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STRUCTURE THEORY
FOR GEOMETRIC LATTICES

HENRY H. CrRAPO™Y)

1. Introduction.

A geometric lattice (Birkhoff [1], and in Jénsson [5], a matroid
lattice) is a lattice which is complete, atomistic, continuous, and
semimodular.

A sublattice of a geometric lattice need not be geometric. Con-
sequently, any, categorical analysis of geometric lattices considered
as algebras with two operators will most likely be inconclusive.

It is possible, however, to define a geometric lattice as a set
L, together with an operator sup (supremum or join), defined on ar-
bitrary subsets of L and taking values in L, and with a binary
relation | (covers, or is equal to). In writing the axioms, it is conve-
nient to write 0 =sup @, xvy=-sup {z,y}, and x <<y if and only
if xvy=y. Two of the axioms may be taken to be

o) yix if and only if x <<yand x <<z <"y implies 2 =1y.
B ve<y 3Jpi0-3z<lavp<y.

Axiom a expresses the connection between sup and |, while
axiom B indicates that the atoms separate the lattice elements.

In this way, geometric lattices form an axiomatic model class [2]
of relational structures. A substructure P of a geometric lattice

*) Indirizzo dell’A. : Depart. of Math. University of Waterloo Ontario - Canada.
1) We wish to express our gratitude to the National Research Council, Ca-
nada, and to the University of Waterloo for their support of this research.
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is also a geometric lattice if axioms o and g apply in P. A rela-
tion-homomorphic image ¢ of a geometric lattice P is also a geo-
metric lattice if axiom « holds in .

In section 2, we show how mappings preserving join and cover
correspond to the strong maps of geometries introduced by Higgs [4).
Images of geometric lattices are studied in section 3. The kernel of
such a map is shown to be a closure with the exchange property,
acting on a geometric lattice. We are indebted to Professor G.-C.
Rota for his recommendation of this approach.

2. Strong maps.

We write y { # if an element y covers or is equal to an ele-
ment x in a lattice. A function f from a lattice P to a lattice @
is cover-preserving if and only if y |« implies f(y){f(x), for all ele-
ments x,y in P.

PROPOSITION 1. Any lattice-epimorphism is cover-preserving.

Proof. Assume y |« in P. For any element ¢ such that f (x) <<
<< ¢ << f(y), choose a preimage 2€ P. Then c=(f()Af(y)) vf(x)=
=f(zAy)ve). Since r < (zAy)vr<y.and yix, (2 Ay) v is equal
either to x or to y. Thus ¢ is equal either to f(r) or to f(y), and
S f@. i

A join-homomorphism from a geometric lattice P into a geome-
tric lattice @ is any function f: P— @such that f(sup X)=
= sup f(X) for every subset X € P. Such a join-homomorphism f
determines and is determined by the restriction f| A of f to the set
A of atoms of P.

PROPOSITION 2. A join-homomorphism f from a geometric lat-
tice P into a geometric lattice @ is cover-preserving if and only if
the image of each atom of P is either 0 or else an atom of Q.

Proof : If f is cover-preserving, and p | 0 in P, then f(p)i f(0)
in Q. Butf(0)=f (sup @) = sup f (P)=s8up P = 0. Conversely, if p | 0
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in P implies f(p)} 0 in @, and if y |« in P, choose an atom p€ P
such that x vp ==y. Then f(p)+ 0 in @, and f(y) =f(xvp)=Ff(x)v
vf(p), so f(¥)if(x) in Q, by semimodularity. |

A join-homomorphism from a lattice P to a lattice @ is non-
singular if and only if f(x) =0 implies x =0. A strong map from
a geometric lattice P into a geometric lattice ¢ is any non-singular
cover-preserving join-homomorphism from P to Q. Higgs [4] coined
the term «strong map » for those functions f from a geometry @,
to a geometry @, such that f (X c f_@, for each subset X € G, .
In other words, f is a «strong map» if and only if the inverse
image of each @,-closed set is @,-closed. Proposition 3, below, ju-
stifies our usage of the term.

If A is the set of atoms of a geometric lattice P, then X —
{peA; p<supX] defines a closure operator with the exchange pro-
perty (MacLane [6]), and a geometry, in the sense of Higgs [3]. This
geometry we shall denote G (P).

ProposSITION 3. If fis a non-singular strong map from a
geometric lattice P, with atom set 'A, into a geometric lattice @,
then f|A is a strong map from the geometry @ (P) into the
geometry @(Q). Conversely, ifg is a strong map from G (P) into G(Q),
then g=/| A for a unique non-singular strong map f: P— Q.

Proof: A strong map f carries atoms of P into atoms of @,
8o f| A is a function from G (P) into G (Q). If p€ X, for a subset
X € G (P), then p<<sup X, and f(p)<<f(sup X)=sup f(X). Thus
S (p) €f(X), and f(X) € f(X)

Conversely, if g is a strong map from G (P) into G (@), and if
f is a join-preserving function from P into ¢ which extends g, f
must satisfy, for each x€ P, f(x)=/f(sup {p;p an atom, p <w=}),
because P is atomistic, and must satisfy

(1) f(®)=sup {g(p); p an atom, p < =}

because f preserves join. The assumption that g is a strong map
is required for the following proof that f, defined by equation (1),
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is join-preserving. If Y is a subset of the lattice P,
f(sup Y)==sup {g(p); p an atom, p << sup Y}
=sup {g(p); p an atom, p <<y for some y € Y}

= supsup (g (p); p an atom, p <y
Ye

=sup f(Y).

If p is an atom beneath sup Y, p is in the closure of the set of
atoms {q; ¢ <<y for some y €Y}, g(p) is in the closure of the set
of atoms {g(¢q); ¢ <<y for some y€ Y} because g is a strong map,
and ¢ (p)<<sup f(Y). Thus f (sup ¥)=sup f(Y). |§

The function f, defined by equation (1), is non-singular, and
is cover-preserving, because P is atomistic, f is join-preserving, and
@ is semimodular.

Non-singularity, join-preservation, and cover-preservation are
properties preserved under composition of functions. On each geo-
metric lattice P, the identity function is a strong map. Therefore
geometric lattices and strong maps are the objects aud morphisms
respectively, of an abstract category, which we shall denote @.

PROPOSITION 4. A substructure P of a geometric lattice @
is a geometric lattice if axioms « and § hold in P.

Proof : If P is such a substructure of ¢, then P is a subset
of @, closed with respect to arbitrary join. Thus P is a complete
lattice. ¥y | # in P if and only if y {2 in ¢, and the axiom for de-
finition of | in terms of sup is satisfied. 0 =sup P is an element
of P, so the atoms of P are precisely those atoms of ¢ contained
in the subset P. Since axiom f holds in P, P is atomistic. Since
the atoms of P are a subset of the atoms of @, P, being atomistic,
is continuous. If p} 0 in P, and x€ P, then xvp, the supremum
in @, is an element of P, and #vp !« in @ implies xvpix in P.
Thus P is semimodular. It is clear that the injection map preserves
join and cover, and is non-singular.

COROLLARY TO PROPOSITION 4. A subset P of a geometric
lattice @ is a substructure of @ if and only if P is the set of ar-
bitrary joins of subsets of some subset of the atoms of Q. Jj
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In the following section, we investigate the dual notion: ima-
ges of geometric lattices.

3. Tmages.

Given any strong map f: P—> @ in the category G of geo-
metric lattices, the image of P in @ is also geometric. The opera-
tor J on P defined by J(x)==sup {y; f(y)==rf(x)} is a finitistic
closure operator with the exchange property. If R is the natural
map from J-closed elements of P into the lattice P/J of all J-closed
elements of P, then RJ: P—» P/J is a strong map, and P/J = Im f.
Thus any strong map f: P—> Q may be factored f = f3 f; f, , where
f, is the strong map from P onto P/f, f, is an isomorphism of P/f
with Im f, and f, is a one-one strong map from Im f into Q. These
facts are proven below.

PRoOPOSITION 5. If f is a strong map from a geometric lattice
P into a complete, continuous lattice @, then Im f, the image of P
in @, is also geometric.

Proof : Since f is a join-homomorphism, Im f is closed with
respect to join, and is a complete lattice, with order induced by
that on Q. If y € Im f, choose a preimage x of y, and express x as
a join of atoms in P. Then y is the join of the images of those
atoms, and Im f is atomistic. If an atom p is beneath the supre-
mum of a set X of atoms of Im f, consider p and the atoms in X
as elements of @. Since @ is continuous, there is a finite subset
X’ € X such that p <<sup X’. But p <<sup X’ in Im f, so Im f,
being atomistic, is continuous [5]. If ¢ is an atom of Im f, and ¢SSy
for an element y € Im f, choose preimages x of ¥y and 2z of ¢. For
each atom p € P such that p <z, either f(p) =10 or f(p) == q. Since
g==-sup {f(p); p <z}, f(p)==q for some atom p€P. Then piO0,
PVEiZ, qVY=F(p)VS (@) =F(pVva)if(@®)—y, and Im f is semi-
modular [5]. [}

A join-congruence on a complete lattice L is an equivalence re-
lation co on L such that for any subset X € L and any function & :
L — L dominated by oo (ie:& co h(x) for all x€ L), sup X co sup h(X).
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LEMMA TO PROPOSITION 6. If co is a join-congruence on a com-
plete lattice L, then the operator J defined by J (x) == sup {y;y co )}
is a closure operator.

Proof : Since x cox, v <<J (). f x <<y, and 2z co z, then y vz co
yve=y, and 2<<yvz<"J(y). Thus J(#)<<J(2). J(®)=sup (y;
Y co z}co sup (¢} =, 80 zco J (x) if and only if z oo x, and JJ (x) =
=J(z). |

A closure operator acting on a set, ie: on the Boolean algebra
of all subsets of that set, has a lattice of closed subsets which is
geometric if the closure is finitary and has the exchange property [3].
These two properties may be rephrased for closure operators on
more general lattices. A closure J on a complete lattice L is finitary
if and only if, for each directed subset X € L, J (sup X)==sup J (X).

PROPOSITION 6. () A closure J on a complete atomistic conti-
nuous lattice L is finitary if and only if, for every atom p € L and
every element x € L, such that p << J (x), there exists a finite set ¥
of atoms beneath x, such that p << J (sup Y).

Proof: Assume J is finitary, p an atom, and p < J (x) for some
2€ L. Let X be the set of joins of finite sets of atoms beneath .
X is directed, so J () = J (sup X) == sup J (X). J (X) is also directed,
in a continuous lattice, so p << sup J (X) implies p << J (y) for some
y€ X. Conversely, assume X is a directed subset of L. Then J (sup X)=
>supJ (X). Let p be any atom beneath J (sup X). Select a finite
gset Y of atoms beneath sup X, such that p << J(sup Y). For each
atom g€ Y, select an element x, above q in the directed set X. Then
choose an element x € X such that x,<<x for all g€ Y. ¢ << J () <<
sup J (X), 8o J (sup X)==sup J (X). |j

A closure J, on a complete atomistic lattice L, has the exchange
property if and only if, for any atoms p, g € L and any element x € L,
PpElEJd (x) and p << dJ (zvq) imply ¢<<J (x v D).

?) of. Cohn [2], Theorem II.1.2: A closure system on a set is algebraic if
and only if it is inductive.
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PROPOSITION 7. If f is a strong map from a geometric lattice P
into a geometric lattice @, the operator J defined on P by

J (@) =sup {y; f (y) =1 (@)}
is a finitary closure operator with the exchange property.

Proof: Consider the equivalence relation o> defined by zcoy
if and onmly if f(#)=f(y). If h: P— P is any function dominated
by co, and if X is any subset of P, f(sup k (X))=-sup f(h(X))=
= gup f(X) =f(supX), so sup X co sup h(X), and oo is a
join-congruence. By the above lemma, J is a closure eperator on
P.If p is an atom of P, and p << J (x) for some z€ P, f(p) } 0 in
the finitistic lattice @, and f (z) = sup f (X), where X ={¢;q}0,¢ <«
in P}). We may select a finite subset X’ € X such that f(p)<<
<< sep f(X’). Then p << J (sup X') because p <<p vsup X’, and f(pv
v sup X’,)=f(p) vsup f(X’) =sup f (X') ==f (sup X’). Thus J is fini-
tistic. Note that x << J (y) if and only if f(x) << f(y). If p and ¢ are
atoms of P, and # is an element of P such that p=I=J (z), p <<
<J(@vq), then f(@)vf(p) covers f(z). Since f(p)<f(xvg)=—
=f@)vf(@), and f(2)vf(g) S (x), we have f(xvp)=Ff(®Vvq),f(9) <
f@Ap), and g<J (xvp). }i

LEMMA TO PROPOSITION 8. If J is a closure operator on a lat-
tice L, and if R is the natural injection of J-closed elements of L
into the lattice L/J of all J-closed elements of L, then the compo-
sition RJ: L — L/J is a join-homomorphism.

Proof: If X is a subset of L, sup RJ (X) is the image in L/J
of the least closed element of L lying above J (x), for all € X, ie:
the least closed element lying above z, for all € X, ie: J (sup X).
Thus sup RJ (X)==RI (sup X). |

PRrOPOSITION 8. If J is a finitistic closure operator with the
exchange property on a geometric lattice P, then the lattice P/J is
geometric. If J (P)== P, and if R is the natural injection of the
J-closed elements of P into P/J, then RJ, is a strong map.
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Proof: Let y be any element of P/J, and X any directed set
in P/J. By proposition 6, sup X =4J (sup X)=sup J(X)==sup X.
PIJ P P P

Thus yAsup X = supyAX <<supyAX <yAsupX =yAsup X,
P P P|T PlJ P
and sup y A X =y Asup X, so the complete lattice P/J is continuous.
P|T P|J

By the above lemma, RJ is a join-homomorphism. If J (P) = @, RJ
is non-singular.

Assume y} x in P, and assume z is closed, with J (x) < 2 << J (y).
Choosean atom p such that xvp ==y, and let ¢ be any atom such
that J (#) < J (#)vq << 2. Then ¢ == J(x),q < J (xvp), s0 p <J(xvq) <<
J (2)==2. Thus vxvp <<z,and J (y)===2,80 RJ is cover-preserving.
By proposition 4, P/J, the image of a geometric lattice in a com-
plete continuous lattice, is geometric. |

PROPOSITION 9. Any map f: P— @ in the category G of geo-
metric lattices and strong maps has a factorization f=f,f, f, in G,
where f, is onto, f, is an isomorphism, and f; is one-one.

Proof: Let J be the closure determined by f. Then the natu-
ral map f, =RJ: P— P/J is onto. f,=fR~1, cut down to Im f,
is clearly one-one, onto, and order- preserving. Since the statement
x << J (y) <=> f(x) << f(y) holds, in particular, for closed elements
of P, f, is an order isomorphism, and therefore a strong map. f; is
then the natural embedding of Im f into @. Since the order and
cover relations on Im f are those induced by @, f; is a strong map. [
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