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STRUCTURE THEORY
FOR GEOMETRIC LATTICES

HENRY H. CRAPO *)

1. Introduction.

A geometric lattice (Birkhoff [1 J, and in Jonsson [5], a matroid
lattice) is a lattice which is complete, atomistic, continuous, and

semimodular.

A sublattice of a geometric lattice need not be geometric. Con-

sequently, any, categorical analysis of geometric lattices considered
as algebras with two operators will most likely be inconclusive.

It is possible, however, to define a geometric lattice as a set

L, together with an operator sup (supremum or join), defined on ar-
bitrary subsets of L and taking values in rL, and with a binary
relation 1 (covers, or is equal to). In writing the axioms, it is conve-

nient to write 0 == sup T), x v y sup ~x, y), and x c y if and only
if x v y -®--- y. Two of the axioms may be taken to be

a) y 1 x if and only if x c y and x C z  y implies z = y.

Axiom a expresses the connection between sup and I , while

axiom fl indicates that the atoms separate the lattice elements.
In this way, geometric lattices form an axiomatic model class [2]

of relational structures. A substructure .P of a geometric lattice Q

*) Indirizzo dell’A. : Depart. of Math. University of Waterloo Ontario - Canada.
s) We wish to express our gratitude to the National Research Council, Ca-

nada, and to the University of Waterloo for their support of this research.
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is also a geometric lattice if axioms a and B apply in P. A rela-

tion-homomorphic image Q of a geometric lattice .P is also a geo-
metric lattice if axiom a holds in Q.

In section 2, we show how mappings preserving join and cover
correspond to the strong maps of geometries introduced by Higgs [4 j.
Images of geometric lattices are studied in section 3. The kernel of

such a map is shown to be a closure with the exchange property,
acting on a geometric lattice. We are indebted to Professor G.-C.

Rota for his recommendation of this approach.

2. Strong maps.

We write if an element y covers or is equal to an ele-

ment x in a lattice. A function f from a lattice P to a lattice Q
is cover-preserving if and only if y 1 x implies f (y) I f(x), for all ele-
ments x, y in P.

PROPOSITION 1. Any lattice-epimorphism is cover-preserving.

Proof. Assume y 1 x in P. For any element c such that f (x) ~
c c ~ f (y), choose a preimage z E P. 

--. f ((z A y) V x). Since x C (Z A y) V x (Z A y) V x is equal
either to x or to y. Thus c is equal either to f (x) or to f(y), and
f (y) ~ .f (x)· O

A join-homomorphism from a geometric lattice P into a geome-
tric lattice Q is any function f: P- Q such that f (sup X) -!-

sup f (.X) for every subset X C P. Such a join-homomorphism f
determines and is determined by the restriction of f to the set
A of atoms of P.

PROPOSITION 2. A join-homomorphism f from a geometric lat-

tice P into a geometric lattice Q is cover-preserving if and only if
the image of each atom of P is either 0 or else an atom of Q.

Proof : If f is cover-preserving, and p 1 0 in P, then f ( p) 1 f (o)
in Q. Butf(O)===f(sup O) = Conversely, ifp 0



16

in P implies f (p) 1 0 in Q, and if y j x in P, choose an atom p E P
such in 

in Q, by semimodularity. ’
A join-homomorphism from a latti ce P to a lattice Q is non-

singular if and only if f (x) ~-- 0 implies x 0. A strong map from
a geometric lattice P into a geometric lattice Q is any non-singular
cover-preserving join-homomorphism from P to Q. Higgs [4] coined

the term  strong map &#x3E;&#x3E; for those functions f from a geometry 6~
to a geometry G2 such that f (1) for each subset X c G, -
In other words, f is a « strong map &#x3E;&#x3E; if and only if the inverse

image of each G2-closed set is G1-closed. Proposition 3, below, ju-
stifies our usage of the term.

If A is the set of atoms of a geometric lattice P, then .X

f ~ E A ; p  sup X) defines a closure operator with the exchange pro-
perty (MacLane [6]), and a geometry, in the sense of Higgs [3]. This
geometry we shall denote G (P).

PROPOSITION 3. If f is a non-singular strong map from a

geometric lattice P, with atom set ’A, into a geometric lattice Q,
then is a strong map from the geometry G (P) into the

geometry G (Q). Conversely, ifg is a strong map from G (P) into G (Q)~
then g ==f I A for a unique non-singular strong map f : P - Q.

Proof : A strong map f carries atoms of P into atoms of Q,
is a function from G (P) into G (Q). for a subset

X c G (P), then p C sup X, and f ~) sup f (X). Thus

I(p) Ef (X), and f (X) C f (X)-
Conversely, if g is a strong map from G (P) into G ( Q), and if

f is a join-preserving function from P into Q which extends g, f
must satisfy, for each an atom, p  x)),
because P is atomistic, and must satisfy

because f preserves join. The assumption that g is a strong map
is required for the following proof that f, defined by equation (1),
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is join-preserving. If Y is a subset of the lattice P,

If p is an atom beneath sup Y, p is in the closure of the set of

atoms (q; q  y for some y E Y], g (p) is in the closure of the set

of atoms fg (q) ; q C y for some y E Y) because is a strong map,

and g ( p) ~ sup f (Y). Thus f (sup Y) = sup 
The function f, defined by equation (1), is non-singular, and

is cover-preserving, because P is atomistic, f is join-preserving, and
Q is semimodular.

Non-singularity, join-preservation, and cover-preservation are

properties preserved under composition of functions. On each geo-
metric lattice P, the identity function is a strong map. Therefore

geometric lattices and strong maps are the objects aud morphisms
respectively, of an abstract category, which we shall denote G.

PROPOSITION 4. A substructure P of a geometric lattice Q
is a geometric lattice if axioms « and ~8 hold in P.

Proof : If P is such a substructure of Q, then P is a subset
of Q, closed with respect to arbitrary join. Thus P is a complete
lattice. y x in P if and only if y ~ x in Q, and the axiom for de-

finition of i in terms of sup is satisfied. 0 - sup 4S is an element

of P~ so the atoms of P are precisely those atoms of Q contained
in the subset P. Since axiom B holds in P, P is atomistic. Since

the atoms of P are a subset of the atoms of Q, P, being atomistic,
is continuous. If p 1 0 in P, and x E P, then the supremum
in Q, is an element of P, and in Q implies x 1 x in P.

Thus P is semimodular. It is clear that the injection map preserves
join and cover, and is non-singular. I

COROLLARY TO PROPOSITION 4. A subset P of a geometric
lattice Q is a substructure of Q if and only if P is the set of ar-

bitrary joins of subsets of some subset of the atoms of Q. 1
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In the following section, we investigate the dual notion : ima-

ges of geometric lattices.

3. Images.

Given any strong map f : P -+ Q in the category Q’- of geo-
metric lattices, the image of P in Q is also geometric. The opera-
tor J on P defined by J (x) -= sup ly ; f (y) =-c f (x)) is a finitistic

closure operator with the exchange property. If R is the natural

map from J closed elements of P into the lattice P/J of all J-closed
elements of P, then RJ: P - P/J is a strong map, and P/J ~ Im f.
Thus any strong map f : P --~ Q may be where

fs is the strong map from P onto Plf, f2 is an isomorphism of Plf
with Im f, and f3 is a one-one strong map from Im f into Q. These
facts are proven below.

PROPOSITION 5. If f is a strong map from a geometric lattice
P into a complete, continuous lattice Q, then Im f, the image of P
in Q, is also geometric.

Proof: Since f is a join-homomorphism, Im f is closed with

respect to join, and is a complete lattice, with order induced by
that on Q. If y E Im f, choose a preimage x of y, and express x as
a join of atoms in P. Then y is the join of the images of those

atoms, and Im f is atomistic. If an atom p is beneath the supre-
mum of a set X of atoms of Im f, consider p and the atoms in X
as elements of Q. Since Q is continuous, there is a finite subset

X’ C X such that p  sup ~’. But p c sup X’ in Im f, so Im j,
being atomistic, is continuous [5]. If q is an atom of Im f, and q fl£ y
for an element y E Im f, choose preimages x of y and z of q. For

each atom p E P such that p either f ( p) 0 or f ( p) === q. Since
q = sup f (~) ; p c z;, f (p) ~ q for some atom p E P. Then p 0,

and Im f is semi-

modular [5]. I
A join.congruence on a complete lattice L is an equivalence re-

lation oo on .L such that for any subset X C L and any function h :

L --~ .L dominated by co (ie : x co for all x E L), sup X co sup h (X).
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LEMMA TO PROPOSITION 6. If co is a join-congruence on a com-
plete lattice L, then the operator J defined by J (x) - sup y ; y cB3 r)
is a closure operator.

Proof : Since x x, x  J (x). If x  y, and z x, then y v z CB.)

y v x y, and J (x) ~ J (z). J (x) sup (y
y cj x~ cB3 sup ~ x, so z co J (x) if and only if z w x, and JJ (x) ~

-~- J (x). ~
A closure operator acting on a set, ie: on the Boolean algebra

of all subsets of that set, has a lattice of closed subsets which is

geometric if the closure is finitary and has the exchange property [3].
These two properties may be rephrased for closure operators on

more general lattices. A closure J on a complete lattice L is finitary
if and only if, for each directed subset X C L, J (sup X) - sup J (X).

PROPOSITION 6. (2) A closure J on a complete atomistic conti-

nuous lattice L is finitary if and only if, for every atom p E L and
every element x E L, such that p (x), there exists a finite set Y
of atoms beneath x, such that p ~ J (sup Y).

Proof : Assume J is finitary, p an atom, and p  J (x) for some
x E L. Let X be the set of joins of finite sets of atoms beneath x.

.X is directed, so J (x) = J (sup X’) ~ sup J (X). J (X) is also directed,
in a continuous lattice, so p  sup J (X) implies p  J (y) for some
y E X. Conversely, assume X is a directed subset of L. Then J (sup X) h
~ sup J (.X). Let p be any atom beneath J (sup X). Select a finite

set Y of atoms beneath sup X, such that p  J (sup Y). For each

atom q E Y, select an element xq above q in the directed set X. Then
choose an element x E X such that xq for all q E Y. q ~ J (x) C
sup J (.X), so J (sup X) = sup J (X). I

A closure J, on a complete atomistic lattice L, has the exchange
property if and only if, for any atoms p, q E L and any element x E L,
p ‘_I = J (x) and p  J (x v q) imply q c J (x v p).

2) cf. Cohn [2], Theorem II.1.~ : A closure system on a set is algebraic if

and only if it is inductive.
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PROPOSITION 7. If f is a strong map from a geometric lattice P
into a geometric lattice Q, the operator J defined on P by

J (x) sup I

is a finitary closure operator with the exchange property.

Proof: Consider the equivalence relation defined by x y
if and only if f (x) f (y). If h : P - P is any function dominated

by cB3y and if X is any subset of P, f (sup h (X)) sup f (h (X) ::z::::
= sup f (X) f (sup X), so sup X sup h (X), and is a

j oin-congruence. By the above lemma, J is a closure eperator on

P. If p is an atom of P, for some x E P, f (p) 1 0 in

the finitistic lattice Q, and f (x) sup f (X), where Jr={~~0~~.r
in P). We may select a finite subset such that f ( p) c
~ sup f (X’). Then p c J (sup X’) because p  p v sup ~’, and f (~ v
v sup = f ( ~) v sup f (X’) = -f (sup X’). Thus J is fini-
tistic. Note that x f-, J (y) if and only If p and q are
atoms of P, and x is an element of P such 

then covers f (x). Since f ( p) ~ f (x v q)
.f (x) vf (q), and f (x) v.f (q) ~ I f (x), we have f (x v p) f (x v q), f (q) ~

and 

LEMMA TO PROPOSITION 8. If J is a closure operator on a lat-
tice L, and if 1~ is the natural injection of J-closed elements of L
into the lattice L/J of all J-closed elements of L, then the compo-
sition RJ: L -~ L/J is a- join-homomorphism.

Proof: If .g is a subset of L, sup .RJ (X) is the image in L/J
of the least closed element of L lying above J (x), for all x E ~, ie :
the least closed element lying above x, for all x E ~X’, ie: J (sup X).
Thus sup RJ (X) === jET (sup 

PROPOSITION 8. If J is a finitistic closure operator with the

exchange property on a geometric lattice P, then the lattice P/J is
geometric. If and if .R is the natural injection of the

J-closed elements of P into P/J, then RJ, is a strong map.
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Proof : Let y be any element of and X any directed set

and sup y A y A sup X, so the complete lattice P/J is continuous.
P/J PjJ

By the above lemma, RJ is a join-homomorphism. If J (4$) ~, RJ
is non-singular.

Assume y ~ x in P, and assume z is closed, with J (x)  z  J(y).
Choosean atom p such that x vp - y, and let q be any atom such
that J (x) C J (x) v q  z. Then q ::1:: J(x), q  J (x v p), so p 
~T (z) z. Thus J (y) -~ z~ so RJ is cover-preserving.
By proposition 4, P/J, the image of a geometric lattice in a com-

plete continuous lattice, is geometric.

PROPOSITION 9. Any map f : P -~ Q in the category G of geo-
metric lattices and strong maps has a factorization f = f3f2f1 in G,
where fi is onto, f2 is an isomorphism, and f3 is one-one.

Proof : Let J be the closure determined by f. Then the natu-

ral map f1 .I~~T : P ~ P/J is onto. cut down to Im f,
is clearly one-one, onto, and order- preserving. Since the statement
x  .l {y)  &#x3E; f (x)  f {y) holds, in particular, for closed elements

of P, f2 is an order isomorphism, and therefore a strong map. 13 is
then the natural embedding of Im f into Q. Since the order and

cover relations on Im f are those induced by Q, f3 is a strong map. I
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