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FURTHER PROPERTIES

OF PSEUDO-ABELIAN VARIETIES

Nota (*) di LEONARD ROTH (a Londra)

1. Introduction. - This note adds some results to previous
papers on pseudo-Abelian varieties ; it also makes an acknow-

ledgment to the work [6] of Dantoni which, regrettably, had
been overlooked, and corrects a statement in [12].

After a brief account of Picard and pseudo-Abelian varie-
ties, in so far as they are required here, the following results
are established :

(i) Any ( algebraic) variety which admits a finite continuous
permutable group o f automorphisms and which is neither Pi-
cardian nor pseudo-Abelian is birationally equivalent to a

ruled variety, i.e. one containing a congruence o f linear spaces.
Hence any such variety has all its plurigenera equal to

zero.

(ii) If a variety admits the above group and, further, the
group leaves transitively invariant a linear system (001 at

least) of hypersurfaces which is not compounded o f a con-

gruence of subvarieties of any dimension &#x3E; 1, it is birationally
equivalent to a ruled manifold.

(iii) On any pseudo-Abelian variety ’6Vp of type q ( 1  q 
~ p 1), the involution cut by the congruence { VQ of trajecto-
ries on a member V of the complementary congruence

i V,~ } is generable b y a f inite group of automorphisms of

(*) Pervenuta in Redazione il 9 Novembre 1956.

Indirizzo dell’g.: Imperial College, Londra S. W. 7 (Inghilterra).
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V,-., which is either cyclic or Abelian of base k, where k iT
any integer lying between 2 and 2q inclu8ive.

This result which, as Andreotti has remarked (§ 5), is

a simple deduction from a formula given in Andreotti [ 1 ] ,
generalises a well known theorem of Chisini [4] concerning
elliptic curves, and leads to the analytical representation of
W" in the general case: in previous work only the cyclic case
had been considered.

The pseudo-Abelian varieties provide interesting examples
of manifolds endowed with torsion of various dimensions.

We make some remarks on this subject in § 6. Apart, however,
from the one-dimensional torsion, little or nothing has yet
been achieved in this field.

Finally we notice a particular kind of para-Abelian va-

riety ([11]) whose chief properties - for instance, the ana-
lytical representation and the nature of the various canonical
systems - are very similar to those of the pseudo-Abelian
variety itself. We also refer briefly to the speciat pseudo-
Abelian variety whose group of automorphisms contains in-

variant subgroups (systems of imprimitivity). 
_

2. Some properties of Picard varieties. - We begin by
recalling the chief results concerning Picard varieties which
we shall require; for other properties and for further details
we refer to [12] and [13]. ,

As usual we denote by V, a Picard variety free from sin-
gular points and exceptional subvarieties, and by (u,l , u2 , ... ,

11,,,) its customary parametric representation. Vp admits a

completely and simply transitive permutable continuous group
of ~p automorphisms, consisting of transformations of the

first kind, and represented by the equations

Conversely, it may be proved ([5]) that any algebraic va-
riety wp which is free from singularities and which is endo-
wed with a completely transitive permutable continuous group
of cOP automorphisms is necessarily a Picard variety. It fol-
lows from the proof that the group consists of transformations
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of the first kind on Wp and hence that it is szmpty transitive
on Wp . Hence, if a variety Wp admits a continuous permu-
table ~p group which is multiply transitive on Wp, then this
can only be generally transitive, so that W p is either biratio-
nal or quasi-Abelian (§ 3); in the latter case W~ is biratio-
nally equivalent to the product of a Picard variety T~Q
( 1 . q W p 1) and a space 

In this work we are particularly concerned with simple
involutions without coincidences which can be carried by Vp.
To begin with, it is obvious that any involution generated by
transformations of the first kind is free from united points.
Conversely it may be proved that, in the case where Vp has
general moduli, any simple involution In without coincidences
carried by Vp is Picardian, and generable by a group, of or-
der n, of transformations of the first kind. Evidently such a
group is permutable (Abelian); moreover Andreotti [1] has

shown that it may be generated by the transformation

where (6)rs) denotes the period matrix of V,,, yr ( &#x3E; 1) are in-
tegers, and vr ( &#x3E; 1) are integers such that, for every v,

divides 

While this result holds for all Picard varieties, in the case
where V, is special, i.e. has particular moduli, there may exist
simple involutions 7~ without coincidences, which are not

Picardian; we call these Abelian of the first species. It may
be shown that the variety which maps In has superficial irre-
gularity p’ (0  p’  p) and that I, is generable by a finite
group of singular transformations of Vp ; any such transfor-
mation is reducible to the form

where 81 are roots of unity other than unity itself.
One further property of the Picard variety should be

noted: Vp possesses an effective canonical hypersurface of

order zero, so that its geometric genus Pg and its plurigenera
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Pi are all unity. An Abelian variety of the first species like-
wise has a canonical hypersurface of order zero, but this may
be effective or virtual; thus P /1 and Pi can assume the values
0 or 1, and there is an infinity of plurigenera equal to unity
(C. f. [12]).

3. Pseudo-Abelian and quasi-Abelian varieties. - Since
much of our work deals with systems of equivalence, both li-

near and rational, while other parts depend upon transcen-
dental results, it follows that in all cases we shall require our
varieties to be non-singular; further, y when considering con-

gruences of subvarieties on the latter, we shall assume that
the generic member of each congruence is likewise non-sin-

gular. In the present state of knowledge it cannot be said

whether these hypotheses are restrictive.
Let Wp be a (non-singular) variety which admits a con-

tinuous permutable group (3 of OOq automorphisms 
 p 1) ; on the hypothesis that these are completely tran-
sitive on the trajectories of (,4, it follows that the latter form

a congruence } of Picard varieties ~Q which are free from
exceptional manifolds, and that the operations of *9- are tran-
sformations of the first kind on Vq . While the generic mem-
ber of the congruence is of course irreducible, we find that in
general there exists a certain aggregate of reducible members
each consisting of a Picard variety V41,a counted with a mul-
tiplicity s ( &#x3E; 2) ( see § 6).

We may then prove that W" contains a complementary
congruence (V) } of ooq birationally equivalent varieties

V which are transforms of one another under ~. Since the
transformations of i are of the first kind on Vg , I this con-

gruence is Picardian 1), i.e. representable by the points of a
Picard variety, and cuts on the generic an involution id
( d &#x3E; 1 ) without coincidences. The number is

called the determinante of W II; each number s is a divisor of
d, including possibly d itself.

1 ) It is incorrectly stated in [12] that I can also be Abelian
of the first species ; this case arises when Wp is a para-Abelian variety
of the kind described in § 7.
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The variety Wp , which we have elsewhere ([10]) called

pseudo-Abelian of type q, was first considered by Dantoni 2)
mainly from the transcendental point of view, in connection
with simple integrals of the first kind. In the case d &#x3E; 1, we
may map Wp on the d-fold product Wp - Vq X Vp q, where
V* and are birationally and unexceptionally equivalent
to } and { Vq } respectively; thus ~p contains a con-

gruence of Picard varieties which we may denote by {V~ ),
and is in fact a pseudo-Abelian variety of determinant unity.

From the correspondence between and Wp (for the

details of which c.f. [12]), we obtain inequalities for the

numbers gi of i-fold integrals of the first kind attached to

~W’p . In particular we note the equation, due to Dantoni,

where q*’ denotes the superficial irregularity of the con-

gruence (V, }.
Conversely, it may be proved that, if a variety Wp con-

tains two congruences { Vq } and I of the kinds specified,
it is pseudo-Abelian of type q ; the proof, which is the same
as in the case of the elliptic surfaces (see [7]), depends on
the fact that the involution zd is generable by a finite group
of automorphisms of Alternatively, a proof by transcen-
dental methods, based on § 5, may be given: see also Dan-

toni [6].
From the correspondence between Wp and Wp* we may

also deduce equivalences for the canonical varieties .LY h (W,,)
(h q, q -{-1, ... , y p 1) ; for h  q, Xh(W,,) is effective of

order zero; see [12].
We conclude this preliminary account by describing a

particular pseudo-Abelian variety of determinant 1 which oc-

2) This work [6] came to the author’s notice only after the above-
mentioned papers had been published. DANTONI assumes implicitly that
the varieties Wp which he considers are such that the associated con-
gruences F j I contain no reducible members; they are therefore very
special subcases. But much of his analysis, including the formula (4),
would seem to hold in the general case.
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cupies an important position in the theory. If W" admits a
permutable continuous coop group which is only generally tran-
sitive on we obtain what Severi has called a quasi-Abelian
variety; in this case it may be shown that WI’ is either bi-
rational or birationally equivalent to the product of a Picard
variety V, (1  q ~ p 1) and a space Sp.-q ([14, 15]).

4. On varieties which admit continuous transforma-
tion groups. - We shall now see that the theory of varieties
which admit finite continuous groups of automorphisms can
be summarised succinctly in a form similar to that assumed
by the analogous theory of curves and surfaces ([7]).

We first remark, with Painlev6, that any finite transfor-

mation group may, without loss of generality, -be supposed
algebraic. Next, we may alw ays assume the group to be per-
mutable, since any group contains a subgroup of transforma-
tions which permute with one another. In what follows we
shall denote by 4 any finite continuous permutable algebraic
group of automorphisms operating on a non-singular variety
Wn ; the dimension of 4 may have any value from 1 onwards.
We shall also suppose that i has no fixed points; if there

were such points, W n could not be Picardian or pseudo-
Abelian.

We shall require the following lemma:
If Wn contains a congruence o f subvar2eties att of whose

pturigenera are zero 3), then all the plurigenera o f W n are

likewise zero.

Here, as in the sequel, the congruence {Wr} of subvarieties
Wr is supposed to be free from base points. The proof is by

~ induction on rc. First, let n r -+-1, so that {Wr} is a pencil
(rational or irrational) of hypersurfaces; then, if the system
I I were effective (possibly of order zero) for some i,
the system I would itself be effective, contrary to
hypothesis. Next, let n r + 2, and consider a rational pen-
cil of hypersurfaces generated by varieties Wr ; to each of

3) From the vanishing of any plurigenus follows that of the geo-
metric genus.
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these the previous reasoning applies, so that again Wn has
the stated property. And similarly in general.

We now prove that .

I. Any variety W n which admits a and which
has som,e plurigenus greater than zero is either Picardian or
pseudo-Abelian.

This result is a simple deduction from Severi ’s work on

quasi-Abelian varieties. Suppose first that admits a group
~ of dimension n which is either completely or generally
transitive. In the former case is a Picard variety; in the
latter Severi shows, by transcendental methods, that if gl = 0,
W~. is birational, and that if gl &#x3E; 0 (  n) is birationally
equivalent to the product of a Picard variety Vq and a space

( 1  q : rc 1), in which case it follows from the lem-

ma that the plurigenera of are all zero. This transcen-

dental proof holds equally well in the case where (3 has di-

mension greater than n.

Next, suppose that G is intransitive, with any dimension
from 1 onwards; in this case q possesses trajectories W, of
some dimension r which form a congruence (Wr). If 4 has

dimension r and is completely transitive over then w,.
is a Picard variety and so Wn is pseudo-Abelian. In all other
cases Wr is either birational or quasi-Abelian whence, by the
lemma, the plurigenera of are all zero.

It should be noted that there exist pseudo-Abelian varie-

ties Wn ( n &#x3E; 3) whose plurigenera are all zero.

II. Any variety yV~ which admits a group i is either Pi-

cardian or pse2cdo-Abelian or is birationally equivalent to a
ruled variety. (i.e. one generated by a congruence o f linear

spaces Sr ( 1  r  n - 1)).
This follows incidentally from the work [9] of Hall in

which it is shown that any such variety wn which does not
belong to the first or second category is birationally equiva-
lent to the product of a linear space Sr ( 1  r c~ n 1 )
and some variety of dimension n - r.

Actually theorem I is a consequence of this result and

the preceding lemma, but the proof is less direct.
For the characterisation of the pseudo-Abelian varieties by
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means of their canonical systems, see M. Baldassarri, Annali
di Mat., (4) 42 (1956), 227.

. 

III. Any variety Wn which admits a leaving tran-
sitively invariant a linear system at least) of hypersur-
faces which is not compounded o f a congruence o f subvarieties
o f any 1, is birationalty equivalenti to a ruled
variety.

This result is familiar in the case n = 2 ( [7] ). Assuming
that n &#x3E; 2, let I be the linear system whose members are
transformed into one another by ’Ot. Then obviously W n cannot
be a Picard variety while at the same time ~ is the entire

group of transformations of the first kind on Wn ; if instead

~ is a subgroup, then Wn is to be regarded for present pur-
poses as a pseudo-Abelian variety.

If W~, were a pseudo-Abelian variety of some type q ( &#x3E; 0)
it would contain a congruence fWn--,), complementary to the
congruence } of trajectories, which is transitively invariant
under ~ (§ 3); and by hypothesis I could not be com-

pounded of {W~2013q}- Hence I would cut on each variety
Vq a linear system LQ_1 ~ I which must be transitively inva-

riant under  ; and this again is impossible. Thus, by III Wn
is birationally transformable into a ruled variety.

5. Analytical representation of W~. Of the varieties

considered in § 4 the Picard varieties and those types which
are birationally equivalent to ruled varieties have familiar

analytical or parametric representations. Here we shall deal
with the problem of representing a pseudo-Abelian variety
W" of type q in the general case; only the cyclic case has
been considered in previous work.

It follows from § 3 that we have first to obtain the gene-
ral form of the analytical representation of a Picard variety
VQ on a d-ple Picard variety T p ; evidently this will depend
upon the structure of the (Abelian) group (3d of automor-

phisms which generates the involution id on VQ whose image
is Vq . In the case of an elliptic curve ( q = 1) it was shown

by Chisini [4] that (3d is either cyclic or of base 2. An exa-
mination of his work suggests that, in the general case,
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either cyclic or of base k, k is any integer lying
bet,ween 2 and 2q inclusive. The result is contained implicitly
in Andreotti’s canonical form (§ 2) for a Picardian involu-

tion on this was pointed out to the author by Prof. An-
dreotti, who also supplied the following proof, w hich is ana-

logous to Chisini’s geometrical treatment of the case q = 1.

Writing q for p in (2), we observe that we have to deter-
mine the nature of the representation of as a group of

translations in the real space S2Q (~1 , 1 ~2 , ..., 021), where

Us = x$ + ( s = 1, 2, ... , q). This will be unaltered if,
for convenience, we suppose the period matrix «Ùrs) to be of

the form (Er iE,), where (E) denotes a unitary matrix. The
equations (2) then become

Thus the group of translations in question is given by

Here each number Y ... , v2Q is a divisor of the next. If,
then, k denotes the number of vts which are greater than unity
it follows that can be represented as the direct product
of k cyclic groups. The fact that the numbers vs can be chosen
arbitrarily, subject to the condition stated, follows from the
general theory of Riemann matrices. If instead all save one

of the v’s are unity, (3d is simply a cyclic gronp, of order c~.

From this result we obtain the representation of Vq and
thence of Wp. Let In be the cyclic involution determined on
V q by any one of the above-mentioned groups of antomor-

phisms ; and suppose, as is always permissible, that V* is

situated and endowed with ordinary singularities,
and that the equation of ~q , in non-homogeneous coordinates,
is ... , xq+1) = 0. Then In is represented by the equa-
tions 

°

where is a polynomial chosen so that the involution thus
obtained is irreducible and without coincidences (for the con-
ditions that G must satisfy we refer to [10]).
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With a change of notation, let n1, n2 , ... , nk be the re-

spective orders of the cyclic involutions which form the base
so that each number n, divides na+1, and nln2 ... nk ~- d ;

then V 41 is representable in the,field of rationality defined by
the elements

where 01, O2, ... are suitably chosen polynomials in x2 , ...

and where

We may in particular represent V. by the pair of equations

The conditions of irreducibility for the variety (6) are similar
n those in the case q -1 (c.f. [8]). Corresponding to this
choice we have a representation for For supposing that

Vp*-q is situated in and represented by the equation
y2 , Y ... , 

= 0, ~’e see that T~~ is represented by
the set of equations

where 9. 1 g2 , 1 ... are suitably chosen polynomials in 
... , YfJ-fl+1 . 

’

6. Questions of classification. Torsion of yVp . The pro-
blem of classifying the pseudo-Abenloan varieties W p , for

assigned values of p and q, may be stated as follows: given
the appropriate characters of the variety V , to determine
all the birationally distinct types of variety We have

thus in each case to find the characters of the associated con-

gruence the value of the determinant with the correspon-

ding numbers s, and finally the characters of the manifolds
generated by the varieties (see below).

To begin with, we note that } cuts on each V,-, an
involution id which is generable by a group Gd of automor-
phisms o f V p-q, and that this group is either cyclic or Abelian
of base k (1~~~2g). The group Gd consists of those tran-
sformations of ~ which leave each invariant; the second
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fact is a consequence of § 5. Hence we have in the first place
to determine all those varieties which admit such groups

for every such group we shall have an involution id of

known order d and with a set of coincidence loci of various

multiplicities and dimensions; these will furnish the numbers
s and h. Analytieally, this amounts to determining all the

varieties V p-q which can be represented by a pair of equations
of the form ,

where the polynomials f, g2 , ... have the same meaning as
in § 5. The invariant characters of jd w ill furnish those of the
congruence (V, 1.

In the particular case where all the dimensions h of

the manifolds B (s) are equal to p - 1, we have correspondence
formulae which connect the characters of the canonical systems
of V p-q and Vp q or, what is the same thing, { VQ } ; these

formulae have been given in [12]. They may serve to check the
previous results; but they may on occasion be evanescent as,
for instance, in the case of a elliptic surface W2 containing
an elliptic pencil of elliptic curves, or an elliptic threefold

W. containing an elliptic pencil of Picard surfaces. If instead
there are values of h  p - 1, there will be fundamental ele- .
ments in the correspondence between and V~-q~ and for-
mulae for this case are not yet known.

The manifolds w hich have already been mentioned arise
in the following way. In the mapping of W~ on the ge-
neric trajectory Vq corresponds to a d-ple Picard variety 
the representation being without branch points. Hence the

branch locus on TVp is either lacking altogether or else consists
of a number of irreducible varieties each of which is genera-
ted by V* ’s. To_ each generator V* .9 -1 say, of an (8 -l)-fold
component of the branch locus, there corresponds a variety
Vq, II which is an element of the coincidence locus
on Wp , and which is such that VQ . Evidently 
is itself a Picard variety, for it is mapped on a d/s-ple Picard
variety without the intervention of branch points; it is

in fact a trajectory of the group ~.
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We denote by an irreducible component of the mani-
fold generated It may happen that there exist two
varieties 2~, j5~ , corresponding to the same value of s,
which are algebraically isolated but such that 
in that case Wp has divisor Crh &#x3E; 1, i.e. is endowed with torsion.
While the presence of varieties Vq, s gives rise to the possibi-
lity of torsion of various dimensions, the general question is

complicated, as the following remarks suggest.

i) For the elliptic surfaces w2 Andreotti [2] has given a
formula which expresses the divisor a in terms of the characters

s ; from this it follows that, if there are no curves V1.. on
W2 , then a 1. On the other hand, Gherardelli (see [2])
has show n by an example that the mere presence of two

curves Vl, s with equal values of s does not necessarily imply
that (y &#x3E; 1.

ii) It is interesting to note that the first of the above

results does not in general extend to varieties wp with p &#x3E; 2.

Consider an elliptic W3 containing an K Enriques » congruence
} of trajectories, i.e. a congruence whose elements are

mapped by the points of a non-singular surface which is a

birational transform of the sextic surface of Enriques ([7]).
It is well known that this contains rational pencils 10 1 of el-

liptic curves @ each including two reducible members 2~1’
202 such that ~1’ e2 are algebraically disequivalent. It fol-

lows that the surfaces belonging to } and corresponding
to the curves ~, e1 , ~2 behave in a similar fashion and

hence that W3 is endowed with torsion.

Suppose now that the complementary (elliptic) pencil 
on w3 consists of regular surfaces of genera and plurigenera
unity of the kind which carry Enriques involutions j2 ; since

such involutions are free from coincidences ([7]) we see that
there can be no curves in 

An example of such a threefold is easily constructed. With
the notation of § 4, let x2) 0 be the equation of a

non-singular plane cubic, and x2) = 0 that of a tritan-

gent conic. Let Ys) = 0, ’Ys) = 0, denote

respectively the equations of an Enriques surface and the
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tetrahedron whose edges form its double curve; then the

equations

represent a threefold of the kind required.

iii) On the other hand, it is known from the theory of the
Abelian (hyperelliptic) surfaces that certain Picard surfaces

can carry Enriques involutions having a finite (non-zero) num-
ber of coincidences ([3]). If, then, we suppose an elliptic
threefold W3 with an Enriques congruence IV,) } to contain

an elliptic pencil } of such Picard surfaces, we shall have
a finite number of curves in { Y1 }.

iv) Again, an elliptic threefold Wg may possess an apparent
torsion due simply to singular features of the analytical repre-
sentation. Thus suppose that ~3 contains a « Kummer &#x3E;&#x3E; con-

gruence I of trajectories (i.e. one birationally equivalent
to a Kummer quartic surface) and an elliptic pencil 
Picard surfaces bisecant to (Vi). Let y2 , Ys) = 0 repre-
sent the Kummer surface, and Ys) == 0, one of its

Rosenhain tetrahedra. Then, with the same interpretation of
the polynomials f and g as before, the equations (8) represent
a threefold W3 of the desired type. In this case there are 16
isolated curves Vl.2 corresponding to the 16 coincidences of
the involution j2 . But the « torsion» of the Kummer congruence
arises from the fact that the surface f = 0 possesses non-

ordinary singularities in the shape of 16 isolated nodes.

7. A particular class of para-Abelian variety. Consider
a variety Wp containing a congruence (Vl } of the kind descri-
bed in § 3; suppose that Wp contains also a congruence

of birationally equivalent varieties Vp+q which instead
of being Picardian is Abelian of the first species (§ 2), and
that in addition the involution id cut by } on the generic
Vq is cyclic, being generated by a transformation of the form
(3), where p is replaced by q, and where bi , bi are suitably
chosen constants; in fact, by a change of parameters, we can
always assume the bi ’s to be zero. The cyclic group which
generates is contained in the series 21 of transformations
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represented by ut’ = Ut + at , ~/ = eiui + aj, where a, , a, are
arbitrary parameters; and within E there is a discontinuous
series of transformations which ieave id invariant, namely those
determined by arbitrary values of at and by values of a, such
that 

By virtue of the presence of the congruences 
the variety Wp is a special case of the para-Abelian variety
defined in [11]. Evidently it is representable on a cyclic mul-
tiple variety Wp which is constructed as in § 3. The discon-

tinuous series of automorphisms on VQ gives rise to a similar
series on W . The remaining properties of wp are closely ana-
logous to those of a pseudo-Abelian variety of type q ; they
have already been established in [12]. Thus, while for the

pseudo-Abelian variety the canonical varieties Xh (h  q) are
all effective of order zero, the corresponding canonical varie-
ties of Wp may be either effective or virtual of order zero.

The equivalences for the varieties X h ( W p) { h &#x3E; q) and the

inequalities for the characters will also be found

in [12]. In fact, W~ is pseudo-Abelian of type less than q.

8. On special pseudo-Abelian varieties. In previous work
we have had occasion to consider the special Picard varie-

ties ; we recall that a Picard variety V41 is termed speciat if
it contains a Picard congruence of Picard varieties

V (1  q 1), in which case it must contain a com-

plementary congruence I of Picard varieties Such

a variety may be regarded as pseudo-Abelian either of type
ql or of type q q1; for either of the above congruences may
be thought of as a congruence of trajectories of an invariant
subgroup contained in the complete group of transformations
of the first kind on Similarly we may envisage a variety
V, which contains three or more Picardian congruences of

Picard varieties the sum of whose dimensions is q.
In an analogous manner we may consider a variety Wp

which can be regarded as pseudo-Abelian in two or more dif-
ferent ways, by reason of the fact that it contains invariant
, subgroups of the group G defined in § 3. Let (q1’ q2 , ... , qr)
denote any partition of the number q, and consider the variety
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are Picard varieties and is any given manifold. Then
the variety Wp which is mapped on the d-fold variety Wp
in the usual way contains r congruences ’ 7g i (i 1, 2, ... , r)
of Picard varieties, each of which is generated by trajectories
of an invariant subgroup of ~ . We may call Wp a special
pseudo-Abelian variety of type (ql’ q2 , ... , 9r) and determinant
d. Evidently each congruence : « of trajectories on Wp is
d-secant to its complementary congruence . We could

of course construct a wider class of special pseudo-Abelian
variety for which the intersection numbers [ Vqs Vp_qi] are

unequal; but the representation of such a variety would be
more complicated. We should also be faced with questions of
existence which depend in their turn on difficult problems
concerning the special Picard varieties.
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