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GEOMETRIC DUALITY

HENRY H. CRAPO *)

Duality for geometries (see [4], [3]) may be expressed in terms
of complementation of subsets, together with negation of the depen-
dence relation :

The dependence relations 6 and 8* give rise to closure operators J
and J* with the exchange property. J and J* may be considered to
act on the Boolean algebra B of all subsets of (~, and on the dual

lattice B, respectively. Then

for all pairs x, y of subsets of (~, such that y covers x in B.
Closure operators with the exchange property also occur as the

kernels of strong maps [2] from one geometric lattice to another.

This suggests a more general form of duality for geometries. Indeed,
we shall prove that if J is a closure satisfying appropriate exchange
and finiteness properties on a geometric lattice P, and if the dual

lattice P is also geometric, then condition (2), above, determines

uniquely a closure operator J* on P, satisfying the same exchange
and finiteness conditions. The condition on the lattice P is satisfied,
for example, if P is a complemented modular lattice of finite height[I].

’~) Indirizzo dell’A. : Depart, of Math. University of Waterloo Ontario-Canada.
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The relationship of geometric duality holding between the lat-

tices P/J and is more general than that obtaining in the theo-
ries of Whitney [4]. It coincides with the duality of Whitney if P
is a finite Boolean algebra.

Under the same condition on the lattice P, namely that Palso
be geometric, we prove that a closure satisfying finiteness conditions
has a dual closure defined by (2) if and only if it has the exchange
property.

An element x in a geometric lattice P is cofinite if and only
if x C x v ~ for only finitely many atoms p in P. A closure J on 11
is cofinitary if and only if y 1 x and J (x) # J (y) imply the existence
of a cofinite element z such that and 

PROPOSITION 1. If a lattice P and its lattice dual P are both

geometric, and if J is a finitary and cofinitary closure with the

exchange property on P, then there is a unique closure J* on P

satisfying condition (2), and PIJ* is geometric.

Proof : For each element y E P~ let T (y) - inf y ~ and y x

or J (y) ~ J (x)). If Jill is any closure on P satisfying condition (2),
then y 1 x implies ;~ c J* ( y ) ===&#x3E; J* = J* Cy)  &#x3E; J (x) # J (y).
Since the lattice P is complemented modular and coatomistic, the

interval [0, y] is coatomistic, and J *‘ (y ) _-- T (y). We prove that J*,
thus defined, is a closure operator with the required properties.
y h T (y) implies y  J~ (y ). Assume and y I r. Then T (y) c
c x  &#x3E; J (x)  J (y). If J (x)  J (y), then ~ J (x), so

J (x A z)  J (z), and Thus T(z)  T(y), and y  z im-
plies J* (y )  J* (z). Assume that for some element y E P, there

exists an element z such that T (y) 1 z, and such that J (z)  J (T (y)).
Choose a cofinite element x such that z  x and J (x)  J (x v T (y)).
Then the interval [X A Y, yJ is finite. Let w be a maximal element of

y, y] such that J (w)  J (w v T (y)). If w v T (y) flx y, choose an

element u covering w such that u v T (y) covers w v T (y). Since w v T(y)
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and u v T (y) are in the interval [T (y), y], J (w v T (y))  J (u v T (y)),
J (ic)  J (u), and, by the exchange property, J (u)  J (u v T (y)). This
contradicts the maximal property of w, so w v T (y) == y, and T (y) ~
c w by the definition of T. This contradicts the definition of

Zv, so T =&#x3E; J (w) J (y), and TT (y) T (y). Thus J* (J~‘ (y ))
= J* (y ), and J* is a closure. J* is finitary because J is cofinitary.
If elements x and y cover x A y in P, and are thus covered by x v y,
and if J* (x v y)  J*(x) = J then J (x A y)  J (x) 
-

If, moreover, J * (x v y)  J* (z ), then J (y) J (y) # J(XAy),
and J * (y ) J~(x ~ y). Thus J * has the exchange property, and 
is a geometric lattice. I

As an example of duality relative to a complemented modular

lattice, consider the seven-point projective plane mapped into a five-
point line in such a way that one line j is mapped to a point. The
empty set, the line j, the four points off j, and the plane are closed

relative to this strong map. Only j and O are closed relative to

the dual closure on the dual plane, and j is the dual-closure of the
empty subset of the dual plane.

A partial converse to proposition 1 is available, which chara-

cterizes closured with the exchange property as those closures which
have duals.

PROPOSITION 2. If a lattice P and its lattice dual P are both

geometric, if J is a finitary and cofinitary closure on P, and if T

is a closure on P, where T (y) = inf and y == x or J (y) =j=
~ J (x)), then J has the exchange property.

Proof : Assume x and y cover x A y, so x v y covers x and y.
Assume further that J (x A y) C J (x) J (x v y) and y)  J (y).
If J (y)  J x v y), then T (x v y)  T (y). Since J (x A y)  J(y), T (y) ~
T (x A y). If T is a closure, then T (x v y) = T (r A y) ~ T (z), contra-
dicting J (x) J (x v y). Thus J (y) J (x vy), and J has the exchange
property.
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Added in proof: The following, provided by D. A. Higgs, and
printed here with his permission, defines the scope of the prece-

ding duality theory. It is known that every modular geometric
tacttice is a direct join (cartesian product) of projective geometries.
We have considered, above, geometric lattices .L whose dual

lattices L are continuous. Under this assumption, Higgs proves
that the projective geometries involved in the above direct join
decomposition must be of finite height. The essential result is as

follows.

PROPOSITION 3. (D. A. Higgs) A projective geometry L of

infinite height cannot be dual continuous.

Proof. : Let (pi ; i 0,1 ~ ... ) I be an independent enumerably
infinite set of atoms of L, where L is geometric, modular, and

every element of rank 2 covers at least 3 atoms. Let rn bs a

third atom covered by Pn v n === 0, 1, ... Let a = sup r i
i

sup Then inf xi 0 , because each atom beneath
i i

xo is dependent upon a unique minimal (finite) subset of (pi).
Th us a v inf xi - a v 0 = a, while inf (a v Xi) 
i i i

Thus L is not dual-continuous, jj
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