ, η) , il nocciolo n-esimo di i_0 è

$$(\beta_0 - \gamma_0) \cap \omega_n = \zeta \cap \eta \cap \omega_n = \zeta \cap \eta$$

cioè quello di i; se ne deduce facilmente che la coppia n-esima di i_0 è proprio (ζ, η) , cioè i_0 è n-ridotta n-equivalente ad i. Il viceversa è immediato. Che esistano di tali quaterne (e che ne esistano di decrescenti se i lo è) è affermato da 5.3. L'ultimo asserto segue da 5.1 (risp. 5.2).

14. Dimostrazioni del nº 6.

DIMOSTRAZIONE DI 6.1. Sia *i* una quaterna *n*-ridotta, $(\zeta, \eta) = (\alpha - \gamma, \beta - \delta)$ la sua coppia, $\xi \in \Xi_i$: $(\zeta \cap \xi, \eta \cap \xi)$ è ammissibile

per 5.1; proviamo che è n ridotta (5, III). Sia $a \in \zeta \cap \xi$: esiste allora, per definizione di coppia n-esima, una spezzata $\tau = (a_r)_{0 \le r \le \overline{r}}$ di punti di ζ , con $a_0 \in \vartheta$ e $a_{\overline{r}} = a$; i punti di τ sono R_i -equivalenti, quindi $a \in \xi$ implica che τ sia contenuta in ξ : ne viene $a R_{\zeta \cap \xi} a_0$, $a_0 \in \vartheta \cap \xi = (\zeta \cap \xi) \cap (\eta \cap \xi)$; analogamente si prova che $\eta \cap \xi$ è il saturato di $\vartheta \cap \xi$ per $R_{\eta \cap \xi}$.

Sia ora $i' = (\alpha', \beta', \gamma', \delta')$ la minima quaterna avente per coppia $(\zeta \cap \xi, \eta \cap \xi)$, e proviamo che $i' \subset i$ sfruttando 5.1:

$$- \qquad \alpha' = ((\zeta \mathrel{\, \circ \,} \xi) \mathrel{\, \cup \,} (\eta \mathrel{\, \circ \,} \xi))^- = \overline{\xi} \mathrel{\, \subset \,} \alpha. \qquad \beta' = (\eta \mathrel{\, \circ \,} \xi)^- \mathrel{\, \subset \,} \beta$$

 $-\gamma' = \alpha' - (\zeta \cap \xi)^* = \overline{\xi} - (\zeta \cap \xi)^* \text{ è contenuto in } \gamma \text{ perché se } a \in \overline{\xi} - \gamma \subset \alpha - \gamma = \zeta \text{ esiste } b \in \xi, \ b \leq a; \text{ quindi } b \in \alpha - \gamma = \zeta \text{ ed essendo } \zeta \subset \omega'_n, \text{ o il punto } a \text{ coincide con } b \in \zeta \cap \xi, \text{ oppure } a \text{ è contiguo ad esso, il che porta ancora ad } a \in \zeta \cap \xi.$

 $-\delta' = \beta' - ((\xi \cap \xi) \cup (\eta \cap \xi))^* = (\eta \cap \xi)^- - \xi^* \text{ è contenuto in } \delta,$ come si vede con ragionamento analogo al precedente.

Dimostrazione simile per la quaterna massima. Supponiamo infine che i sia decrescente e proviamo che la coppia ammissibile $(\zeta \circ \xi, \eta \circ \xi)$ è stretta : per 5.2 ciò equivale a dire che $(\zeta \circ \xi) \circ (\eta \circ \xi) = \xi$ è localmente chiuso in ω . Siano $a, b \in \xi, c \in \omega, a < c < b$ e proviamo che $c \in \xi$; poiché $\xi \subset \zeta \cup \eta \subset \omega'_n \cup \omega''_n$, i tre punti sono contigui e $a \in \omega_{n-1}, c \in \omega_n, b \in \omega_{n+1}$: allora $a \in \zeta = \alpha - \gamma, b \in \eta = \beta - \delta$ e $c \in (\alpha - \delta) = \zeta \cup \eta$; quindi c sta iu ξ , per la contiguità con a e b. c.v.d.

DIMOSTRAZIONE DI 6.2. Per 6.1 abbiamo i morfismi u:

$$\mathcal{E}_{i'_{k}}^{n}(A) \xrightarrow{u'_{\xi}} \mathcal{E}_{i}^{n}(A) \xrightarrow{u_{\varepsilon'}^{n'}} \mathcal{E}_{i''_{\varepsilon}}^{n}(A) \qquad \qquad \xi, \, \varepsilon \in \Xi_{i}$$

la cui composizione è il morfismo u tra i termini estremi; quindi : se $\xi = \varepsilon$, essa è un isomorfismo per 4.2 (i'_{ξ} e i''_{ξ} sono n-equivalenti per loro definizione), mentre se $\xi \neq \varepsilon$, è nulla per 4.5 (i noccioli n-esimi di i'_{ξ} , i''_{ξ} sono rispettivamente $\vartheta \circ \xi$, $\vartheta \circ \varepsilon$; ma ξ ed ε sono disgiunti come classi di equivalenza di $\zeta \circ \eta$).

Resta da provare che Σ_{ξ} Im $u'_{\xi} = \mathcal{E}^n_i(A)$; posto $i'_{\xi} = (\alpha_{\xi}, \beta_{\xi}, \gamma_{\xi}, \delta_{\xi})$, abbiamo per 3.1 un diagramma commutativo:

Poiché:

$$\underset{\xi \in \Xi_i}{\Sigma} \operatorname{Im} u_{\xi} = \frac{ \Sigma_{\xi} \left(A_{\beta_{\xi}}^n \cap d^{-1} A_{\delta_{\xi}} \right) }{ A_{\eta}^n + d A_{\alpha}^{n-1} }$$

è sufficiente provare che:

$$A_{\beta}^{n} \cap d^{-1} A_{\delta} \subset \sum_{\xi \in \mathcal{Z}_{i}} (A_{\beta_{\xi}} \cap d^{-1} A_{\delta_{\xi}}) + A_{\gamma} + dA_{\alpha}.$$

Sia $x \in A_{\beta}^{n} \cap d^{-1}A_{\delta}$, e per ogni $\xi \in \mathcal{Z}_{i}$ poniamo:

$$x_{\xi} = \sum_{a \in \xi} x^a, \ x' = \Sigma_{\xi} x_{\xi}.$$

Poichè $\bigcup_{\xi \in \mathcal{Z}_i} \xi = \zeta \circ \eta$, $\sigma(x - x') \subset \sigma(x) - \eta \subset \beta - (\beta - \delta) = \delta$, quindi $x - x' \in A_{\gamma}$, e resta da verificare che $x_{\xi} \in A_{\beta_{\xi}} \cap d^{-1} A_{\delta_{\xi}}$ (per ogni $\xi \in \mathcal{Z}_i$) per avere la tesi; si noti che, essendo $\sigma(x)$ finito, solo un numero finito di x_{ξ} sono non nulli.

Anzitutto $x_{\xi} \in A_{\beta_{\varepsilon}}$ perché :

$$\sigma(x_{\xi}) = \sigma(x) \cap \xi \subset \beta \cap \xi = (\beta - \delta) \cap \xi = \eta \cap \xi = \beta_{\xi} - \delta_{\xi} \subset \beta_{\xi}$$

Sia ora $a \in \sigma(dx_{\xi})$ e supponiamo per assurdo che $a \notin \delta_{\xi}$; di conseguenza esiste un antecedente immediato b di a, che sta in $\sigma(x_{\xi}) \subset \beta_{\xi}$: allora a > b (in ω) implica $a \in \beta_{\xi}$; per ipotesi $a \notin \delta_{\xi}$, quindi $a \in \beta_{\xi} - \delta_{\xi}$. Detto c un qualunque antecedente immediato di a, proviamo che $x_{\xi}^{c} = x^{c}$; se $x^{c} = 0$ ciò è ovvio, altrimenti $c \in \sigma(x) \subset \beta$ e $c \notin \delta$ perché c < a, ed a sta in $\eta \cap \xi \subset \beta - \delta$: allora $c \in \beta - \delta = \eta$, ed essendo contiguo ad $a \in \eta \cap \xi$ sta anch'esso in ξ , onde $x_{\xi}^{c} = x^{c}$, come volevasi. Ne viene $(dx)^{a} = (dx_{\xi})^{a} \neq 0$, quindi $a \in \sigma(dx) \subset \delta$ (perché $x \in d^{-1}A_{\delta}$), assurdo perché $a \in \eta \cap \xi \subset \beta - \delta$.

La naturalezza della rappresentazione è ovvia, trattandosi di morfismi u.

c.v.d.

15. Dimostrazioni del n. 7.

DIMOSTRAZIONE DI 7.1. Per 3.1 abbiamo un isomorfismo naturale:

$$\mathcal{E}_{\alpha\beta\gamma\delta}(A) = \frac{A_{\beta} \cap d^{-1} A_{\delta}}{A_{\gamma} + dA_{\alpha}} = \frac{(A_{\beta} \cap d^{-1} A_{\delta}) + A_{\beta} \cap \gamma}{A_{\gamma} + dA_{\alpha}}$$

e, per la modularità del reticolo dei sottomoduli di A:

$$\mathcal{E}_{\alpha\beta\gamma\delta}(A) = \frac{A_{\beta} \cap (A_{\beta \cap \gamma} + d^{-1}A_{\delta})}{A_{\gamma} + dA_{\alpha}}.$$

Basta allora provare la biiettività dell'omomorfismo (indotto dalle inclusioni):

$$\frac{A_{\beta-\gamma} \cap (A_{\beta \cap \gamma} + d^{-1} A_{\delta})}{A_{\beta-\gamma} \cap (A_{\gamma} + d A_{\alpha})} \rightarrow \frac{A_{\beta} \cap (A_{\beta \cap \gamma} + d^{-1} A_{\delta})}{A_{\gamma} + d A_{\alpha}}.$$

Esso è iniettivo perché:

$$(A_{\beta-\gamma} \cap (A_{\beta \cap \gamma} + d^{-1}A_{\delta}) \cap (A_{\gamma} + dA_{\alpha}) \subset A_{\beta-\gamma} \cap (A_{\gamma} + dA_{\alpha}).$$

È suriettivo perché:

$$\begin{array}{c} (A_{\beta-\gamma} \cap (A_{\beta \cap \gamma} + d^{-1} A_{\delta})) + (A_{\gamma} + dA_{\alpha}) \supset \\ \\ \supset (A_{\beta-\gamma} \cap (A_{\beta \cap \gamma} + d^{-1} A_{\delta})) + A_{\beta \cap \gamma} = \end{array}$$

$$=(A_{\beta-\gamma}+A_{\beta\,\Omega\,\gamma}) \cap (A_{\beta\,\Omega\,\gamma}+d^{-1}\,A_{\delta}) = A_{\beta} \cap (A_{\beta\,\Omega\,\gamma}+d^{-1}\,A_{\delta}).$$
 c.v.d.

DIMOSTRAZIONE DI 7.2. Posso supporre i n-ridotta (5, II). Poiché $A_{\vartheta}=A^{c}$, per 7.1 è sufficiente provare che:

$$a) \ (A_{\beta \, {\textstyle \bigcap} \, \gamma} + d^{-1} \, A_{\delta})^c = \overbrace{(d_2^{-1} \, d_1 \, d_2^{-2} \, \dots \, B_p \, {}^{\bullet} \, d_1^{-1} \, d_2}^q \underbrace{d_1^{-1} \, \dots \, B_q}^q)^c$$

b)
$$(A_{\gamma} + dA_{\alpha})^c = \overbrace{(d_1 d_2^{-1} d_1 \dots B_{r+1} + \overbrace{d_2 d_1^{-1} d_2 \dots B_{s+1})^c}^s}^s$$

Dimostriamo a). Siano $e_0=c,$ e (ricordando che $e_1=(1,0),$ $e_2=(0,1))$:

$$c_1 = c + e_1 \,, \ c_2 = c_1 - e_2 \,, \ c_3 = c_2 + e_1 \,, \ c_4 = c_3 - e_2 \,, \dots$$

$$c_{-1} = c + e_2, \ c_{-2} = c_{-1} - e_1, \ c_{-3} = c_{-2} + e_2, \ c_{-4} = c_{-3} - e_1, \dots$$

Essendo $\vartheta = \{c\}, \eta - \vartheta = (\beta \circ \gamma) - \delta$ è costituito dai punti c_t , per $-p \le t \le q$ e $t \ne 0$. Indichiamo inoltre con p e q le parti intere di p/2 e q/2.

Sia x un elemento del secondo membro della a): ciò equivale a dire che $x \in A^c$ ed esistono $x_t \in A^{c_{2t}}$ $(-\overline{p} \le t \le \overline{q}, \ t \ne 0)$ tali che, posto $x_0 = x$, si abbia:

(1)
$$\overline{d}_1 x_t = \overline{d}_2 x_{t+1} \quad \text{per } -\overline{p} \le t < \overline{q}$$

$$\overline{d}_2\,x_{-\bar{p}} = 0 \qquad \qquad \text{se } p \,\,\, \text{\`e dispari}$$

(3)
$$\overline{d}_1 x_{\overline{q}} = 0$$
 se q è dispari.

Posto:

$$z = \sum_{-\bar{p}}^{\bar{q}} (-1)^t x_t$$

 $\sigma\left(x-z\right)$ è costituito al più dai punti $c^{2t}\left(-\stackrel{-}{q} \leq t \leq \stackrel{-}{p}, t \neq 0\right)$ quindi è contenuto in $\eta-\vartheta$ e $x-z\in A_{\beta\,\Pi\,\gamma}$; basta allora provare che $dz\in A_{\delta}$ per avere $x\in (A_{\beta\,\Pi\,\gamma}+d^{-1}\,A_{\delta})^c$. Per (1) è facile vedere che:

$$dz = (-1)^{\bar{q}} \, \overline{d}_1 \, x_{\bar{a}} + (-1)^{\bar{p}} \, \overline{d}_2 \, x_{-\bar{p}} \, .$$

Ora: $\overline{d_1} \, x_{\overline{q}} \in A_{\delta}$ perché se q è dispari $\overline{d_1} \, x_{\overline{q}} = 0$ per (3), mentre se $q = 2\overline{q}$ il suo supporto è costituito al più dal punto $c_{q+1} = c_{2\overline{q}} + e_1 > c_q \in \beta - \delta$: allora c_{q+1} sta in $\beta \circ \mathbf{C} \omega$, e poichè non sta in $\beta - \delta$, sta anche in $\delta \circ \mathbf{C} \omega$, e quanto asserito è vero. Analogamente si prova che $\overline{d_2} \, x_{-\overline{q}} \in A_{\delta}$.

Viceversa sia $x \in (A_{\beta \cap \gamma} + d^{-1} A_{\delta})^c$: allora $dx \in dA_{\beta \cap \gamma} + A_{\delta}$, cioè dx = y + dz, $y \in A_{\delta}$, $z \in A_{\beta \cap \gamma}$. Possiamo supporre $\sigma(z) \subset \mathbf{G}$ δ perché altrimenti si sostituisce z con $z' = \sum_{\substack{a \in \delta \\ a \notin \delta}} z^a$ e y con y' = y + d(z - z'): infatti $z - z' \in A_{\delta}$ e quindi anche $y' \in A_{\delta}$.

Poniamo $x_0 = x$ e:

$$x_t = -(-1)^t z^{c_{2t}}$$
 per $-\bar{p} \le t \le \bar{q}, t \ne 0$

e verifichiamo che gli x_t soddisfano le condizioni (1), (2), (3). Se $q \ge 1$:

(4)
$$\overline{d}_1 x_0 = \overline{d}_1 x = (dx)^{c_1} = y^{c_1} + \overline{d}_1 z^{c_1} + \overline{d}_2 z^{c_2} = \overline{d}_2 z^{c_2} = \overline{d}_2 x_1$$

(infatti $c_1 \notin \delta$ perché $q \ge 1$ mentre $y \in A_{\delta}$; $c \in \beta - \gamma$ mentre $z \in A_{\gamma}$). Analogamente, se $p \ge 1$:

$$\overline{d}_2 x_0 = \overline{d}_1 x_{-1}.$$

Sia ora $-p-1 \le 2t \le q-1, t \ne 0, t \ne -1$:

$$(dz)^{c_{2t+1}} = (dx)^{c_{2t+1}} - y^{c_{2t+1}} = 0$$

come si vede facilmente; quindi:

(6)
$$\overline{d}_1 x_t = -(-1)^t \overline{d}_1 (z^{c_{2t}}) = (-1)^t \overline{d}_2 (z^{c_{2t+2}}) =$$

$$= -(-1)^{t+1}\overline{d}_2(z^{c_2(t+1)}) = \overline{d}_2x_{t+1} \text{ per } -p-1 \leq 2t \leq q-1, t \neq 0, t \neq -1.$$

Da (4), (5), (6) si deduce immediatamente (1); (6) implica pure (2) e (3), perché se q è dispari : $q = 2\overline{q} + 1$ e

$$\overline{d}_{\mathbf{1}} \, x_{\overline{q}} = \overline{d}_{\mathbf{2}} \, x_{\overline{q}+1} = (-1)^{\overline{q}} \, \overline{d}_{\mathbf{2}} \, z^{c_{q+1}}$$

e c_{q+1} sta in $\delta \cup \mathbf{G} \omega$ (se q è dispari) come già visto, mentre $\sigma(z)$ è contenuto in $\mathbf{G} \delta$; ciò prova (3); discorso analogo per (2).

Il punto b) si dimostra in modo simile. c.v.d.

16. Dimostrazioni del n. 8.

DIMOSTRAZIONE DI 8.3. Siano A,B oggetti di $C^2(R,\omega)$, e s_1 , $s_2\colon A\to B$ omomorfismi di gradi $(-1,0),\ (0,-1)$ tali che :

$$s_1 \, \overline{d}_2 + \overline{d}_2 \, s_1 = s_2 \, \overline{d}_1 + \overline{d}_1 \, s_2 = 0.$$

 $D=s_1$ $\overline{d}_1+\overline{d}_1$ s_1+s_2 $\overline{d}_2+\overline{d}_2$ s_2 è un morfismo di A in B (di grado (0,0)) e si deve provare che $D_*=\mathcal{E}^n_{\alpha\beta\gamma\delta}(D)$ è nullo. Per 3.1 c'è un diagramma commutativo:

e quindi basta verificare che $D\,(A^n_\beta \cap d^{-1}\,A_\delta) {\subset}\, B_\gamma + dB_\alpha\,.$

Sia $x \in A_{\beta}^n \cap d^{-1}A_{\delta}$: $Dx = s_1 \overline{d_1} x + \overline{d_1} s_1 x + s_2 \overline{d_2} x + \overline{d_2} s_2 x$,

(1)
$$s_1 \, \overline{d}_1 \, x + \overline{d}_1 \, s_1 \, x = \sum_{(p, q) \in \omega} (s_1 \, \overline{d}_1 \, x^{p-1, q} + \overline{d}_1 \, s_1 \, x^{p, q-1}).$$

Distinguiamo due casi:

e :

a) (p-1,q) e (p,q-1) non stanno in $\sigma(x)-\gamma$: in tal caso s_1 \overline{d}_1 $x^{p-1,q}$ e \overline{d}_1 s_1 $x^{p,q-1}$ stanno in B_γ .

b) (p-1,q) o (p,q-1) sta in $\sigma(x)-\gamma$; consideriamo la relazione :

$$\begin{split} s_1 \; \overline{d}_1 \; x^{\, p-1, \, q} \; + \; \overline{d}_1 \; s_1 \; x^{\, p, \, q-1} &= (s_1 \; \overline{d}_1 \; x^{\, p-1, \, q} \; + \; s_1 \; \overline{d}_2 \; x^{\, p, \, q-1}) \; + \\ & + (\overline{d}_2 \; s_1 \; x^{\, p, \, q-1} \; + \; \overline{d}_1 \; s_1 \; x^{\, p, \, q-1}) = s_1 \; (dx)^{\, p, \, q} \; + \; d \; (s_1 \; x^{\, p, \, q-1}). \end{split}$$

Ora: $\sigma(x) - \gamma \subset (\beta - \gamma) \cap \omega_n$ perché $x \in A_{\beta}^n$; sfruttando quindi la proprietà (0_n) soddisfatta da $(\alpha, \beta, \gamma, \delta)$ si ottiene che (p, q) e (p-1, q-1) stanno in $(\alpha - \delta) \cup \mathbf{C}$ ω perché (p-1, q) o (p, q-1) sta in $(\beta - \gamma) \cap \omega_n$; di conseguenza $(dx)^{p, q} = 0$, essendo $dx \in A_{\delta}$, e $d(s_1 x^{p, q-1}) \in dB_{\alpha}$. Ciò prova che $s_1 \overline{d_1} x^{p-1, q} + \overline{d_1} s_1 x^{p, q-1} \in dB_{\alpha}$.

In definitiva tutti i termini della somma (1) stanno in B_{γ} o in dB_{α} , e essa sta in $B_{\gamma}+dB_{\alpha}$.

Analogamente si prova che

$$s_2 \, \overline{d}_2 \, x + \overline{d}_2 \, s_2 \, x = \sum_{(p,q) \in \omega} (s_2 \, \overline{d}_2 \, x^{p,q-1} + \overline{d}_2 \, s_2 \, x^{p-1,q})$$

sta in $B_{\gamma} + dB_{\alpha}$.

Per la necessità: se la quaterna $i = (\alpha, \beta, \gamma, \delta)$ non verifica (0_n) esistono un punto $a \in (\beta - \gamma) \cap \omega_n$ ed un punto b contiguo ad a, $b \notin (\alpha - \delta) \cup \mathbf{G}$ ω : due casi possono darsi. Se b è un antecedente immediato di $a: b = a - e_k$ $(1 \le k \le m)$, allora $b \notin \gamma$ e quindi per la ipotesi $b \in \omega - \alpha$; costruiamo il complesso A di $C^2(R, \omega)$ ponendo

$$A^a = A^b = R$$
 $(A^b \xrightarrow{\overline{d}_k} A^a) = 1_R$

e nulli gli altri dati; un'omotopia $(s_h)_{1 \le h \le m}$ di A in sé si ha ponendo

$$(A^a \xrightarrow{s_k} A^b) = 1_R$$

e zero negli altri casi. Si vede facilmente, ad es. con 3.1, che

$$\mathcal{E}_{i}^{n}\left(sd+ds\right)\colon\mathcal{E}_{i}^{n}\left(A\right)\to\mathcal{E}_{i}^{n}\left(A\right)$$

è il morfismo identico di R, non nullo se R non lo è.

Se b è un successore immediato di a si costruisce un analogo controesempio.

BIBLIOGRAFIA

- [1] D. BUCHSBAUM. Exact categories and duality. Trans. A.M.S. 80 (1955), p. 1-34.
- [2] H. CARTAN S. EILENBERG. Homological Algebra. Princeton U.P., 1956.
- [3] R. DEHEUVELS. Topologie d'une fonctionnelle. Ann. of Math. 61 (1955), p. 13-72.
- [4] S. EILENBERG. La suite spectrale. 1: Construction générale. Sém. Cartan, 3^e année (1950/51), exp. n. 8.
- [5] A. GROTHENDIECK. Sur quelques points d'algèbre homologique. Tôhoku Math. J. 9 (1957), p. 119-221.
- [6] S. MAC LANE. Homology. Springer (Berlin), 1963.
- [7] B. MITCHELL. Theory of Categories. Academic Press (New York), 1965.

Manoscritto pervenuto in redazione il 5 dicembre 1967.