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ON THE SUBSPACE OF Lp INVARIANT

UNDER MULTIPLICATION OF TRANSFORM
BY BOUNDED CONTINUOUS FUNCTIONS

Memoria *) di ALESSANDRO FIGÀ-TALAMANCA

(a Cambridge, Mass.)

§ 1. Let f E Lp(0,2~), 1  p  2 and let f (n) (n = 0, ± 1,
~ 2, ...) be the (complex) Fourier coefficients of f . It is known
that if for every bounded = 0, ~ 1, J~ 2, ... ~,
a(n) f (n) are still the Fourier coefficients of a p-integrable function,

 oo [8, vol. I, p. 214]. That is the subspace of

LP(0,2x) which is invariant under multiplication of the Fourier
sequences by bounded sequences is exactly Helgason
has proved in [3] (1) that if f E L1(R) and for any continuous

bounded function 92 on R frp is still the Fourier transform of

an integrable function, then f 0 (here f denotes the Fourier
transform of f). If 1  p  2, elements of LP(R) still have tran-

sformers which belong to La (R) (1/p -~- = 1) and which

coincide with the Fourier transform for elements of Ll(R) n

*) Pervenuta in redazione il 30 novembre 1964.
Indirizzo dell’A.: Department of mathematics, Massachusetts

Institute of Technology, Cambridge Mass. (U.S.A.). Lavoro finanziato
in parte dall’Air Force Office of Scientific Research, Grant A-AFOSA
335-63.

1) Helgason’s results apply to a much wider class of groups and
they are based on the study of Ll as a Banach algebra. See also [4]
where his results are extended to a large class of non commutative

groups.
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n LP(R) (by Hausdorff-Young theorem [7, p. 96]). It is na-

tural, y therefore, to investigate the analogous situation for Lp

at least in the case 1  p 2. As the Fourier transform

can be extended to a unitary transformation in L2 (after appro-
priate normalization of the Fourier integral), it is clear that

every element of L2 is mapped into L2 when its transform is

multiplied by a bounded continuous function. I shall prove in
this paper that if f E LP(R) (1  p  2) and fgg is the transform
of an element of LP(R) forevery bounded continuous function

99, then f = 0. That is: the subspace of Lp (1  p  2 ) which

is invariant under multiplication of trans f orms by bounded con-
tinuous functions is the zero subspace. The proof of Theorem 3
below is a modification of Helgason’s proof for Ll [3]; Lemma 1
and the related Lemma 2 are needed to make Helgason’s proof
applicable to our case and for a discussion of the discrete case
(see Remark 4 below).

In § 3 Theorem 3 is applied to multipliers to yield a result
of HORMANDER [5]. In § 4 the case p &#x3E; 2 is discussed. In § 5
a question raised by Helgason concerning LP(0,2x) p &#x3E; 2 is

answered. All the results of this paper which are stated for the

real line R are valid (with the same proof) for Rn, indeed most
of the results are more general as their proofs apply to various
classes of locally compact Abelian groups, this will be indicated
case by case.

Throughout the paper, unless otherwise stated, p will be a

real number 1  p  oo and q will be defined by 1 jp -f- 1/q = 1,
LP = LP(R) will be the space of (almost everywhere defined)
complex valued functions whose p-th power is absolutely inte-
grable (with respect to the Lebesgue measure). Lp will be end-
owed with the usual norm which will be denoted Co =
= Co(R) and Coo = Coo(R), will be respectively the space of

(complex valued) functions on R vanishing at infinity and the
space of functions with compact support. The conjugate space

of Co can be identified with the space of complex valued
completely additive set functions of bounded variation defined
on the a-ring generated by the compact sets. I shall refer to

the elements of M as regular bounded measures or simply,

12
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when the context allows it, as measures. The variation 11 p 11
of an element p E M coincides with the norm of It as an ele-
ment of the conjugate space of Co. The weak*topology of 

with respect to Co, will also be used extensively; it is the smal-

lest topology with respect to which elements of Co define con-
tinuous linear functionals on M.

The simbol o ^ &#x3E;&#x3E; will denote the Fourier transform, the

Hausdorff-Young extension of the Fourier transform or the

Fourier-Stieltjes transform when applied respectively to an

element of L’, an element of Lp (1  p  2) or a measure.
I am indebted to Professor Philip C. Curtis, jr. for advice

and assistance. Thanks are also due to Professor M. Cini who

allowed me to use the facilities of the Istituto di Fisica dell’Uni-

versita di Roma during the summer 1964.

§ 2. It is convenient at first to treat the situation symme-

trically for p  2 and p &#x3E; 2; the case of p &#x3E; 2 will be discussed

in more detail in § 3.

DEFINITION: 1. For f E Lp define

The space (Lp)o is defined as the subspace of LP consisting of
elements satisfying 11 f 110  ex) .

Let f E Lp, p  2, and suppose that for each bounded con-
tinuous function g~, fgg is the transform of an element of Lp,
then f E Indeed under the above metioned hypothesis f
defines a linear transformation T mapping the space of bounded
continuous functions C into LP, by T ~ = g, where g - fgg.
T is a continuous transformation, in fact it suffices to show

that the graph of T is closed [1, II, 2.4] and if lim = q; (in
the supremum norm), lim T f n = g (in the L~° norm ), then by

lV

Hausdorff-Young theorem, I while

Thus lim ~ = g and lim

- - 
/G

frpn = f in the norm of Lq implies that fgg = g. This concludes
the proof of the continuity of T. We have then
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and therefore 11  oo . The fact that if f E (Lp)o, p  2,
- -

= g with g E Lp, for any T E C is of course an obvious conse-
quence of Theorem 3. In § 4 we shall see that something ana-
logous can be said about (Lp)o for p &#x3E; 2.

If f is a measurable function on R we shall define, for x E R,
-rxf (y) - f (x + y). The operators ix (traslation by x) are iso-

metries of LP onto LP, I  p  oo. If fi is the Fourier-Stieltj es
transform of a measure a, is also the Fourier-Stieltjes tran-
sform of a measure v with the same norm; indeed for any / E Co

It is convenient to write eixt = ex(t) when elxl is considered as-
a function of t. Accordingly we shall also write v = when

1 = ’L’xll’d .
LEMMA 1. Let f E Lp, then f E (Lp)o if and only if f * g is the

Fourier- Stieltjes trans f orm o f a measure fl, for every g E Lq. Con-
versely if T is a bounded linear operator mapping Lq into M with
the property that T (zxg) = e-xT(g), then there exists f E (Lp)o such
that f * g = T(g) for every g E Lq.

PROOF. Let f E (Lp)o and g E Lq. For each h E Ll define

F(h) = (h * f * g ) ( o ) ; .F’ is then a linear functional defined on

the algebra A of Fourier transf orms of elements of Ll. Hölder’s
inequality and the fact that f E (Lp)o imply that

Thus is continuous with respect to the supremum norm on

A, therefore it can be extended to a continuous linear functional
with the same norm defined on the space Co. That is, there

exists a measure ,u such that

If hn is an approximate identity in Ll (i.e.  1 and
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because lim hn * -rtf = it f in the norm of EP. Thus j(t) = f*g(t)
Let now f * g be the Fourier-Stieltjes transform of a measure
fl, for every g E .Lq. Then the transformation T g = p defined by
f * g = ji is a linear transformation of Lq into lVl. An application
of the closed graph theorem [1, II. 2.4] shows that T is a bounded
transformation, y thus

then

but

Thus 11 f  o T 11  00. Now let T be a continuous linear

transformation mapping Lq into lVl and satisfying - e-,T(g)
-L "’"

I’ is a linear functional defined

; therefore there exists

such that for all
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The property ~ implies

Thus f * g = fi and f E (Lp)o.
It is clear from the Lemma just proved that (Lp)o can be

identified with the Banach space of continuous linear maps T

from Lq to lVl which satisfy = e-xT(g). We have seen

that if T corresponds to , it is not diin-

cult to prove that I and therefore

It should also be noted that the preceding lemma is valid

for any locally compact Abelian group G provited that M is
interpreted as the space measures on the character group 1~ of G.

so that by Lemma 1 ex f E (Lp)o, it is also clear that II 1
To prove that h f E (Lp)o we shall find a sequence of trigonometric
polynomials Pn(t) = satisfying I = 1 and such

that the operators T~ from Lq to if associated with

converge in the strong operator topology [1, VI.1.2] to an opera-
-

tor T which will correspond in the sense of Lemma 1 to hf. To
do this we first consider h as an (absolutely continuous) member
of of norm 1. Then by Krein-Milman theorem [1, V.8.4 and
V.4.2] there exists a sequence of convex combinations of measures
each supported at a point converging to h in the weak * topology
of M; that is a sequence of measures a,, == I where

I = 1 and is the positive measure of mass one concen-
trated at the point Yin. (The fact that we can consider a sequence
rather than a generalized sequence follows from [1, V.5.1],



182

actually the whole reasoning would go through using generalized
sequences instead). Now the measures P,, dermine linear operators
Ll-ln mapping Lq into Eq defined by

As fin converges weak* to h, L,. converge in the weak operator
topology [1, VI.1.3] to the operator L,, from Lq to Lq, where
Lh - h * g. (This fact can be seen directly noticing that

for f 1 E Lq, 12 E Lp and that /i * Co ; it is also an obvious

consequence of [2, Th.1] ). If f E Lp, then so that

It,,, 7 converges weakly to h * f == (~/)~. As weak and
strong topologies in Lq have the same closed convex sets [1,
V.3.13] there exists a sequence of convex combinations of /-In * ¡
converging strongly to h * f ; we obtain in this way a sequence
of discrete measures v,, such that * converges in
the norm of Lq to h * f and satisfying ,

be the operator from Lq to M associated with f n. I shall prove
that Tn converges in the strong operator topology to an operator
T : we have that , let 8 be

the subspace of .Lq consisting of q-integrable functions which
are transforms of elements of Zp; then 8 is dense in Zq (it contains
for instance all rapidly decreasing infinitely differentiable fun-

- 
_ - _

ctions ) ; if g E 8, g = q, 99 E LP therefore = 

so that Tng is an absolutely continuous measure, that is



183

as f n converges to h * f in the Lq norm. Thus lim Tng = (h * ngy
n

in the norm of Ll (wich coincides with the norm of M) for every
99 c- 8, therefore the principle of uniform boundedness [1, II.l.18]
can be applied and lim Tng = Tg exists, in the Ll norm, for

every g E LI. As (Tg) - h f * g for every g E Sand T is continuous
_ , -

(Tg) - h f * g, for every g E Lq. Therefore by Lemma 1 h f E (Lp)..
Lemma 2 extends also to the case of a locally compact

A helian group G (the Ll function appearing in the statement
will of course be defined on the character group f of G).

Lemma 1 and 2 allow us now to modify Helgason’s proof
to cover the case of Lp, p  2.

THEOREM 3. Let p  2 and f E then f ~ 0.
PROOF. Let f E (Lp)o and suppose that I "* 0; in view of

Lemma 2 we may assume that f vanishes outside a compact
set C. As C is compact, for some &#x3E; 0, C z [- r/4, r/4] ; let

- (- 3, 3) with 0 C ~ C r/4, then for n # m and n, m =
- 0, =1= 1, =1= 2, ... ( C + V + rn) n ( C Let +1

be a nonnegative function vanishing outside TT satisfying

(Such a u certainly exists as for any approximate identity 
of Ll, f = f in the norm of LP). Let g(t) - 1:bnu(t - nr)
where the sum is taken over a finite number of integers. By
simple calculation it is not difhcult to see that

therefore

so that
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which implies

Let now

that

Therefore

that is  B sup IIbneinrt I for any choice of (finitely
t

many) bn. The functions Eb,,einrl can be considered as continuous
functions of period and ideed any continuous function of

period 2yr/r can be approximated uniformly by trigonometric
polynomials of the form Ibneinrt. The last inequality implies
that any continuous function 99 of period has Fourier

coefficients §(n) satisfying Ip  oo with p  2. This is

known to be false [8, v.I, p. 200] and we are led to a contra-
diction.

The proof of the preceding theorem applies as well to the
case of a a group G = K X Rn (n  1) where K is a compact
group, that is to the case of a connected, locally compact, non-
compact Abelian group [3, Th. 5].

REMARK. Let Z be the group of integers and let Zp = EP(Z)
be the space of sequences a(n), n = 0, ~ 1, ~ 2, ... satisfying
Ila(n) Ip  oo . If b(n) E 11 one defines
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then be defined in analogy to Definition 1 and Lemma 2
is readily seen to apply to this case in the following formulation:
if a p &#x3E; 2, and h E Z~(0~2yr)y ~ ~ ~ = 1, then ha E (lp)o.
Taking h = 1 on we obtain that if (1p),,:A ~0~ the sequence
satisfying a(0) = 1, a(n) - 0 0 belongs to (lp)o. In view of
Lemma 1 this implies that every element of lq is the Fourier-

Stieltjes transform of a measure on (0,2n), this is again known
to be false f or q &#x3E; 2 [6, 7.8.5 and 7.8.6] and we conclude that

- {0} for p  2. This remark is also valid when Z is repla-
ced by any discrete Abelian group.

§ 3. Let 99 E L°° (the space of essentially bounded measurable
functions) then 99 defines a bounded operator T on L2 by the
relation (T f ) ~ - 9gi-for f E L2. T has the property:

Conversely envery bounded T satisfying (1) corresponds bi-

uniquely to an element 92c-L- [5]. The space of bounded ope-
rators on L2 satisfying (1) is called the space of multipliers in
L2 and denoted by its. The operator norm in M2 is equivalent
to the L°° norm. If we let be the space of bounded operators
on Lp satisfying (1) it is not difficult to see, considering the
ajoint of each member of M,, that Mj) = Ma (1/p + llq = 1).
This, together with the Riesz convexity theorem [1, VI.10.11],
implies that .lVl2 and therefore each element T of l~~
corresponds biuniquely to an element 99 E L°° with the property
_ -

(Tf ) ) - for f E Lp n L2 (cf. [2] and [5] ). The space M 1) (or
equivalently the subspace of L°° consisting of those elements

of L°° which correspond to members of M 1)) is called the space
of multipliers in Lp.

The following is an important special case of a theorem

proved by H6rInander [5, Th. 1.12, p. 106].
THEOREM 5. Let 99 E L°° be a multiplier in Lp with the property

that if /1p I  also a multiplier in Lp, then 99 - 0.
PROOF. As Mp = Mq we may assume p  2. Let 99 satisfy

the hypothesis of the theorem and let T be the operator corre-

sponding to 99. Then T f E (Lp)o for each f E Lp. Indeed 
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and if 1p is a bounded continuous function, I
so that q;¡( = g, where g E Lp; as this holds for any bounded

continuous function 99 in view of the remarks following Defi-
nition 12 T f E (Lp)o ; but (Lv)o = {0} implies T f - 0 and hence
9 === 0.

It should be noted that with the same method one can prove
the full strenght of H6rmanderls result. Obviously the proof
above applies to all cases in which Theorem 3 is valid.

§ 4. We have seen that p  2 implies (Lp), == {0}. The

situation is completely different for p &#x3E; 2: in this case (Lp)o
contains at least all functions which are transforms of elements

of Eq (these are LP functions because of the Hausdorff-Young
theorem [7, p. 96, Th. 74]). Indeed, if f E Lp and f = g, g E Lq,

_ -
then for h E Ll, ( h f ) ^ - hg so that

thus f E (Lp), and ]) f ~ 110 ~ !! g Ilr. Let S be the subspace of Lp
(p &#x3E; 2) consisting of transforms of elements of L . the following
questions arise naturally: (a) = (LP),,? (b) is S dense in 

In § 5 a negative answer is provided to the first question for
LP(0,2x), but both questions remain open for It should

be noted that an afhrmative answer to question b ) would imply
that f * g is the Fourier transform of an absolutely continuous
measure for f E Lq.

While it is not clear that elements of (Lp)o, p &#x3E; 2 have

locally integrable transforms (considering for example their

transform in the distribution sense) the following result can

still be established:

PROPOSITION 5. Let 99 be a bounded continuous function on R
then there exists a bounded operator T on (Lp)o such that T tx = 

for all and (g~h) ~ - Tf if h E Lq, h = f .
PROOF. By Lemma 1, f * g = It for some ,u E if f E (LP)o

-I-m

and 9 E Lq. Define, fixing
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linear functional defined on Eq and

Thus .F’ is bounded and there exist T f E Lp such that F(g) =
,__ I --

were r is the measure whose element of len gth is dv = 

Thus T f E (Lp)o and II Tf 110  11 cp II  II cp II f ll,,. It is

easy to verify that T commutes with translations.
REMARK 6. Let (L°°)o be the set of elements f E Loo such that

~ ~ f = f I I ~ : ~ ~ h 1}  oo . It is not diincult to

see that (L°° )o consists of all Fourier- Stieltjes trans f orms of measures;
thus, in this case the questions (a) and (b) raised earlier have
a negative answer and moreover elements of (L-)o will not in
general have locally integrable transforms.

§ 5. Definition 1 applies as well to LP(0,2x) (11 h = sup

I for h E LI(O,2n)). I have remarked earlier that L2(0,2) -
= (Lp(0,2n))0 for p  2. For p &#x3E; 2 the situation is more complex:
Lemma 1 still applies but no simpler characterization of (LP)o
seems to be known. We have that all elements of LP satisfying

C oo belong to (Lp)o; the fact that (Lp)o contains functions

satisfying = oo is easily established: let E = ~ ~2n : n =
0, 1, ...} and let la(n) : n = 0, =Í= 1, ...} be a sequence satisfying
a(n) - 0 for  oo and Ela(n) Iq = oo. Then by
the properties of lacunary Fourier series [8, v.I, p. 215, Th. 8./20]
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f ~ Ea(n)ei*nx belongs to Z~ for every p  oo. If 92(n) is a bounded
sequence, the sequence ~p(n)a(n) - b(n) will again satisfy

A modification of this example can be used to give a negative
answer to a problem posed by Helgason [3, p. 254]; Helgason
noticed that for p  2 the subspace of Lp invariant under multi-
plication of the Fourier coefficients by bounded sequences (i.e. L2)
was also invariant under arbitrary permutation of the Fourier
coefficients and he posed the question of whether the same

would be true for p &#x3E; 2. To answer this question we start with

a function f E L2 which satisfies - 0 for n  0, we shall

also suppose that f 0 LP (the existence of such a function is

guaranteed by the existence of a translation invariant bounded

projection from Lp to gp f (n ) - 0, n  0} and the
fact that LP =A L2). Let now a be a permutation of the integers
onto the integers such that the set E = ~ ~ 211 is mapped onto
the nonnegative integers and let g be the L2 function with Fourier
coefficients g(n) - f (Q(n)), then, if n E E, u(n)  0 and g(n) - 0.

Thus, as we saw before, g E (Lp)o but the permutation maps

g onto f which is not a member of Lp.
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