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ON COMPACTNESS IN UNIFORM SPACES

SALVATORE CIAMPA *)

i. Introductory remarks.

1.1. This paper 1) stems from the following two considerations.
(a) in SC 2) (of which this work may be considered a contin-

uation) we proved that in uniform spaces completeness may be
deduced from the convergence of all Cauchy nets defined on the
directed set consisting of a base for the uniformity of the space
under consideration, with no need, therefore, to refer to the conver-
gence of all Cauchy nets in the space. A noteworthy consequence
of this fact is the possibility of constructing a completion of the
given space by means of a determined set of Cauchy nets (as in the
case of metric spaces).

(b) net convergence in uniform spaces may be seen as con-

stituted by two elements, the first depending more on the net (i. e.

the Cauchy property) and the second linked more to the space
structure than to net itself (i. e. the existence of a limit point).

*) Lavoro eseguito nell’ambito del gruppo di ricerca n. 9 del C. N. R.,
anno 1966-67.

Indirizzo dell’A.: Scuola Normale Superiore, Pisa.
1) The results of this paper will be communicated at the « Internationa~le

Spezialtagung iiber Erweiterungstheorie topologischer Strukturen und deren An-
wendnngen », Berlin, August 1967.

2) By SC we refer to our previous paper Cauchy e comple-
tamento degli spazi unifornii », Rend. Sem. Mat. Univ. Padova, vol. XXXIV, 1964,
pp. 427-433.
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1.2. One may wonder then whether similar considerations may
be made with respect to compactness in uniform spaces. Since com-

pactess is equivalent to completeness together with total bounded-
ness (also called precompactness, which means having compact com-
pletion) 3) and since completeness has already been examined, we
may restrict ourselves to consideration of total boundedness.

It is easily seen that, as far as compactness is concerned, a
solution similar to the one obtained for completeness cannot be
hoped for. In other words, bearing in mind that a uniform space
is totally bounded if and only if all universal nets enjoy the Cauchy
property 4), we could try to obtain a more useful characterization

of total boundedness by showing that this property is equivalent to
the Cauchy property of those universal nets which are defined on the
directed set consisting of a base for the space uniformity. Such an
endeavour cannot be successful: in a metric space (where a base
for the uniformity can be ordered as the set of positive integers)
every such universal net (that is, every universal sequence) is even-

tually constant, hence it is a Cauchy net whatever the space is.

Attempting to find a solution in this direction, it seems neces-
sary to generalize the definition of universality for nets, hoping
that among the new nets so obtained those which are defined on a

suitably fixed directed set will suffice for a characterization of total
boundedness.

Going on to the second consideration of no. 1.1., we will attempt
to distinguish two elements in the Cauchy property, the first

depending more than the second on the net while the second is

linked more to the space.

1.3. We shall carry out the above outlined program by defining
maximality for nets in uniform spaces in two ways, say (3) and (4)

3) As it will be said in 2.1., we adhere to the terminology used in the

Kelley’s book on Topology. Moreover, we shall use without mention propositions
which may be found in the same book.

4) This proposition does not appear in the Kelley’s treatise. The author
feels it is among the facts everybody knows, but he did not come across its proof
in the literature he has knowledge of. However, a proof may be drawn directly
from the proof of 4.2.2., bearing in mind that every net has a universal subnet.
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since they are defined respectively in paragraphs 3. and 4., and by
showing that in such spaces total boundedness is equivalent to the
Cauchy property of all (4)-maximal nets and compactness is equi-
valent to convergence of all (3)-maximal nets. Moreover, we will
show that in both cases it is sufficient to consider only nets

defined on suitably chosen directed sets.

2. Terminology.

2.1. The terminology we use is the one adopted in the

wellknown Kelley’s book on general topology, however we shall

consider all orderings to be reflexive.
If J is a directed set and X is any set, we say J-net to mean

a mapping from J into ~. If J is the set of positive integers with
the usual ordering (set which we shall denote by N), we call se-

quence any N-net. The elements of the directed set J will be called

indices and often instead of a (i), if i E J, we shall write ai .

We recall that a J-net a is, by definition, a subnet of the H-net
p if there exists a mapping : J --~ H such that a = ,u o ~ and for
every h E H there exists i E J in such a way that T E J and i  p
imply h (p). We recall also that a net a in a set X is defined
to be universal whenever it is eventually either in Y or in ~ - Y,
for every Y c ~.

If  is a reflexive and transitive relation among the objects of
a class .~ and Y c X, we say that an element x is order-maximal

in Y (with respect to , if there is danger of misunderstanding)
to mean that, for every y E Y, x C y implies y C x.

Finally, a uniform space will be denoted by a couple (T, g)
where T is a set and g is a base for a uniformity in T. Unless

otherwise stated, we suppose that the base K consists of symmetric
elements. If .E E g, x E T, Y c T we shall write .Ex to mean the set

of all those y E T such that (x, y) E E and .E ( Y ) to mean the union
of all the sets Et for t E Y. When no confusion is likely to arise,
we shall write simply T instead of (T, K).
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3. ilZagimality and compactness.

3.1. Given two nets a, ft in the uniform space (T, K), we define
a finer than ,u (and we shall write this fl  a) to mean that, for
every x E T, if 6 is frequently in Ex for every .E E K, so does fl.
We define next a to be equivalent to fl whenever a and fl  o.

3.1.1. Among all nets in T,  is reflexive and transitive ; more-
over it depends on the uniformity of T and not on the actual base

chosen for the uniformity itself.

Proof : reflexivity and transitivity of  are obvious. Let K, M
be two bases for the space uniformity and let the net a be finer
than the net p with respect to the base I~ ; we want to prove that
fl  a also with respect to the base 1’Vl. If a is frequently in Gx for
every G E M and some x E ’I’, given .E E K choose G E M in such a
way that G e E, then a is frequently in Gx c .Ex and, by hypothe-
sis, fl is frequently in L’x . Now, given any g E M, choose B E ..g so
that E c .g, then ft is frequently in Hx being frequently in Ex ,
that is what we had to prove.

A net in the uniform space T is defined to be maxima,t if it is

order-maximal in the class of all its subnets. From 3.1.1. it follows

that also maximality depends on the space uniformity and not on
the chosen base.

The following proposition lists some properties of the defined
objects.

3.1.2. In the uniform space (T, K) we have :
(a) every subnet of a net a is finer than a itself; i
(b) the net a is maximal if and only if it is equivalent to each of its

own subnets ;
(c) for the net a to be maximal it is necessary and sufficient that if

a is frequently in Ex for every E E K and some x E 1’. then a con-
verges to x (that is, a converges to each of its adherence points) ;

(d) every universal net in T is maximal ; hence, every net has a

maximal subnet ;
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(e) every subnet of a maximal net is itself maximal ;
( f) if for every x E T there exists E E K in such a way that the net a

is eventually outside of Ex , then the net a is maximal ;
(g) if the net a is maximat and it is equivalent to a convergent net

(in T), a itself is convergent ; hence, a maximal net converges if
it has a convergent subnet.

Proofs :
obvious, since a net falls frequently in any set in which

one of its subnet falls frequently ;
(b) easy consequence of (a) ;
(c) let g be a maximal H-net and let it be frequently in Ex

for every E E .K and some x E T. If a does not converge to x, there

exists F E K such that g is not eventually in Fx ; this means that
the set J of all those indices i E H for which Fx is cofinal in H,
that is, the restriction of the mapping a to J is a subnet of a and
it cannot be equivalent to a itself since it does not fall frequently
in I’z . Conversely, if a is a J-subnet of a and a is frequently in
Ex for every .E E 1~ and some x E also falls frequently in the
same .Ex since p converges to x being a subnet of a net which
does converge to x ;

(d) easy consequence of (c) since for any universal net to be
frequently in a set implies to be eventually there; the second part
is obvious since every net has a universal subnet;

(e) let 0 be a subnet of the maximal net p and let ~o be a subnet

of a, then e C a  ~o since e is also a subnet of a; this shows

the equivalence between p and a, hence the maximality of a ;
( f ) easy consequence of (c), since for no x E T the net a is

frequently in Ex for every E E K;
(g) let ,u be a convergent net equivalent to a ; let ,u converge

to x E T, then g is frequently in .Ex for every E E .K since It is ; the
conclusion follows then from (c).

We notice that maximality is not preserved under equivalence
as the following example shows: let T be the space of reals with

the usual metric topology, y let a and p be the sequences respectively
defined by an = for every n E N, pn = for every even n E 
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and = n otherwise; it is easy to see then that a and It are
equivalent, but while a is maximal /t does not share this property.

In connection with 3.1.2. (g) we notice first that the proposi-
tion would not hold were it under the form : a maximal net equi-
valent to a Cauchy net is itself a Cauchy net (for example, in the
open interval (- 1, 1) the sequences a = ((- 1)" (1 and

il - are equivalent and both maximal, but fl only en-

joyes the Cauchy property), secondly we notice that the maximality.
hypothesis cannot be dispensed with (for example, in the space of
reals the sequence a such that an = n for every even n E N and

an = 1 otherwise is equivalent to the sequence ,u defined in the

preceding example, but it is not convergent, while p converges to 1).

3.2. With regard to the Cauchy property, total boundedness

and compactness the following propositions hold.

3.2.1. Every Cauchy net in the (T, K) is maximal.

Proof: it follows directly from 3.1.1. (c) since a Cauchy net

converges to each of its adherence points.

3.2.2. If every maximal sequence in the space (T, K) enjoyes the

Cauchy property, the space T is totally bounded.

Proof: were T not totally bounded, there would exist E E K

such that for every finite set Y e T, .E (Y) ~ T. Then, chosen any
x1 E T7 it would be possible to choose, for every positive integer n,
a point sn+i E T outside of E (xl I X2 ... , xn). The sequence a = 
would be such that xm) E .E implies n = m. This says that o
does not enjoy the Cauchy property. Next, chosen F E K in such a
way that o for no y E T the net a could be frequently
in Fy else there would exist inequal integers n~ m for which

(xn , xm) E F o Then we could conclude from 3.1.2. ( f ) that a
is a maximal sequence.

The converse implication in the preceding proposition is

false as it may be seen in the following example : let T be the

open interval (- 17 1) with the usual metric topology, let be
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a = ((- 1)n (1 1 /n)~~, E N ; then a is a maximal sequence which does

not enjoy the Cauchy property, y nevertheless the space T is totally
bounded.

Before going on to the main theorem 3.2.3., we introduce a

definition. Given two directed sets J, H we denote by J x H the
directed set of all ordered pairs ( j, h) ( j E J, h E 8 ) with the ordering
given by ( j, h)  (r, s) if and only if j We notice

that if g is a J-net in a set ~, a has a subnet defined on J x H

(define n ( j , h) = j, then the definition of subnet applies). Analogously,
every .g-net has a J x H-subnet.

3.2.3. In the uniform space (T, K) tlze following propositions are
equivalent :

(a) the space T is compact ;
(b) every maximal, net in T converges ;
(c) every N X K-net in T converges if it is 

Proof :

(a) &#x3E; (b) the compactness hypothesis says that every net

has a convergent subnet, proposition 3.1.2. (g) then allows the con-
clusion that every maximal net converges ;

(b) &#x3E; (c) obvious ;
(c) ==&#x3E; (a) it will suffice to show that the space T is totally

bounded and complete. To show the total boundedness (according
to 3.2.2.) we only have to prove that the Cauchy property is enjoyed
by every maximal sequence. Now, let ,u be a maximal sequence in

T, it has then a N X K.subnet, maximal again by 3.1.2. (e) ; this

implies that IA has a convergent subnet hence, by 3.1.2. (g), ,u itself
converges. For what is proved in ~SC (see the introductory para-
graph 1.1.), the completeness of 7’ follows from the convergence of
every Cauchy B-net in T. So, let p be such a net, it has then a

N X K-subnet (which still enjoyes the Cauchy property, hence is

maximal according to 3.2.1.) ; this in turn implies that IA has a con-
vergent subnet and we may conclude that p itself converges, being
a Cauchy net.
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4. Maxiinality and total boundediiess.

4.1. In order to characterize total boundedness in uniform spaces
we change the definition of a net finer than another as follows :

given two nets a, ft in the uniform space (T, K), we define a * -finer
than p (we shall write this ft.  a) to mean that there exists F E Ii
such that for every .E E .g and every x E T, if h’ c F and It falls

eventually in Ex , then also a is eventually in Ex. As before, we
define 0 Ie - equivalent to p to mean 0 4(;  It and u  a.

It is obvious that *  is reflexive and transitive among all

nets in T. We define a net a to be * - maximal whenever it is uni-

formly order-maximal (with respect to .~ C , of course) in the class
of its subnets : that is, there exists F E K such that for every subnet
ft of 0, if O.  It and It is eventually in .Ex with x E T, .E E K, E c F,
then a also is eventually in Ex.

Some properties of the defined objects are listed below.

4.1.1. If a and ft are nets in . the uniform space (T, K), then the

following propositions hold :
(a) every subnet of a than g itself ;
(b) the net a is * - maximal if and only if it is uniformly equivalent

to each of its own subnets ; that is, there exists F E K (which may
be taken as the set F in the definition of . -maximal net) such that
if p, is a subnet of a and x E T, E E K, If) c F then : ft is even-

tua,lly in Ex  &#x3E; a is eventually in Ex.
(c) a ~  It &#x3E; (a converges to x &#x3E; It converges to x) ; hence a

maxtmal net converges if it has a converging subnet ;
(d) for the net a to be maximal it is necessary and sufficient that

there exists F E K such that for every x E T and every E E K 
.E c F, a falls eventually in .Ex if it falls there frequently ;

(e) every universal net in T is maximal, hence every net has a
. - maxima,l subnet ;

(f) every subnet of a Ie - maximal net is itself ~ - maximal ;
(g) every maximat net in T is maximal (in the sense of the defi-

nition given in 3.1.).
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Proofs :
(a) obvious, since a subnet of a certainly falls eventually in

a set where a itself is eventually;
(b) easy consequence of (a) ;
(c) easy consequence of the definitions, the second part fol-

lows from (b) ;
(d) let 0 be a * - maximal J-net falling frequently in the set

Ex (with x E T, E E g, .E c F, F being as in the definition of *-maximal
net), then H = w1 (Ex) is a cofinal subset ofJ, hence the restriction

fl of the mapping g to 1~ is a subnet of a which falls eventually
in it follows from the * - equivalence between p and G that a
also is eventually in Ex . Conversely, let p be a subnet of a and

let fl be eventually in Ex (with x E T and E c F), then a is fre-

quently in Ex (by the definition of subnet), hence, by hypothesis, o
is eventually in Ex , which together with (a) shows the equiva-
lence between o and fl;

(e) same proof as for 3.1.2. (d) ;
( f ) easy consequence of the definitions;
(g) let a be a * - maximal net in T and let F E ~ be as in

the statement of (d) ; if for every is frequently in Ex , then
for every E E K contained in F, a is eventually in Ex . This shows
that a converges to x and that g is maximal (according to 3.1.2. (c)).

4.2. With regard to the Cauchy property and the total bound-
edness we have the following propositions.

4.2.1. If a is a * - maximal net in the uniform space (T, K), the
following propositions are equivalent :
(a) a is Cauchy net ;
(b) there exists a subnet fl of a which enjoyes the Cauchy prope1"ty.

Proof : (a) &#x3E; (b) obvious ;
(b) =&#x3E; (a) let be a : J - T and p : H - T, let n: H - J be

as in the definition of subnet. Since a is * - maximal, proposition
4.1.1. (d) holds, so let be as in its statement. Given E E K,
choose G E K in such a way that G f1 F . Then there

exists h E H such that E H and h  p, h  q imply that (,up , E G.
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This means that 0 is frequently in G, where t = Gn(h): for a given
j E J let hj be as in the definition of subnet, then, if u E H follows
both h and hj, z (u) follows j and we have On(h)) E G. By hy-
pothesis then a is eventually in Gt , y say from the indeg jo on ; so,
if r, s are in J and both follow jo , and (as , are both

in G, hence (6r, o~) E .E which shows a to have the Cauchy property.

4.2.2. In the uniform space (T, K) the following propositions are
equivalenti :
(a) the space T is totally bounded ;
(b) every ~ - maximal net in T enjoyes the Cauchy property;
(c) every - maximal sequence in T enjoyes the Cauchy property.

Proof :
(a) &#x3E; (b) let a be a ~ - maximal J-net in T and let K be

as in the statement of proposition 4.1.1. (d). Given E E K, choose
G E .K in such a way that G 0 GeE n F. Let Y be a finite subset of

T such that T = G ( Y ) : then there exists y E Y such that the net a
falls frequently, hence eventually, in Gy . This means that if 1ft and
s are in J and both follow a suitable indeg j E J, then (or , a,) E
E G o G c E, and this shows a to be a Cauchy net ;

(b) &#x3E; (c) obvious ;
(c) &#x3E; (a) 5) if the space T is not totally bounded, there exists

E E K such that no finite subset Y of T has the property T = E (Y).
This allows us to choose, for every positive integer n, an element
yn E T in such a way that ... , that is in such a way
that for every pair of positive integers n, m, then (Yn, E.

Obviously, the sequence a does not enjoy the Cauchy pro-
perty, nevertheless it is ~ - maximal since, if F 6 K is such that

there are no G E K and x E T sueh that G e F and a is

frequently in Gz (were, on the contrary, a frequently in Gx , there
would exist inequal integers n, in such that (Yn , x) E G and (Ym, x) E G,
hence would be in G o 

5) We remark that, in view of 4.1.1. (g), this proof gives an immediate

proof of 3.2.2..
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5. Concluding remarks.

5.1. Some differences between * . maximality and maximality.
(a) A consequence of proposition 3.1.1. is that maximality

does not depend on the actual base I~ of the space uniformity but
on the uniformity itself. This is not the case for * - maximality as
it may be seen by considering in the space of the reals the se-

q uence 6 such that an = 1/n for every even n E N and an = 0 other-
wise ; then, if we take as K the family of symmetric open strips
about the diagonal, g is not * - maximal. whereas taking the strips
closed (of course with non-zero width) a becomes * - maximal.

(b) Proposition 4.1.1. (g) says that every * - -maximal net is maxi-
mal : the converse implication does not hold, since a = ( (- 
is a maximal sequence in the space of reals but it is not a * - maximal

one.

(c) Proposition 3.2.1. says that every Cauchy net is maxi-

mal : this property does not hold for - maximality. The sequence
a defined in (a) is a Cauchy sequence which is not * - maximal in

the uniformity defined by the open strips about the diagonal.
(d) The example given after the proof of 3.2.2. shows that

the proposition 4.2.1. fails when maximality is substituted to

* - maximality.

5.2. What has been said in no. 5.1. (a) and the following pro-
position show in a sense both the weakness and the usefulness of
o - maximality. It is rather disturbing that * - maximality does depend
on the actual base chosen for the space uniformity, y but this allows
us to choose a base most suitable for a neat characterization of

total boundedness (and herein lies its strength).
Precisely we prove that:
The uniform space T is totally bounded if and only if, with

respect to its whole uniformity K 6), every * - *zas1nlal sequence is

6) Notice that in this case K does not consist of symmetric subsets of

Tx Z’.
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eventually fixed in the meaning that the sequence converges and

falls eventually in the set of its limit points7).

Proof: If in the space (T, K) every *-maximal sequence is

eventually fixed (in the meaning made precise above), proposition
4.2.2. insures total boundedness.

Conversely, let o be a * - maximal sequence in the totally bound-
ed space (T, .K). ~ Let g be not eventually fixed (in the above mean-

ing) and let .g be the whole uniformity of Z’. Then (by 4.2.2.) a
is a Cauchy sequence and, as we are going to prove, it has an

injective subsequence a. To this end, call two positive integers n, m
equivalent if and only if 6n = this gives a partition of N in
equivalence classes and the set J cannot be finite (so that
we may take J = N) otherwise the sequence a would fall eventually
in the set of its limit points (for, whenever is not finite, which

certainly happens if J is finite, t = a (Ni) is an adherence (hence
also a limit) point of g, then, no neighborhood of t may exclude

a if Nj is not finite and this says that a is eventually in the
set t of its limit points). Then, chosing a number ni in every Ni ,
we may the sequence p so defined 8) is an

injective subsequence of g, still enjoying the Cauchy property.
Now, given any set F E K, choose p E N such that It falls even-

tually in F,~( p) and p (p) is not a limit point of u. Then there exist
(J E .K and an infinite set BeN such that G c .F’ and n E B implies

Take L c B such that neither L nor B - L are finite
and no integer less than p belongs to L Consider next the set

.H~ = G U E L ~ t certainly H E K and H c h’ ; moreover the
sequence ,u is frequently but not eventually in since no fln
with L belongs to g~~~) . This shows that the sequence
p is not - maximal and this is impossible since p is a subsequence
of a * - maximal sequence (see no. 4.1.1. (f)). This contradiction

completes the proof.

7) In Hausdorff spaces onr meaning of « eventually fixed net » coincides

with the usual one of « eventually constant net ».

8) With a suitable renumbering of the i’ s, of course.
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5.3. Let us consider the following propositions :

C The slnace (T, K) is compact ;
TB The space (T, K) is totally bounded ;
1. every maximal net in (T, K) is ac Cauchy net ;
II. Every maximal net in (T,K) converges ;
III. Every maximal sequence in (T,K) is a Cauchy sequence ;
IV. Every N X K -net in (T, K) maximal.

Let us denote by I’~. , II*. , III*., the propositions corre-

sponding respectively to I., 11.7 111.7 IV. when - maximality is

substituted for maximality.
Then, we may sum up what has been said in the preceding

paragraphs as follows :

We notice next that the following implications do not hold:
(a) TB &#x3E; III. (counterexample shown after the proof of

proposition 3.2.2. ) ;
(b) I. &#x3E; IV*. (counteregample : take as space T the half

open interval (0, 1] ] with K consisting of all the open strips of width
1/n about the diagonal; in this situation I. holds since a maximal

net in T is maximal also in the closed interval [0, 1] therefore it

converges and it is a Cauchy net, nevertheless IV*. does not hold
since the net ,u : N x -~2013~ T defined by p (~a, m) = 1 /n is maximal
but does not converge);

(c) IV *. &#x3E; I. (counterexample : take as space T the open
interval (- 1, 1) and let .g be the whole uniformity induced by the
usual metric of the reals. Now, if 0 is a 4(: - maximal N X N -net in

17, it has a subsequence p (take, for instance, pn = o (n, n) for every
n E N ) which is again * - maximal so, by the results of no. 5.2 , the
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sequence p converges and so does a (by 4.1.1. (c)). This means that
in T proposition IV*. holds. However proposition I. fails to hold

since the sequence maximal in T but it

is not a Cauchy sequence).
d) III. &#x3E; I. (counterexample: let X be the ordered set of

all ordinals less than the first uncountable ordinal number. Take

the set Y of all couples + a or - a for every a E X and introduce
in Y the usual ordering, that is, for every a, p E X,

In the order topology the set Y becomes a sequentially compact
topological space, so that every sequence in Y has adherence points,
hence converges if it is maximal. Let us consider now the net

p : ~ --~ Y defined as follows : for every a E X, p (a) = + a if a

has no preceding element (in if, on the contrary, a has a pre-
ceding element (a) equals + a or - a according to p (fl) being
- P or + fl. The net ,cc, of course, does not enjoy the Cauchy pro-
perty, nevertheless it is a maximal net having no adherence points).

5.4. * - maximality may enter in a characterization of compact-
ness in the following way :

The uniform space (T, K) is compact if and only if all N X K-nets
in T converge if they are either * - maximal or Cauchy nets.

5.5. Finally we remark that had the definition of finer than

,u read: for every set Y c T if /~ is eventually in Y then so is a,
* - maximality would have reduced to universality, since universal
nets are those nets which are eventually wherever any of their
subnets falls eventually.

Manoscritto pervenuto in redazione .il 16-6-67.


