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ON PLURILINEARITIES

AMONG PROJECTIVE SPACES

Merrtoria *) di MARIO BENEDICTY (a Pittsburgh) **)

The goal of the present paper is to give a suitable and exten-
sive definition of graphic plurilinearities, i. e. of those pluricorre-
spondences among projective spaces which genera,lize the con-
cept of homographies, collineations, etc. between two linear spaces,
with the inclusion of the « singular 

For the history of special cases already studied by other
Authors and by inyself, [1] and [~] can be consulted, while [21
is systematically used here as a set of preliminary results.

Besides the definition (Sect. 2), the main results of this expo-
sition a.re : sets of necessary and sufficient conditions (Sect. 6),
some properties of plurilinearities (Sect. i ), a sufficient condition

(Sect. 8), and the classification of the plurilinearities among
three projective lines (Se.t. 5).

3 more detailed study of plurilinearities among special spaces,
such as linear, may be object of a future paper.

0. Notations: In this section only those notations which may
somehow differ from the ordinary usage are listed.
~ 

*) Pervenuta in redazione il 30 luglio 1962.
Indirizzo dell’A.: Department of Mathematics, University of

Pittsburgh, Pittsburgh. Pa. (Stati IJniti d’America).
**) ’rhis research was supported by the LTnited States Navy through

the Office of Naval Research under Contract Non. 3.503(00), Project
NR 043-262, at the University of British Columbia in Vancouver.
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0.1. The symbol 1... ~ : : : ~ denote the set consisting of all

the elements ... for iv,hich : : : .

.A 5; R means: A is a subset of B.

B nieans : A is a proper subset of B.

0 denotes the empty (or void) set.
&#x3E;C , also in the form X/eJ? denotes the Cartesian product of

a finite number of disjoint sets; it is commutative and associa
tive by convention.

I ,J denotes the order of the set J.
Throughout this paper, the letter I shall indicate a prescribed

finite set, which shall be taken, for simplicity, to be the set
{1, 2, ... , t~ of the first t natural numbers (t &#x3E; 1).

n.2. Whenever a finite collection of sets is given, all denoted
by the same main letter 8 (e. g. S~, or with j E J), then the
symbol SJ&#x3E; (respectively S*J&#x3E;) shall denote their Cartesian

product, otherwise indicated by a symbol like 
Similar conventions shall be adopted for Xi 

and xJ&#x3E; (xJ&#x3E; E SJ&#x3E;), for y~, z", etc.

U.2.1. If some of the sets 8i ( j E J) had elements in common,
they would be previously replaced by disjoint copies.

0.3. The definitions of projective space (equivalently : graphic
irreducible space) and related concepts are assumed (efr. [2],
[3], [~] ). However, the following facts have to be noted.

0.3.1. A projective line is any set of order not less than 3;
if it is though a subspace of dimension 1 of a. projective space
of larger dimension, then it may possess some additional struc-
ture. In any case a line shall be systematically denoted by the
main letter R (such as R’, R*, 

0.3.2. A pencil of [k]’s in a projective space [n] is defined as

the set of all the [k]’s satisfying the condition where

C is a given [k - 1], D is a given [k + 1], 0  k  n.

The subspace C shall be called the azis (or centre) of the pencil,
D the carrier.

0.3.3. The symbol [H] = projective space) denotes
the ininimum subspace of 8 containing H.
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1. Pluricorrespondences.

1.1. A pluricorrespondence (slurt : ple. ) among
the sets ~~~ (j E J; I J I = u = natural number ), or pl c. 011 SJ&#x3E;,
is a subset T of their Cartesian product : Tç; S(J&#x3E; .

1.1.1. In particular, ~s and SJ&#x3E; are plo.’s on SJ&#x3E;. For
u = 2, 3, the terms bicorrespon,dence (or correspondence) a.nd

tricorrrespondence are used. For 1l. = 1, a is evidently the same
as a subset of S".

1.2. DEFINITION: For every T on SJ&#x3E; and for ev ery
subset .IO 0), t he projection froln T in to 
is the mapping T&#x3E;: T - which associates w-ith

every xJ~ (xJ~ E T) the element in other 

The ple. T&#x3E;, defined um by

is called the projection of T on 
1.3. DEFINITION: For every ple. T on SJ&#x3E;, for every subset

JD (.I~ ~ J), and for every choice of the subsets 
j E J), the restriction of T to the ~S* ’8 is the plc.

It shall be denoted by one of the symbols : T &#x3E; ;
RS*jl, ..., S*3~; T&#x3E;, assuming, in the last

instance, that Jo = f j 1, ... , j ~~ .
1.4. DEFINITION: For every ple. T on S J &#x3E; , for every subset

JO (JDe J), a.nd for every choice of tlm subsets

the pIe.

shall be denoted by or T(S*i(jEJD)), or T(S*’1 , ...,
8*le) (assuming, in the last instanee, that { j, , ... 
shall be called the of S*70&#x3E; T.
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1.4.1. In particular, x ... X can .be denoted
also by or similarly.

1.5. The operations P ... &#x3E;, ,~... &#x3E; , T( ... ) enjoy several pro-
perties, all of immediate proof, such as the following.

1.5.1. Suppose ’

1.5.2. Suppose

1.5.3. Suppose ’ ’,

2. Graphic Plurilinearities.

.2.0. From now on let be a projective space of dimension

I I I - t &#x3E; 1; 8i &#x3E; 0) and 
2.1. DEFINITIOX: A graphic plurilinearity (g. pll.)- on 

or plurilinearity among projective spaces Si, is a ple. T on S(I)
which satisfies the following properties.
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(P.1 ) For every choice of k, J~, and y~ { k },
the set P{ k} ; is a subspace of Sk.

If t &#x3E; 2, then for every choice of h, k, JA, and y~ (h E 1,
{ h, set

(P.2) If t &#x3E; 2 and if there is a k (k E I) such that 8" &#x3E; 1, then
for every such k, for every F defined as above, and for every
line Rk one of the following two cases takes place:

(i) for every y k ( y k E R x ) the subspace is non-empty,
and the set F given by

is a pencil is 8A; or
(ii) there exists a point y*k on Rk such that 

for every yt (yt E Rk).
2.2. REMARK: When t = 2, then Def. 2.1 yields the graphic

lznearities, which coincide with the homonymous correspondences
between two spaces, as defined in Sect. 1.1 of [2]. Consequently,
for t &#x3E; 2, conditions ( P.1 ), (P.2) can be replaced by the fol-

lowing :
(P’ ) if t &#x3E; 2, then for every choice of h, k, J~, and y~ (h E 1,
k E 1, h =1= k, k}, yA c- S J~ &#x3E; ) the ple. F given by
2.1( *) is a graphic linearity (Sect. 1.1 of [2]) between Sh and 

For t = 1, the only requirement is
(PO) T is a subspace of Si.

2.3. Evidently: and Qs are g. pll.’8 o-ri. 81).

3. Special Plnricorrespondences.

3.0. In order to investigate properties of the g. pll.’s and,
in particular, to find sets of necessary and sufficient conditions
which characterize them among the plc.’s among projective
spaces, some special types of ple.’s are introduced in the present
section.
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Notations are as in 2.0.

3.1. DEFINITION: A TA plc. is 3J pic. 1’’’ on SI&#x3E;, which

satisfies the following properties :
(A.1 ) for every i the set T ~ is a subspace of Sia;
(A.2) if t ~ 2 and if .9" &#x3E; () for some i (i E I ), then for every
such i and for every hyperplane i of 8i, the ple. T&#x3E;
is a T~ plc. ;
(A.3 ) if t &#x3E; 2 and if, for some i (i E I ), P{ i ~ ; T&#x3E; is a point,
say yi, then T(yi) is a T~ ple.

3.1.1. REMARKS: Def. 3.1. proceeds evidently by induction
on the two indices t, s (t = 1, 2, ... ; s = 0, 1, ... ).

3.1.2. When t = 1, then condition (A.1 ) implies that T is
a subspace of 81. Conversely, still when t = 1, every subspace T
of Si satisfies trivially (A.1 ), while (A.2) and (A.3) are ina~ppli-
cable.

When s = 0 and therefore si = 0 for every i (i E I), then
the only subsets of SI &#x3E; are o and 81&#x3E;. Each of them satisfies
trivially (A.1 ) and (A.3); (A.2) is inapplicable. Thus the following
statement holds.

3.1.3. When t = 1, the TA ptc.’s are the same av the subspace8
of ~51. When 8 = 0, all the ple.’s (i. e. ø and 81» are T-4.

3.2. If Si i = 1 for every i (i e I), then conditions (A.2) and
(A.3) can be combined, and the following definition arises.

DEFINITION: A TR plc. is a ple. T among projective lines
R" (i E I ), which satisfies the following propertiefi :
(R.1 ) for every i the set T&#x3E; is a, subspa,ce of R’
(thence void, or a point, or 
(R.2) if t &#x3E; 2, then for every i (i E I) a,nd for every x; (xi E Ri)
the pic. T(xi) is TR .

:3.2.1. Evidently: T he TR pl c.’s are the same as the TA ple.’s
among projective lines.

3.3. DEFINITION: A TB ple. is a ple. T on which satisfies

the following properties:
(B.I) if Si  1 for every i (i E 1), then T&#x3E; is a subspace
of ~Si 

(B.2) if 8 &#x3E; 0, then for every choice of the subspaces 8*1 
dim 8*i  .) the ple. RS*I&#x3E;; T&#x3E; is TB .
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3.4. DEFINITION : A Tc ple. is a ple. T on SI&#x3E;, which sati-
sfies the following properties:
(C.1) if gi &#x3E; 0 for every i (i E I), then for every choice of the
lines Ri E I) the ple. RRi (i E I); T&#x3E; is TR;
(C.2) if t &#x3E; 2 and if Si = 0 for some i (i E I), then for every
such i the ple. is Tc -

3.5. DEFINITION: A TD plc. is a ple. T on 81), which satisfies
the following properties:
(D .1 ) if s i = 1 for every i (i E I ), then P~ i ~ ; T ~ is a subspace
of Si (I e I) ;
(D.2) if si &#x3E; 1 for some i (i E I), then for every such i and for
every line Ri of ~Si, the ple. T&#x3E; is TD;
(D.3) if t &#x3E; 2 and if st  1 for every i (i E I), then for every
and for every zi (i E I ; z’ E Si) the ple. T(zi) is TD .

3.6. REMARK: As already noted for ple.’s, the definitions
of TA, TB, TC, TD, and TR plc.’s proceed by induction on the
indices t, s. In each case a statement analogous to 3.1.3 holds,
namely:

3.6.1. LEMMA: (i) When t = 1, then g. pll.’s, TA plc.’s, TB
p"lc.’s, TO plc.’8, TD plc.’s, and (if sl --- 1 ) TR plc.’s are all the same
as the (ii) When s = 0, then all the plc.’s (i. f. o

and 81») are g.pll.’8 and TA, TB, TO, and TD pl c.’s.
Proof. (i) is implied immediately by (P.1 ) ; (A.1 ) ; (B.1 ) and

(B.2); (C.1) and (I~.1); (D.1) and (D.2); (P.1), in the respective
cases. In cases TB, TC, TD the result is obtained by proving that,
if 81 and if RI and T have at least two points in 
then R" g T. (ii) follows from a direct verification.

3.7. REMARK: Most of the proofs given in the sequel are con-
ducted by induction on the two indices t and 8 (t = 1, 2, ...;
s = 0,1, ...), on the ground that, by 3.6.1, the statement in di-
spute is true when t = 1 and when -t = 0.

4. T R Bicorrespondences.

, The classification of the TR plo.’s between two projcctivc
lines R1, Ri is immediately derived.
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4.1. Either

T(2)-l

or, if T ~ ~ , both P f i} ; T&#x3E; (i = 1, 2) are non-empty. Three
possibilities arise: (a) T~ - ~x*=~ (x*i E Ri; i = 1, 2);

T&#x3E; = P{h}; T&#x3E; = R- ( f 9~ h~ _ fl, 2}); 
E R~); (y) T&#x3E; = Ri (i = 1, 2). Cases (a) and (p) yield re-
spectively

Case (y) implies that o for every i and for every
xi (i = 1, 2; z" E Therefore:

(ya) has always dimension 0. Let z: Ri - R$ be defined
by the position TX1 = T(xi) (xl E Ri). Consequently T is a mapping
and, since = T(x~) (z2 E R2), T is bijective. This gives

where i : R2 is a bijective mapping.
(y~) T(x*~) - Rh for at least one j and for only one point

3:*; of R~. Set {h} - I - {j}. If yi E {x*f}, then T(yi) =
= with x*h E R"; {x*;, yi}; therefore T(x*h) _
= Re. Thus Tg T’, with T’ _ ((z*i) x R’) U ({0153*l} x R1).

Suppose yl E T - T’ ; then X x *$, X y$, yl x
x X and each one of the sets T (x *1 ), T (x *$ ),
T( yl ), T(y2) is a line; this is in contradiction to assumption 
so T = T’ and
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(yy) R" for at ledst one j a,nd for at least tw o points,
say yi and zf, of Bi (j = 1, 2). Then for every x4 (x" E the

set T(x") contains y; and therefore T(zh) = RJ and

4.2. The previous analysis proves that every Tx correspond-
ence between two lines is necessarily of one of the types above.
It is immediately verified that each of them represents actually
a TR ple. between two lines, for every choice of the arbitrary
elements appearing in each type. Therefore

THEOREM: The TR correspondences between two projective
lines are those described in Sect. 4.1, formulae T(2).I- VI.

S. Tricorrespondences.

Although not necessary for the sequel, the classification of
the TR plc.’s among three projective lines is given in this sec-
tion.

5.1. Let T be a TR ple. on BI x R2 x R8, the Ri ’s being
projective lines. In the following, the letters j, h, k shall denote
a permutation of 1, 2, 3 ; i. e. ~ ~, h, k} - f 1, 2, 3} = 1.

The first obvious case is

Another trivial case is T = Ri x B.2 x Ra, listed below as

case XIX. In the remainder of this section T is supposed to

verify

therefore is, for each i (i E I), either a fixed point
of BI or the line Ri itself.

The following conventions shall be adopted:

(0 ) *1 denotes a fixed point on R; ; 
*

(00) T: Ri --~ Rh an/dor w : 2~ -~ I~k are bijective mappings.
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(a) If P{k}; T&#x3E; = {0153*t}, then T = {0153*t} X with

o. By (R.2) and 4.1 the following cases arise for T:

Suppose now P{i}; T) =.Ri for every i (ieI). Set

T’ = ~’&#x3E;. By 1.5.4, 3.2, and 4, Ti is a TR ple. Since
T=’&#x3E; - P{i}; T) = RI for every i’ (i’eI - (i)), it fol-

lows that T’ is of one of the types Tc!).IV-VI. Accordingly, the
following cases arise: at least one T’ is of type no T’ is

of type T~ ~~.IV, at least two are of type T( $~.V ; no T’ is of type
T(,).IV, exactly one is of type all T’ are of type TCI).VI.

Ti is of type T(2).IV. Therefore Ti = {xA X qx»" 1",11 E 1?A}
(cfr. and T = x xn X X the classi-

fication of T depends only on Tk. The following cases are thus
obtained:

(1313) Tl and Tk are of type Tit is of type T(s).V or VI.
Set P = ({x*~~ x Bt) U ({0153*l:} x Tt = ({x*’~ x R) U
U ((Y*h) x .

(flfla) If y*. # x*~, then {x*~~ and, for every
xk (xx E x xx E TJ, whence x and 
= {x*j} x Rt. Similarly T(y*.) = {0153*l:} x Ri. Suppose xx E B’ =
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= f x*~, y*"); then evidently T(zh) = X and

The fact that x*h x x*f x x*x and y*" x x*f x z*k belong,
respectively, to the first two terms of ( * * *) implies

(flffl) If y * h = then- z" E R" (.R" = ~’ h - ~ x *~ } ) implies
necessarily T(xn)_ x x*x}. Therefore T(x*f x R", I
whence X = R" and x*f X x*" X x*x E T. Therefore

and

whence

This reduces the study of T to the study of T". If T~ _ (~ y*t} X
X Bb) U (~y*x} x Ri) with ~r*f ~ or 0153*t, then case

arises again. Therefore either = Z*I f and = ~*i: , y
or TA = RI X Rt. Correspondingly:
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Tf - ({x*h} x Rk) U ({x*x} x R.), Th - x Rt, Tt =
x R". Then T(xi x z and (zk) x x Zk) E Ti for

every choice of Xi and z’~ E RJ; Zll E = {x*~}). There-
fore T(xi x zk) = {x*~}, x R",, and T(xf x x*") -
= Similarly, X Zh) = {x*k} and T(x; x x*k) - R’~ for
every xi as above and every (z" E R" = Rh - Con-

sequently T = = 

zh x zh E R"} U x x*"} X Rk)); in other words

T(3).XIII T = ({x*h} x RJ X Rk) U ({x*~} x Ri x RA) (cfr. (0)).

(fl8) All Ti ’s are of type Then, under hypotheses
( * *) and the following statements are rather evident.

5.1.1. 

5.1.2. There is at most one point x*! (x*i E RI) such that T (x,*!) ==
- Rh X Rk.

In fact, if also T(x**~) - Rh x Rk, then T(xh x $1:) 2 
x**~} for every xl,, xx E R"; xk ERie), and T = Rl x 1?2 x JlI,
in contradiction to ( * * ).

5.1.3. For every choice of i and xi (i E I ; xi E Ri) the plc. T(xi)
is of type T(,d.IV or T(2).V, with the ezceptio*. of no more than one
point, for which it can be of type T(2).VI.

On the ground of these statements, there are the following
possibilities.

On Rk there is a point m*1: such that T(0153*l:) == Ri x Ria.
For every choice of yh, zk, 9 xt, x" Rk - {x*’~};
xi x xx E T(yx)) the following formulae hold: T(xi x 

x x xh E T(zl:); therefore T(yt) E-
S; T(z1:) and, by symmetry, T(yk) = = U, say. It follows
that T = ({x*x} x Ri x Rk) U ( U x R.) .
If U is of type or the following cases arise respec-
tively :
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For every choice of i and x, the ple.
is of type T(,).IV or V. If ( * *) and hold, then the

following lemmas (5.1.4 to 5.1.8) are valid.
5.1.4. LEMMA: for every choice of j, y~, and Zl

(I E I ; yf E E Bj; YJ 0 ZI).
Proof. Suppose T(yi) c T(zi); then for every xh x xk (xh x xx E

E T(yl» the set x xx) contains yi and zi, therefore it coin-
cides with Rf. This implies T(xf) for every xi (x~ E R~);
because of the structure of the ple. ’s of types T(2).IV and V, this
implies = therefore Ti = in contradiction to

hypothesis 
5.1.5. Suppose and that

T(yf) and T(zl) are of type T(,).V. Set T(yl) = ({Y*A) X Rk) U
U ({y*x} X = ({z*"} X Rk) U ({z*x} X Rh). Then:

(i) z*"; (ll) (iii) ~’(y*" x y*x) - (iv)
T(Z*" x z*~) _ {zf}.

Proof. (i) If y*,4 = z*~, then zil c T(y*h x xx) for every
xx therefore Rf = T(y*" X xk) and R; x Rk = T(y*"),
in contradiction to hypothesis (Pbp). (ii) follows by symmetry.

(iii) Evidently yf E T(y*h x y*k). If the statement were

not true, then the following implications would follow: T(y*h X
X y*k) - l~f, y*~ X y*k E and y*" - z*h or y*1: = z*k, in
contradiction to (i) or (ii) respectively. (iv) follows by symmetry.

5.1.6. LEMMA: For every i (; E I ) the plo. of type T(,).IV
for aU points mj of Bi the exception of no more than two of them.

Proof. Suppose yf and zi are two distinct points of 1~3 such
that T(yl) and T(zf) are of type T(s).V. Let m’l be any point of

By 5.1.5 (iii) (iv) the pairs y*’, x y*1: and z*" X z*k
are not in T(x’f). On the other hand, T(y*x xz*l:) 2 there-

fore T(y*. x z*k) (and similarly T(z*~ x y*k)) coincides with

Rf. Therefore contains x z*k and z*. x but not

Y*" X y.1: or z*x X zx; thus it cannot be of type T(2).V.
5.1.7. LEMMA: X x*k E T(yi) (1 T(xf ) (yj =1= zi), then {x*" X

X X thence T(x*") and T(x*k) are of type T(3).V.
5.1.8. LEMMA: For every choice of i, y’ and z’ (i E I ; y E 

8’ E Ri; y~ ~ z;) the plc.’8 T(y’) and T(zl) have no more than two
pairs in common.
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Proof. Immediate consequence of 5.1.5, 5.1.6, and 5.1.7.

Still in case the following possibilities have to be con-
sidered.

On Ri there are two distinct points y*!, z*J such that
T(y*J) and T(z*J) are of type Set T(y*~) - ({z*~~ X Rk) U
U X T(z*’) = ({y*"} X Hie) U ({y*k} X RIt). There-

fore : y*i X z*" X y*1e E T, y*f X X y*i X y*n X z*x E
E T, z*j X y*A X z*x E T, x y*h X y*k E T, Z*i x z*x x

X By 5.1.5, y*h ~ z*’,, this and 5.1.8 imply
({z*j} X Rx) U ({z*x} X R’), &#x3E;C Rk) U

U X R», and siniilarly for T(y*x) and T(z*k).
Therefore for every i ( i E 1) there are exactly two points
(xi E Ri) for which T(xi) is of type T(2).V. For the moment

let this case be described as the:

Hyperbolic Gase.

On Ri there is exactly one point for which 

is of type T(,).V. If T(x*~) - (~x*’~~ X Rx) U x R4), then
x X RI:s;T an d X X which imply

that T(x*~) and T(x*x) are also of type T(2).V. Thus the conclusion
of implies that for everv i (i E I) there is only one point,
x*i, for which T(x*i) is of type Let this case be described

as the

Parabolic Case.

For every xi of R~ the ple. T(xi) is of type T(,).IV.
The conclusions of and (flbflfl) imply that the same fact
is valid for every i and every 0153( (i E E Ri). Let this case be
described as the

Elliptic Case.

(~38y) As already noted before formula (~ ~), the following
case has to be added:
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5.2. As for the existence of each of the found types and the

possibility of a subclassification, the following facts have to be
considered.

5.2.1. Types and XIX certainly exist for every

prescribed triad of lines, with the only restriction, in cases IV,
VII, VIII, and XIV, that whenever a bijective mapping between
two lines appears (cfr. (0~)), the lines be of the same cardinality.
In each case the construction of the TR plc.’s depends on the
choice of one fixed element on some of the lines, possibly of one
other element on one of the lines (case X), and/or the choice of
one or two mappings (DD). Evidently these choices can be made
in essentially one way, if the lines do not posses any additional
structure.

5.2.2. As for types the following construc-
tions answer the question of existence and uniqueness.

(cc) Since bijective mappings do appear between any two
of the lines, all three Ri ’s must have the same ca.rdinality.

(b) If the lines contain exactly 3 or 4 points (in case XVI)
or exactly 3 points (in case XVII), then extremely simple possibil-
ities arise, for which the conclusions (although not the proofs)
of this section are valid.

(c) With the exclusion of cases (b), let be the set (pro-
jective line) obtained from I~s by deleting the points y*i, z*l

in case XVI, and the point x*= in case XVII (cfr. 5.1 (flbfla) ;
i E I ). Let TO be the set obtained from T by deleting those elements
xi X z8 of T for which x= = = or, respectively,
z’ = x*i for at least one i of I. It is immediately verified that
TO is a ple. of type on ~1 X 1~Z X R~~.

(d) Conversely, if TO is a plc. of type T(,).XVIII on x

X R*2 X 1~~~, the inverse construction gives a TR ple. of type
XVI or, respectively, XVII on Ri X 1?2 X K’3.

(e) The structure of a TR ple. of type XVIII, say T, can
be described as follows. For every x3 (0153I E Rs), identify the element
x3 with the bijective mapping T(e), interpreted as a mapping
x3: A set Jl3 of bijective mappings R2 is then

obtained, such that (cfr. 5.1 
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( ~ ) for every JJ1 X x2 of R1 x R2 there is exactly one mapping
W of R3 such that -- ae2 .

( f ) Conversely, if any two sets R1, R2 of the same cardinality
are given, it is always possible to construct a set 1?3 of bijective
mappings satisfying condition ( /y), and the ple. T, defined by
the position T = (zi X x2 x d I Xl E R1; a/I. E R2; x3 = the map-
ping of R8 such that == is immediately verified to be
TR and of type Tjj.XiIII.

(g) Parts (d), ( f ), with remark (b), prove the existence of
the desired types of plc·. for any prescribed lines. The possibilities
within each case depend on the choice of the set .R3 as described
in part ( f ).

(h) Any additional structure on the lines might give rise
to a subclassification of the TR plc. is.

6. Characteristic Properties of Graphic Plurilinearities.

6.0 THEOREM: Let ~~i projective spaces, let T be a

ple. o~z SI&#x3E;. Then T is a g. pile if and only if it i8 of either type
TA, TB, TC, or TD.

In other words each of the sets of conditions: (P.1-2), (A.1-3),
(B.1-2), (C.1-2 ), (D.1-3 ) is equivalent to each other.

Proof. The statement is equivalent to the propositions that
each one of the sets given above implies the next one, and that
(D.1-3) implies (P.1-2) or (P°, P’). These propositions, together
with some auxiliary lemmas, are proved simultaneously, by
induction on t, 8 (cfr. Remark 3.7), in the following sub8ections
6.1-6.6.

6.1. Let T be a g. pll. on 
6.1.1. LEMMA: I f i E I, 18*" is a hyperplane of Si, and T* =

_ R~S*i; T~, then T* is a g. pll.
Proof. If t = 1, then the property is trivial. If t &#x3E; 2, let

notations be as in 2.2, with the additional condition P~ i~ ; 
if i E JA. Set F* = P~h, k); 

If i and k, then F* - F; F* is therefore a graphic
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linearity. If i = h or i = k, say i = h, then F* = HI S*i; F’&#x3E; and
F* is again a graphic linearity by Thm. 2.1 of [21. Therefore,,

(P’ ) is valid for T*.
6.1.2. LEMMA : I f t &#x3E; 2, i E I, llt E T* = then

T* ill a g. pll.
Proof. Notations as in 2.2. If t = 2, then the: statement

follows from (P.1 ) and 3.6.1. Suppose t &#x3E; 2. For every choice

of h, k, J*, y* (1h, {i}; h, =F- k; J* z I - li, h, k}; y* E
E SJ*&#x3E;) set yð = yi x y*. Then T*(y*) = T(yA) and P~h, k};
T*(y*)~, being the same as F, is a graphite linearity by 2.2. There-
fore T* verifies (P’).

6.1.3. PROPOSITION: Every y. pll. T M ? TA plc.
Proof. (a) Condition (P.1 ) (with .7~ _ ~ ) implies (A.1 ).

(b ) Notations as in 3.1. By 6.1.2 [respectively 6.1.1] 
T&#x3E; [T(yi)] is a g. pll. and, by induction on -? [on t], a TA plc.;
this is precisely (A.2) [(A.3)].

6.2. PROPOSITION: Every TA ptc. T ia a. TB ple.
Proof. Notations as in 3.2. (a) Condition (B.1) is satisfied

as a particular case of (A.1 ).
(b) Suppose 8*1 c Si for some j therefore a hyper-

plane a8C’ exists, such that &#x3E;S*"z By (A.2 ), T&#x3E;
is TA ; by induction on s, it is TB. Since 
= (i E I); T», the validity of (B.2) for T&#x3E;
implies its validity for T.

(c) (A.3) and induction on t imply immediately (B.3).
6.3. PROPOSITION: Every TB ple. T is u, TC TIle.
Proof. (a) Suppose si &#x3E; () for every i (i E I). (aa) If a&#x3E; &#x3E; 1

for some j (j E I ), then for every choice of the lines Hi (Ri 9 8’;
i E I) the ple. E I); T&#x3E; is TB by (B.2), thence TC by induc-
tion on s; thus (C.1) holds. (ab) Suppose a= = 1 for every i

(i E I). Then for every i and for every x= (i E 1; z’ E Si) the plc,
T(xs) is TB by (B.2), thence TR by induction on t. In other words.
T satisfies (R.2); since (B.I) implies (R.1), T is TR and satisfies
therefore (C.1).

(b) Suppose t ~ 2 and qi = 0 for some i (i E 1). Then,
for every such i, satisfies evidently (B.1 ) and (B.2), thence
it is TB. By induction on t, it is Tc, thus (C.2) is valid for T.
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LEMMA: If TD ple. on SI - { 1 ~~, i f a

point, and if T = ¡~1 X T*, then T is a TD plc. on SI ~.
Proof. (a) Since T&#x3E; is the same as P{i}; T*&#x3E; for

i =1= 1, and since it coincides with $11 if i = 1, then property (D.1 )
i s valid for T.

(b) Property (D.2) follows, by induction on s, from the

identity RR=; T&#x3E; - RRi; x T*&#x3E; and from

(D.2) applied to T*.
(c) When i is taken equal to 1, then property (D.3) is

valid by construction. When i =1= 1, then - (81 x T* ) (z· ) =
~_- Si X T*(zl); property (D.3) for T follows from (D.3) a.pplied
to T* and from the hypothesis of induction on t (or trivially
if t = 2).

6.4.2. PROPOSITIOX : Every To’ ple. T is a TD plc.
Proof. (a) Suppose si = 1 for every i (i E I ) ; then, by (C.I),

T is TR, and (R.1 ) implies (D.1 ).
(b) Suppose s; &#x3E; 1 for some i (i E I ), let Ri be a line of

Si, and set T* = RRi; T&#x3E;. (C.1) is obviously true for T*. As
for (C.2): suppose 81 = 0 for some i (; E 1 - {i}); then T(81) is
TO by (C.2), thence a g. pll. by induction. Since = RRi;
T(8;», T*(Sj) is a g. pll. by property (D.2) applied to 
therefore it is TD, and (D.2) is valid for T.

(c) Suppose t ~ 2, s~ C 1 for every j (i e I), ~ e I, zi e Si.

If si = 1 for every i I), then T is TR by (C.1), so is T(zl)
by (R.2); by induction on t, T(zi) is a g. pll., thence TD. If si = (1
for some i (i e I), then T(Si) is TO by (C.2), thence TD by induction,
and T is TD by 6.4.1. (D.3) is therefore valid for T.

6.5. Let T be a TD ple. on SI &#x3E;.
6.5.1. LEMMA: Sup pose : liE I ; 8’ i ~ 1 ~ ; JO C:,70;

RJ is a line of Sf for every j ( j E J~ ) ; E Si for every j (i E I - J~).
Then RR; (j E J~); T&#x3E; and RR; (j E J~); J{I»))
are TD.

Proof. The first part is a repeated application of (D.2) (or
trivial if s i C 1 ) . As for the second part, it is a repeated appli-
cation of (D.3) if s s C 1 for all i’s ; otherwise it is reduced to the
case si  1 by choosing the line Rf such that E ( j E
3 JD - J~), by considering RRf (j E JEI); T&#x3E;, which is TD, and
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by applying the identity RRj
- (R R’ (j JO); Z’&#x3E; ) (y~ I - 

6.5.2. LEMMA: { k }, and i f y0 E S JO &#x3E;,
then P~ k } ; is a subspace o f 8k.

Proof. The statement is equivalent to the fact that, if ~yx
and zk are distinct points of then 

~ P{ k } ; In fact there are in T tw o elements y and
the projections of which are yk and zk on 8"., and yA (for both)
on By setting s*i = [yi, zq for every i (i E I), the ple.
T*, given by T* _ ~ ~S *  I &#x3E; ,; T&#x3E;, is T D iby Lemma r6.5 .1. Then
T*(yA) is TD by (=D.3). The application of ,(D.1 ) to gives
8*- = P~k}; T(yÂ); -the rtatement follows.

then TO is TD.
Proof. Notations as in 3.5. There is nothing.to prove if JA = 0.

Suppose o. (a) (D.I) is true for TA as a particular ease
of Lemma 6.5.2.

(b) Suppose si &#x3E; 1 for some i (i E I - J~). Then 
TO~ _ (RRi; which is .TD by (TJ.2) and by induction
on s. Therefore (D.2) -is true for TA.

(c) If t &#x3E; 2 and si ~ ~ for every i (i E I - J4l), then

is TD by Lemma 6.5.1. Therefore (D.3) is valid for T4l.
6.5.4. LEMMA: and if then

TO 18 PD.
Proof. Notations as in 3.5. (a) (D.1) is valid for TD as a par-

ticular case of Lemma 6.5.2 and as a consequence of the identity
P{k}; T&#x3E; (k E JD).

( b ) Suppose s i &#x3E; 1 for some i (i E then --

RRi; T~~ and (D.2) is true for TO by induction on
s and as a consequence of the applications of (D.2) to T.

(c) Suppose J~ ~ ~ 2 for every 
then TEI(zi) = T(Zi). By Lemma 6.5.3, T(zi) is
TD and so is TO(zi) by induction on t. Thence (D.3) is valid

for TO.
6.5.5. LEMMA: I ; I - 

Pj i8 a line of Si for (j E Jx). Then RRj
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Proof. Corollary of Lemmas 6.5.3, 6.5.4, and 6.5.1.
6.6.1. A bicorrespondence between two lines is TD

if only if it is TR.
Proof. In the present instance, conditions (R.I), (R~.2) coin-

cide respectively with (D.1 ), (D.3); (D.2) is inapplicable.
6.6.2. PROPOSITION: Every TD plc. T is a g. pll.
Proof. Notations as in 2.1. Suppose t ~ 2 and define F as

in 2.1 ( * ). All amounts to proving that (P’ ) holds, i. e. that F

is a graphic linearity.
In every case F&#x3E; [respectively, P{ k~; F&#x3E;] is a sub-

space of S" [S k] by 6.5.5, 6.5.2, and by Thm. 10.2 of [2]. This

proves the s-tatement completely if = 0. Suppose now

8"8. &#x3E; 1 and let R h, R k be lines in Sic respectively. By
6.5.5, RR", Rk; F) is TD; by 6.6.1, it is TR, thence of one of the
types T(2).I-VI of Sect. 4. These types coincide with 

of [2]’; thus the hypotheses of Thm. 10.2 of [2] are satisfied and
F is a graphic linearity.

7. Properties of Graphic Plurilinearities.

Notations as in Sect. 6. The following properties of g. pll.’s
follow from Thm. 6.0.

7.1. THEOREM: If: T is a g. pll. on, SI ~ ; for 
(j E J°), subspace o f 
for every j is a subspa,ee of S;; then (j E 

is a g. pll.
Proof. By (B.2), (j E J°); T) is a g. pll. Since

~’(S*tJ°&#x3E;) - ~7 - JA; (j E J°)v T», T(S*JA) is a g.
pll. by 6.5.4. Then 6.5.4 and (B.2) imply the statement.

7.2. THEOnEM: I f T is a g. pll. on 81), then

P{ k~; T) is a subspa.ce of 
Proof. (P. 1).

’ 

7.3. THEOREM: 7/, for every i (i E 1), 8*i is a rub8pare of Si,
and i f T is a g. pll. on S*I&#x3E;, then T is a g. VII. on 

Proof. By induction (cfr. Remark 3.7); notations aa in 3.4.

In
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Properties (D.1), (D.3) are evidently satisfied.
As for (D.2), if or if Ri f1 = o, then the property

is trivial. Suppose Ri f1 S*i = lyil (yi E Ri; i E I). Then T(1/i) is

a g. pll. on SI - by 7.1 and by induction on t. By 6.4.1
and by the identity T&#x3E; = X RRi; T&#x3E; is a g.

pll. on {,yi} x SI - thence, by induction on s, it is a. g.

pll. on Ri ~C SI - (D.2) is therefore valid.
7.4. THEOREM : If: I = I’ U I " ; 1~=0; T ~ and T*

[T~~ and T**] are g. pll.’s on SI’&#x3E; [on SI"&#x3E;] ; T* c- T*; 
T = (T* X TOO) U (TO x ~’**); then T is a g. pll.

on SI ~.
Proof. Notations as in 2.1. For t = 1 the statement is trivial;

suppose t &#x3E; 2 and define F as in 2.1 *). All amounts to proving
that (P’) is satisfied, i. e. that F is 3, graphic linearity.

(a) Suppose first JD = o. If (and similarly if

Ih, k} ~ I" ), then F = P{h, k}; T ~ &#x3E;, which is a graphic linea-
rity as a consequence of the application of (P’ ) to TO. 
and k E I", then F is a graphic linearity because of the following
facts: (i) P{h}; T*&#x3E;, P{k}: and P{k};
T**&#x3E; are subspacea of S", S" respectively: (let them be tempo-
rarily denoted by W, X, Y, Z); (ii) F = (X x Y) U (W x Z);
(iii) W 2 X, (iv) Thm. 8.9 of [2].

, (b ) If set yA = y’ X y", with y’ E 81’ 
y" E JA). Then the statement follows from the appli-
cation of part (~x) to the images of y’, y", and y~ under the ple.’.%
involved.

7.4.1. COROLLARY: TO X TO* is a g. pll.
Proof. From 7.4, when T* = 

7.4.2. COROLLARY : I f : T is a g. pll. on S7&#x3E;; I = 
I’n I" = 0; y" F Sr" &#x3E; ; 
((y’) x x T(y")) is a g. pll.

Proof. From 7.4, when TO = T ( y" ), T * _ ~ y’ }, 
= T(y’), z.** = {y"}. -

7.5. THEOREM: Notations as an 2.1. For the set F giilen. by
there are the following three possibilities:

(a) is eonstant for atl the of Rk;
. (b) there exists exadly one point g:*k on Rk such that
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(i) iv for (tlt the poititv o f (tnd (ii) F(xx) c

c F(,x*~) .
(c) Jl iv (j pencil and the f: R,k -~ F defined by

f:,r,k - F(.rk), is bijecti17e.
Proof. (PI) and Theorem 3.2 of [2 J.
7.6. All immediate eonsequen(’e of Thm. ] U.2 of 12 J is the

following. ,
THEOREM : Notations as in. Sect. 2. If then T is a

g. pll. if and on,ly i f one o f the following conditions is satisfied:
(PO) t = 1 and T is a subspace of 81;
(P") t &#x3E; 1 and f or every choice of h, k, JA, and yA as in 2.1:

(i) either 8h8k = (1 and P{h}; and P{k~; T(yA))
are subspaces of Sh, Sk respectively;

( ii ) or for every choice o f the lines in SA, res p ec-

ti itel,y, the plc. G given by

Ni u f one of the types of Sect. 4.
7.7. THEOREM: The classification of th,e g. pll.’s between. two

or three projective lines is gi’l,en in Sect.,-?. 4 and 5 respectively.
Proof. 4, 5, and 6.0.

8. I’J Pluricorrespondences.

In this section another special type of among projec-
tive spaces Si i (i E I) is considered, as well as its relationships
to g. pll.’s.

For every i (i E I) let be a point or a projective line Ri;
let L be defined by L = ~i ~ liE I; dim = 01.

8.1.]. Suppose: 
E Furthermore, if J ° o o, a collection of bijective map-
pings is given, such that = 1’:1 (i E JO),
j E J °, k E .l °). This is equivalent to E J °), prescribing
arbitrary bijective mappings ( j E J 0; a5 = 1), and
setting = 
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DEFINITION: With notations as above, a Ti ple. is a PIC.
U0 , on SI&#x3E;, given by,

In other words, I~° consists of the elements obtained by
choosing fixed points on some of the .8’" ’s and, on the remaining
ones, variable points which correspond to each other by means
of prescribed coherent bijective mappings.

8.1.2. A T.T ple. can now be defined as follows.
Let the following elements be given: a partition I = h’ U

U v ; o; for a E A,
integer); two elements a ( = aI &#x3E; ) and

b (= bI ~) in such that c~i = bi whenever and

ai =1= b i whenever i E I - K. Furthermore, if I (i. e. if A ~ ~ ) :
a proper order is given in g, say  (for instance by setting
~={1*, 2*, ..., w*~, with 1*~ 2*~ ... ~ 1V*); for each a (a E A)
let a collection of coherent mappings be given, with the same
properties as in 8.1.1, provided DO is everywhere replaced by

and with the additional condition = ah, == b¡

h E J").
For every a (a E A ) set: I -- J", x" U Ji * U ... U

U ... U J~*&#x3E;, and let U" be tlle TI ple.
obtained from Def. 8.1.1 by substituting " for °.

DEFINITION: with notations as above, a 1’J is a pic.
U on S~I ~, given by U = {a} if .K = ~ and by U = 
if 

~.1..3. Evidently
If U i8 P~j~; U) - 

for evPry j (j E J~ ), then TJ.
8.2.1. Let the 8"8 be projective spaces and suppose

a = aI&#x3E; e 81), b = bI&#x3E; E SI &#x3E;.
DEFINITION: A foin of a and b (in SI; ) is any one of the

TJ plc.’s obtained by applying Def. 8.1.2 to the entities a, b, 7

with ~~~_ _ [,ai, 6’] (i E I). The set K is necessarily given by
K = li I i at = b=}; the other elements which appear in

Def. 8.1.2 can be chosen arbitrarily, within the allowable possi -
bilities.
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8.2.2. DEFINITION: If, in addition to the data of Def. 8.2.1,
a ple. T is given on SI&#x3E;, and if a and b lie in T, then a join of
a b in T is (whenever existent) a join U of a and b, satisfy-
ing the condition Us; T.

Phrases like « U joins a and b in T &#x3E;&#x3E; shall be used.

8.3. DEFINITION: A TE plc. is a ple. T on SI&#x3E;, which satisfies
the following condition:
(E) if a E T and b E T, then there exists a TJ ple. which joins

a and b in T.

8.4. PROPOSITION : Every TE plc. is a g. pll.
Proof. By Thm. 6.0 the statement is equivalent to the fact

that if T is TE, then it is TB. In order to prove this, choose no-
tations as in 3.3 aDd proceed by induction on s, t (cfr. Remark 3.7);
the fact that TE and TB plc.’s are the same when t = I and

when s = 0 is trivial.

(a) Suppose si  1 for every i (i E I); set X = T).
If -Z = 0 or if X is a point, then (B.1 ) is satisfied; otherwise,
suppose ai E X, bi E ~Y, ai =1= bi; then a and b can be found in T,
such that their projections be ~c= and bi. Let U join a and b in T,
which implies = [ai, bi] z S’. Because of Def. 8.2, 8"E X,
therefore X is a subspace of Si a,nd (B.1 ) holds.

(b) Suppose s &#x3E; 0, = RS*I&#x3E;; T). If Ujoins a
and b in T, then the inclusions imply that Ug T*.
Therefore T* is TE and, by induction on s, it is a g. pll. Thence
(B.2).

(c) If t ~ 2, T~ - ~ ys~, yi E Si, then a’ =

- b == y i for any two elements 01&#x3E;, b I ~ of T. If U joins
these elements in T, then U(yi) is TJ by 8.1.3 and it joins aI -
- and bI - in T(yi). By induction on t, property
(B.3) follows.

8.5. REMARK: Property 8.4 cannot be reversed, namely not
every g. pll. is a TE ple. A counterexample is the following.
Suppose Rl = ~ a, b, c, d~ and consider it as a projective line;
let R2, Jl3 be two copies of R,1; for brevity let pqr denote the element
p x q x r, with p E R1, q E IP, r E Let T be given by T =

- ~ aaa, bba, cca, ddca, add, bad, cbd, dcd, ace, bdc, abb,
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cdb, dabl. T is a g. pli. of type T(g).XVIII, however the two
elements bba, cae cannot be joined, in T, by any T’~ ple.
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