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CRITICAL REMARKS ON SOME BASIC

NOTIONS IN BOOLEAN LATTICES. II.

Nota (*) di OTTON MARTIN NIKODÝM (Gambier, Ohio (U.S.A.))

The present paper is the continua.tion and termination

of the other one by the author: « Critical remarks 1) on

some basic notions in Boolean lattices I ».

In the part I the role of the notion of equality is ana-

lyzed and the notion of homomorphism is clarified. This

part II deals with ideals and with the notion of genuine
extension in Boolean tribes. There are added examples
concerning various behaviour of non negative measures.

These two papers have not an expository character,
though neither new theorems nor problems have been

aimed at. As mentioned in part I, the above important
notions were rather confused in the literature and therefore

they should be clarified through a deeper analysis and precise
definitions. The author endevoured to do this to the extent
he needed for his own research work. The author believes
that the papers I and II will be useful for mathematicians

interested in Boolean tribes.

Since this Part II is the continuation of the Part I and

since both parts should be considered as a totality, we

refer continuously to I, and even conserve the current

t*) Pervenuta in Redazione il a maggio 1957.
Indirizzo dell’ A. : Kenyon College, Gambler, Ohio (U.S.A. ).
(1) Anais da Academia Brasileira de Ciencias. Vol. 24, (1952),

p. 11H-1S6. Both papers represent part of the work of the author under
a cooperative contract between the U. S. Atomic Energy Commission
and Kenyon College, (Ohio). The manuscript of I and II was submit-
ted, March 1951, to the .A. E. C. and afterward sent, upon invitation.

te the Anais where it was accepted. However Part II could not there
appear for reasons till now (30/VI 1957) unknown to the author. This
Part II appears now under the grant of the U. S. National Science
Foundation.
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numbers of chapters and sections. Numbers in [] refer to
the list of papers at the end. Only those papers are quoted
which have been essentially used by the author, and no
complete bibliography of the topic has been intended.

§ 3. - Ideals.

18. - We recollect the fundamental notions and proper-
ties of ideals in a Boolean tribe, for this may be useful
in giving precise proofs of several statements involved in

examples sketched in this paper.
Since a tribe (d) can be conceived as a Stone’s ring,

we con consider ideals in (A), as we use to do in any ring.
The ordinary definition of an ideal, taken from algebra [10]
is, in the case of a tribe, equivalent to the following one:

By an ideal in (A) we understand any not empty set J
of somata such that:

The condition I ) can be replaced by:
1’) if a, b E J, then a -~- b E J.

The ideal J generates the notion of equivalences modulo J
for somata, a =J b, defined by a -E- b E J.

The obvious equalities:

give a proof of the equivalence of several following state-

ments : I) a =J b; II) there exists p, q E J wi th a = b + p- q ;
III) there exists p, q E J with a = b p + q; I17) there
exists p E J with a -f - p = b -~- p ; ~V) there exists p E J with
a - p = b - p.

The equivalence-relation modulo J possesses the formal
properties of the identity, and is a relation whose domain,
range and field coincide with A. The operations a + b, a · b,

I) Of course, since J is a set of somata, J aught to be equality-in-
variant.
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co a, a - b, a -f - b are invariant with respect to «=~» e. g.
if a =J a’, b =J b’, then a.6=~~-~. The relation a =J b is

equality-invariant, but a = b and a ; b are not invariant

with respect ~.

If we define on A a new ordering relation defi-

ned by a? * y =J x, the collection A will be organized into

a new Boolean tribe (Aj), which we shall call the equiva-
lence-tribe of (A) modulo J. The notion of equality in (A,,),
generated by -5:.J, is precisely the equivalence =~ intro-
duced above.

The statements x +J y =J z, etc. are equivalent
to x -f - y =J z, co x =J y etc. respectively, hence we can use
old operation symbols -, . , co, etc. instead of the new

ones -~-J · J ooJ, etc. when dealing with (Aj).
The statement is equivalent to x - y E J. We

also notice that if a ~- b =J c, there exist ai , y b, such that

and similarly for other opera-
tions. If S is a relation with (I S = 1) 8 - CI~ ~ = A, having
the formal properties of identity, being equality invariant,
and such that the operations a + b, a · b, are invariant with
respect to 8, then there exists a well determined ideal J
in (A) such that is equivalent to a =J I~.

19. - An ideal J splits the set A of all somata into

mutually disjoint subsets, called equivalence-classes modulo J.
We define :

Given a soma a, the set of all somata x such that x =a
is termed the equivacdence class modulo J determined by a,
is denoted by [a], and a is said to be a representative of [a].
The following are equivalent : I) [a] fl [b] =1- 0; II) a =J b ;
III) [a] _ [b]. We have J = [0].

If we introduce for the equivalence ?lasses I, ~, ... the

ordering relation

where b are representatives of ç, 1l respectively, the rela-
tion thus defined is independent of the choice of the repre-
sentatives a, b of E, n, and it organizes the class A of all

equivalence classes into a Boolean tribe, called the quotient
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tr,ibe of (A) inodulo J, and denoted by (A)/J or The

equality =’ on [Aj] is the identity of classes.
For the operations in we have

The set lal -f-’ [b] is identical with the set of all a1 + bi,
where a =J a1, and analogously for other operations.

Both tribes and [Aj] are finitely isomorphic, hence
even strongly completely isomorphic, the isomorphism R
from (Aj) onto [A,,] being defined by

19. - There is a hemimorphism S from (A) onto 
defined by

and hence, there is also a hemimorphism T from (A) onto

[Aj] defined by

Conversely, it Q is a hemimorphism from (A) onto i A’),
then the set of all somata x E A, such that is an ideal

J in (A), and Q satisfies the conditions

20. - For some purposes we use to introduce denume-

rably additive ideals, even in finitely additive Boolean tribes.
We have a double choice in definition :

3) Usually no discrimination is made between and and

both are called « the quotient tribe modulo J- though they are really
different.
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An ideal satisfying (I’) will be termed denumerably ad-

ditive ideal in (.~), while such one which satisfies (I"V), will
be termed weak denumerably additive ideal in (A). An ideal
will be termed finitely additive if w-e shall want to emphasize
that o0 one of the conditions (I’). (IJV) is supposed to take

place.

20.1 - An ideal may not satisfy neither (I’) nor A

denumerably additive ideal is also a weak denumerably
additive ideal, but the converse is not true.

1) E. g. Let (A) be the tribe of all subsets of (0. 1) with
set-inclusion as ordering relation. The class J of a.1I at

most finite point-sets in (0, 1) is an ideal but it does not

satisfy neither (I’) nor 

2)E. g. Let A be the smallest collection of subsets of

(0, 1) containing each single-point set and every half-open
interval (a, ~) where and besides.
such that if a, b E A, then a U b E A. (0, E A. The

class of all at inost finite point-sets is an ideal satisfying
(In,) but not (I’).

21. - We shall sketch a proof of the following theorem:
If (A) is a tribe, (J) a denumerably additive ideiil in it,

is also meaningful. and

Proof. There exist pn E J such that an + pri == bn + p~~ .
x

Since J is a denumerably additive ideal, the sum E pn
n = 1

is meaningful. Hence

Since
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we have

hence

Put

We get:

00

hence 2 b,~ is meaningful.
"=1

Now we have b,~ = + q--, where r", q,~ are some

elements of J. Put

is meaningful.
Now we have

Since

we get

. 

On the other hand

which gives
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Having this, consider

We prove similarly as before that

which gives

The results (1) and (2) complete the proof.

00

21.1. - Under similar circumstances, if H a,, is mea-
"=l

n i n gf ul, then

The above theorems show that, even for finitely additive
tribe, if the ideal is denumerably additive, then denume-

rable operations are =d-invariant. This is obviously not

the case when J is only a weak denumerably additive ideal,
00

because it may happen that aft E J, E an is not meaningful.
n=1

though an =J 0.
Denumerably additive ideals are especially important in

the case the tribe itself is denumerably additive. In this

case the proof of theorem n. 21 may be replaced by a very
simple one.

22. - Let (A) be a finitely additive tribe and J a denu-
00

merably additive ideal in it; if £ a. =J b, then there exist

.b", such that a", =J bn and E bn ._-_ b. An analogous property
holds also for denumerable products.

Let J be a denumerably additive ideal in (A), and [Ail
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the tribe of equivalence classess modulo

meaningful, then coincides

uu

with the set of all L bn where (n = 1, 2....).
n=1

Let us remark that it may happen, even if J is a denu-
00 x

merably additive ideal, that 2’ is meaningfuL 
n=1 n=i

does not exist at all.

E. g. Let (A) be the tribe of all subsets of (0, 1) having
the form

where E, F are at most denumerable sets of points, where
the union is finite and whûrp 0~x,~.l 0 ~ ~_ ~ 1; we
take set-inclusion as ordering relation on ~..

The class of all at most denumerable sets of points is

a denumerably additive i deal in (A).
Let 0 be a perfect non dense set in (0, 1) with 0 e P.

and let (p1, I (z = 1, 2, ...) be all corresponding
free intervals. If we put qls), the all will 1

be not ineaniugfnl, though E’ [an] =’ [ 1 ].
n=i

If S is a general « equality »-relation, with (| S = |) S = A.
and such that finite and infinite operations on somata

oc

uf A are S-invariant in the following sense: if all is
M=l

/ 00 B / 00 .

meaningf ul, (n =1, 2, ...), then an) », then
S generates a denumerably additive ideal J in A. defined
as the set of all somata x, for which xSU.

23. - If J is a denitmerably additive ideal in (A), then
the known homomorphism from (A) onto (Aj) is a denume-

_ rable-operation homomorphism.
The converse is not trne, but we have the following

tlieorems :
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If T is a denumerable-operation homomorphism from

A) into (A’), and if J is the set of all somata a E A such
that aT0’, then J is a weak denumerably additive ideal.

If T is a strong denumerable-operation homomorphisni,
then the above J is a denumerably additive ideal.

E. g. Let (A) be the tribe of all subsets of (0, 1;. ,3i U

U p) N q where p, q are at most finite sets of points, where
t,he set-union is finite, and 0~ oci ~ 1,  1: let 

be the tribe of all U (a;, as before, and let the ordering
relations on (A) and (A.’) be set-inclusions.

Let T be the correspondeiCt’ which attaches 

to every ( U (xi, ,3i’ U p) ~ q. The relation T is ;1 dcnuuie-

rable operation homomorphism from (A) onto (A’).
The corresponding ideal J is the class of all at most

finite sets of points, hence it is a weak denumerably addi-
tive ideal.

§ 4. - Genuine extension of a tribe.

24. - Let (A), (A’) be t"-o tribes. Notions reared to (A’)
will be denoted with primed symbols.

(A) is said to be a finitely-genuine subtribe o f (A’). and
(A’) a finitely genuine exteitsioit of (A), if and only if the

following conditions are satisfied for all somata a. b.... of (A) :
10 a + b = c is equivalent to a -f-’ b -’ c,
II" a - b = c is equivalent to a ·’ b =’ c.

1110 1 =’ 1’,

IV° 0 = ’0’.

It follows that A c A’.

In the case the above conditions besides
for somata a, b of (A)

oc oc

vo E an = b is equivalent to I’ an =’ b.
nm "~1

the tribe (A) is said to be a denumerably subtribe

of (A’). and (A’) a denumerably genuine extell.’1ion of (A).
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If besides 10. I’To we also have for somata of (A)
V’. E Qx = b is equivalent to E’ a~ =’ b,

xEM aEM

(for every not empty set M of indices),
we say that (A) is a completely genuine subtribe o f (A’), and
(A’) is a cosnptetely genuine extension of (A).

24.1. - If (A) is a finitely genuine subtribe of (A’), then
the following statements on somata a, b, ... of (A) are equi-
valent:

The equivalence of I) and I’), and also of II) and II’)
follows from Io only, and also from 110 only.

If (A) is 8. finitely genuine subtribe of (A.’), then the

following couples of statements on somata of (A) are equi-
valent :

If (A) is a denumerably genuine subtribe of (A’), then

for somata of (A) the statement

is equivalent to

If (A) is a completely genuine subtribe of (A’), then for
somata of (A) the statement

is equivalent to
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25. - We shall prove the independence of the conditions
I°, II°, Ill., IV° 4).

E. g. 1) where I°, III°, IVO are satisfied but 110 is not

satisfied.

Let A be the collection of the following subsets of 0, 1’ :

where the set-union is finite and where Q ~ a~ ~ ~; ~ 1.
Let the ordering relation on ~. be the inclusion of sets 5).

Let A’ be the smallest collection of subsets of (0, 1) con-
taining every closed interval (a, every single-point set,,
and such that if a’, b’ E A’, then a’ U b’ E A’, and if u’ E A’,
then ~0, 1 E d’. Let the ordering relation on A’ be the
set-inclusion.

For a, b E A we have

where r denotes the set of all inner points of E and E

denotes the closure of E.

The following are equivalent for somata of (~) :

and we also have

have a · b = 0 and a .’b =’ the set composed of the single
point 1/2.

E. g. 2) To have an example where II°, III°, IVO are
satisfied and 10 is not satisfied, it suffices to take the same
collections A. A’ as in the preceding example I ). and define

4) The notion oi genuine extension and the theorem stating the
independence of I° - 1Vo were presented to the Intern. Congress of
Mathem. in Cambridge (Mass.) (19õO).

5) This tribe is used in the S. SaK8’ book on integration [221, and
the somata are termed - 
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on both the ordering relation as the converse of the

set-inclusion.

E. ~. 3) Where I°, II°. 1110. are true but IV° is not true.
Let A be the class of all sets to U I’, where ro df (- 2, - 1) ’

and F is any subset of 0, 1,. Let  mean the set-inclusion.
Let A’ be the smallest collection of subsets of ;0. 1) U o

containing A, and such that if a’ E A’, then

and if a’, b’ E A’, then a’ U b’ E A’. The ordering relation on
A.’ is defined as set-inclusion.

The following are equivalent for somata of A :

besides we have 1 =’ 1’, but 0 = W, 0’== ~5 , y hence we

have 0 ~’ 0’.
E. g. 4) At~ example where I°. II°. IV are satisfied but

III° does not hold is given by the same collections A, A’
as in the preceding example 3), if we define, on both, the

ordering relations as the converse of the set-inclusion.

25.~. - Let us remark, that in all four above examples
the following statements are equivalent for the somata of (A):

It follows that if we admit for the two tribes (A) and (A’)
the only condition (1) none of the conditions I°, II°, III°,
IVO will follow. We can even find an example where (1)
is satisfied but where all four conditions 1° - IVO will be
not satisfied.

Let us denote by (A), (A’) ; (A), (B’); C), (C’) ; (D), (D’) the
tribes considered in the examples n. 25, 1). 2), 3), 4), respe-
ctively and provide symbols referring to them by indices

x, ~, y, 8 respectively.
Let E be the class of all quadruples (a, b, c, d), where

aEA, bEB , cEC. d E D, and define (a, b, c, b1 ei di)
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the conjunction of the following proposition

E will be organized into a tribe (E~.
Let E’ be the class of all quadruples (a’, b’, c’, d’). where

i’ E ~4’. b’ E B’, c’ E C’, d’ E D’ with the ordering relation

4]efiiied by

BB"rp obtain a tribe (E’~.
we see that (1) is satisfied, on account of the remark

made at the beginning of this n. 25, 1); but we also see

that no one of the condition 10. 110, III°, IYO is satisfied 1).

26. - Remark that if (A), (A’) are tribes where A C A’,
and if for the somata of (A) the statements

are equivalent, then, for the somata of (A)

and even

and similarly for infinite products.
The above remarks show that, for the notion of subtribe,

we do not need to consider analogous possibilities con-

cerning the meaningfulness of infinite snms, as 1Bre did

when dealing with homomorphism.
~ 

6) To fit the constructions permitted in the Principia Mathem. [1J,
we may define a quadruple (c~, b, c, d) as the ordered couple b),
ic, d)] of two ordered couples (a, b1 and (c, d).
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26.1. - It is easy to have an example where A d ~ but
where the condition a ’5:.’ b does not imply for somata

a, b of (A).
E. g. (A) is the tribe of al l Lebesgue-measurable subsets

of ~U, 1) with set-inclusion as ordering relation.
(AJ is the same collection as A, but with a’ ~’ b’ defined

by the condition

We have A = A’. We have

but it is not true that

because the inclusion

is not true.

An example where A C A’, but where a - b does not
is given by the above one if we interchange

A with A’.

27. - Let (A) be a tribe and J an ideal in (A). Consider
(A) and (A.’) d _ (Aj) i. e. the equivalence tribe modulo J.
We have A .= A’, nevertheless A is not a finitely ge-

nuine subtribe of (A’) and also (A’) is not a finitely genuine
subtribe of (A.). Indeed the statements

are not equivalent, unless J is the class composed of the

single som a 0.

’ 

28. - A tribe (A) may be a finitely-genuine subtribe of

(A’) but not its denumerably-genuine subtribe.
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E. g. Let (A) be the tribe of all finite set-unions

where 0 ~ a~  1, 0:.j~~l, and where the ordering rela.
tion is the set-inclusion.

Let (A’) be the tribe of all borelia.n subsets of (0, 1;
with set-inclusion as ordering relation.

«) is obviously a finitely-genuine subtribe of (A’), but
it is not its denumerably-genuine subtribe.

Indeed let E be a non dense perfect subset of (0, 1) l
with 0, 1 E E, and let (pi, qi), (i = 1, 2, ...) be all correspon-
ding free intervals. We have for an= (pn, qn), (n = 1, 2, ...)

but

28.1. - ~ tribe (A) may be a denumerably-genuine sub-
tribe of (A’) but not its completely-genuine subtribe.
E. g. Consider the set V of all elements each of which

being an ordered couple (x, a) where x E (0, 1) and where
a varies over the range of all denumerable ordinals. Let A

be the smallest collection of sets of element, such that
1. If a is a denumerable ordinal and E a borelian

subset of (0, 1), then the class of all elements (x, x) where
ac E E, belongs to A;

2. If cp., ~p~, ... , is an infinite sequence of sets
00

with q. E A, then U y. E A ;

3. then (V 0V cP) E A.
If we consider the set-inclusion as ordering relation on

A, we obtain a denumerably additive Boolean tribe (A).
The class J of all at most denumerable sets is a denume-

rably additive ideal in (A). Put
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Let (A’) be the class of all subsets of V with set-inclusion
as ordering relation. and put

(B) is obviously a denumerably genuine subtribe uf (B’,,.
We shall prov e that it is not a completely genuine subtribe.

Define; for all a, the set ~, as the set of all elements

(x, aj, ivhere z E (0, 1), (open interval), and denote by a, the
equivalence class modulo J whose representative is c¥7..
We have

Nevertheless

for U §v differq from co ’?] by a non denumerable set of
x 

’ ’

elements.

29. - Let (A), (A’) be two tribes, we say that R is a re-

la.tion which fi11,itely entbeds (A) into (A’) if R is an iso-

morpliisin from (A) onto a tribe (r) which is a finitely
genuine subtribe of (A’). If such a relation R exists we say
that (A) can he finitely-eiitbedded in,to (A’), and that (A’) is

a finite-operation extension. of (A) through/ isomorphism.
In the case where (h) is supposed to be a denumerable.

genuine subtribe [completely genuine subtribe] of A’, we

say that R denumerably einbeds (A) into (A’) [completely
entbeds (A) into (A’)] and that (A’) is a denumerable-operation

of (A) extension of (A)] through isomorphism.
The above considerations seem to clarify all ambiguities

involved in the notions of homomorphism and embedding
in Boolean tribes.

§ 5. - Measure.

30. - If we attach to every soma a of a finitely-additive
Boolean tribe (A) a real number p(a) such that
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p(a) is a finitely-additive real on (A) 7,.
Usually is supposed that tt(a) ~! 0. In this case we say

that the measure is non 

In the sequel we shall confine ourselves to case only.
The measure is said to hp effective, if = 0

implies a = 0.
If instead of 2", the more general following condition

2" is fulfilled we say that the measure is denumerably and-
ditive on (A):

2°d. if a E A. an are all disjoint, (n = 1, 2,...), E an is

cx&#x3E;

meaningful, then the series 2 ~a~) converges and
S4=1

Besides the obvious trivial measure = 0 for all

~a E A, there always exists. on a given not trivial tribe (A),
a two-valned non negative finitely additive measure : Let J
be a maximal ideal in (A), i. e. such that J -!,= A, and if J’

7) The measure theory was founded G. Jordan, H. Lebesgue,
and E. Borel for point sets in the euclideun space, and carefully stu.
died by C. Caratheodory [~1] The notion of set function was introdu-
ced by H. Lebesgue [15], p. 1?10, and studied by Ch. de la Vallée

Poussin [16] and M. Fréchet [17 j J who has considered set functions

even for abstract sets. Measure on abstract Boolean tribes were intro-

duced by C. Caratheodory [3] and by 0. Nikodym [14). For generali-
sation of measure to lattices see G. Birkhoff (~J, p. 74 ff. Set functions

are also treated in the known book by H. Hahn [181. [19] and consti-
tute a basic notion in the Calculus of probability [20]. For more details
see G. Birkhoff s book [4]. Basic theorems for abstract set-functions

one can find by S. Saks [221. See also the book by P. Halmos [24].
Recent deep studies are by e. g. Maharam, Ilaue, Krickeberg, Hewitt.
Yoshida and others.

8) We do not consider the Teneraliaation of the notion of a non

-negative measure, where the « value - oo is also admitted as a pos -
sible measure of a soma. Nevertheless to be more clear we shall use
sometimes the term - finite measure».
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i s an ideal in (A) with J C J’. then J’ = A. If we put for
’

and for all

we get a finitely additive measure, which is however not

effective unless (A) is composed of the only two somata 0
and 1. [25].

Since finitely additive measured tribes are nowadays
important for the functional calculus e. g. [39], we allow
ourselves to give some examples showing various possibi-
lities which may occur in measures.

31. - There exists a denumerably additive Boolean tribe
having no atoms, and which does not admit any finitely
additive, f inite, effective non negative measure. The follo-

wing example was communicated to the author by J. Dixmier
in a letter dated Sept. 6.1950 ~).

Let V be a collection of some elements with cardinal

&#x3E; go. Let (~) be the tribe of all subsets of V with set-inclu-
sion as ordering relation. is a completely additive tribe.
The class J of all at must denumerable subsets is a

denumerably additive ideal in (A). Put (H) d f (A)/J. This is
a dennmerably additive tribe, having no atoms. We shall
show that there exists no finitely additive, non negative,
finite and effective measure. Supposed, by impossible; p(§)
be so. There exists ~ E H with ~,(~~ &#x3E; 0 for the cardinal of
T~ is &#x3E; No. Take suoh a soma t. Since &#x3E; 0, any repre-
sentative p of ~ is a non denumerable set of elements of V.
Let p be such a representative and denote by N its cardinal.
We have N &#x3E; No. M, there exists a class M,
of power N, of sets Na , where p, and such that all

N~ are mutually disjoint and where

9) An atom o f a tribe (A) is such its soma a that b c a implies
that either b=0 or b=a. See [23~, [9].
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The set .Nx is the representative of a soma s~ of (H). If

x ~ ~, then Na nN, = 0 and hence sa · s~ _-__ 0. Since p is an
effective measure and ~ 0, it follows that &#x3E; 0.

There exists p &#x3E; 0 such that p for a non denu-

merable number of indices a. Hence for any naturale P

there exist distinct al , ... , ap such that ~ p, ... , ~ p.

Since sal -~- -F- ... + p, it follows that P o S p4p)
for P = 1, 2, ... which is a contradiction. The theorem is

proved.

31.1. - By applying Mac Neille’s embedding theorem
([2] p. 466) we get an example of a completely additive tribe
without atoms acnd not possessing any finite, non negative,
finitely additive., effective measure..

32. - There exists a denumerably additive tribe, without
atoms, and which does not possess any finite, non negative,
denumerably additive, effective measure.

The following example is known (See [4] p. 186). Let (A)
be the tribe of all borelian subsets of Q = (0, 1) with set
-inclusion as ordering relation, and let J be its ideal com-
posed of all borelian sets of the 1st category. Put 
The tribe (A) is denumerably additive, J is a denumerably
additive ideal, and (B) is also a denumerably additive tribe,
possessing no atoms.

There exists no finite, non negative, denumerably addi-
tive measure on (B).

The following proof has been kindly communicated to

the author by S. Kakutani.
Suppose ~, is such a measure. We may suppose 

Let p1, p2 , ... , pn , ... be an everywhere dense set of points
in Q. Denote by aik the set of all points x of Q whose

distance from pi is 1 k = 1, 2..... We have

There sets are representatives of 44k af [aa] where Aik E B.
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We have

Let

We have

hence

It follows that there exists vi such that

Consider the somata A.~, ~~ .... and the sects

where the set-complementary is taken with respect to Q,
(1) are open intervals containing the points PI, p2, ... re-

00

spectively. Hence U is an open set which is every-

where dense in Q, and therefore co U 
I 

is nowhere
t=1

dense and borelian, and then it belongs to J.
It follows

hence

hence
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But

and consequently 1  1/2 which is impossible.

32.I. - Now we shall define, on the above tribe (B), a

finitely additive effective measure.
If x E (B), ~ -+ 0, then there exists an open interval

(a, fi1 with 0 C x  ~  1 such that the equivalences dass

We know that for 0, x ~ 1 there exists a prime
ideal Jx in (B) such that x [9].

Take all intervals in (0, 1 j with rational extremities :

Put

a.nd choose the corresponding prime ideals J., which do

not contain Yn respectively.
Let pn(y) be the measure on (B) with values 0, 1 only,

defined by

Put

The measure f1(z) is additive and effective.
Thus we see that

There exists a denumerably additive Boolean tribe without

atoms, possessing a finitely additive, effective, finite and
non-negative measure, but n?hich does not possess any den/If.
merably additive, effective, finite, non negative measure.
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33. - A known simple example of a completely additit.e

tribe, without aloms, possessing an effective, denumerably
additive, non negative measure is the following one :

E. g. Let (J) be the tribe of all Lebesgue-measurable
subsets of ;0, 1) with the ordering relation a c b def ined by

It is isomorphic with the tribe of all Lebesgue-measu-
rable subsets of (0, 1) modulo the ideal composed of sets

of measare 0. The Lebesguean measure is effective. The

tribe has no atoms.

34. - A known example of a finitety additive tribe.
possessing an effective finitely additive meá,.

81.fre is given by the tribe of all finite unions

where 0 ~ as  1, 0 ~ ~s ~ 1, with set-inclusion as ordering
relation, and the Lebesguean measure.

The measure is not denumerably additive, as may he

easily seen by considering the free intervals of a non dense
perfect set E with meas E &#x3E; 0. The tribe is not denume-

rably additive, and has no atoms.

35. - It seems interesting to have the following example,
o f a additive tribe (but not denumerably additive)
n4thout atoms, and poB8eBsing a denumerably additive, e f
fective, finite, non negative measure.

E. g. Let i be the collection of all subsets of (0, 1)
having the form

where the union is finite.

Let B be the collection of all sets

’ b = qp -~- L~,~ (-f- algebraic addition of 8fats)
where E is a borelian subset of (0, f~ ~ of the to category.
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If we define on B the ordering relation as the set-in-

elusion, w get a finitely additive tribe (B3:
The class J of all borelian subsets of (0, 1) which are

of measure zero and, at the same time, of the 10 cathegory
is a denumerably additive ideal in (B).

Define The tribe (C) is finitely additive but
not denumerably additive.

Indeed if we put c ‘ 1 1/2n - 1, 2 ... and
consider the corresponding equivalence classes 0", we see

00 
: .

that E 0" is not meaningful
Notice that if

are representatives of the same equivalence class, then

~l = cp2 i. e. all representatives of the same equivalence class
ha ve the same «A - part».

Now, suppose that Pi, P2, ..., P,~ , ... E (C), with 
= 0 for i ~ ~, and that

be their representatives respectively, and Cfl, ... , 

the A-parts of them. we have =)= j.
00

The set b = (0, 1) oo U cp. cannot contain any segment,

because this would contradict (1). Hence b is a non dense
~et. Its measure cannot be positive, because in this case (1)
would be false too.

Now define for all P E ~C) :

F(P)y meas p, where p is the A-part of P.
It follows that

From this it is not difficult to deduce (see [14]) that, if

Ql. ... are mutually disjoint somata of (C) with the
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meaningful sum, then

The theorem is established.

36. - F. Wecken has proved [13] that if a denumera,bly-
additive tribe admits a denumerably additive, effective.
non negative and finite measure, it must be completely
additive, so there is no tribe which has a denumerably

effective etc. measure, and ,vhich would be denu-

Jlterably additive without being completely additive.
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