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A THEOREM ON INFINITE SEQUENCES OF
FINITELY ADDITIVE REAL VALUED

MEASURES 1).

Mentoria (*) di OTTON M. NIKODYM ( a Q~arrcbier, Ohio)

Introduction.

The known Helly’s theorem (1912) on sequences of functions
1ft (.x) of bounded variation is not only important in the spec-
tral theory of infinite matrices but it has also another aspect
of importance. Indeed, this theorem, as stated at the end of
Section 2 of this paper, can be given the form of a theorem
on finitely additive measures. To see this, let us remark

that to a non decreasing function in with

f ( 0) - 0 can be attached a finitely additive 0

defined on finite unions .F’ of halfopen subintervals 0 ~ ~ 

These sets F make up a finitely additive Boolean lattice
(Bi). Now, if we have a bounded sequence 0 of fini-

tely additive measures on (B,), the Helly’s theorem states

that a subsequence can be extracted therefrom, con-
verging on every .1~’, to a similar measure.
We shall prove that this theorem can be extended to a

(*) Pervenuta in Redazione il 12 febbraio 1955.

Indirizzo dell’A. : Kenyon College, Gambier, Ohio (Stati Uniti

~ d’America ) .
1 ) Research sponsored in part by the Office of Ordnance Research,

U. S. Army, under Contract DA-33-019-ORD-1104. The author pre-
sented this paper to the Circle of the Department of Mathematics, Ke-
nyon College, in fall 1952.
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finite or even to the denumerable cartesian product of replicas
of ( B1). To do this is the aim of this paper.

First we shall prove a theorem, analogous to the Helly’s
one, for functions of a finite number of variables.

The ordinary of the function of

a single variable, and which is the brickstone for the notion
of the variation of a function, will be replaced in the case of
several variables, by the Vitali-increment (defined in Section
2.), so we shall consider functions of bounded Vitali-variation.

The main device of the proof is the same as in the case

of a single variable, but cannot be used without a range of
quite delicate preparations, stated in several lemmas, so we

think that a rather detailed exposition of the whole proof
is needed. To avoid unnecessary complications we shall con-
fine our detailed proof to the case of two variables only. The
general case can be treated by induction, by using quite ana-
logous argument. Having the theorem on measure settled for
the the case of finite dimensions, the passage to that of

infinite denumerable number of dimensions does not offer

any difficulties. We do not know whether the theorem is true

for non denumerable dimensions, but we like to conjecture
that the answer should be negative.

2. Notations and terminology.

The unit square 0 ~ z ~ 1, 0  y  I will be denoted by
Q = Q, and the set of all its interior points by Ql. A function
f ( x, y) will be termed increasing if xl ~’ x2 , y1 ~ yZ imply

I yl) ’ f (x2 , I Y2). Thus the constant function is an

increasing one.
The same term will be used for functions of a single

variable. We shall write yl) ~ ( x2 , y2), if and only if

ae1 ’ x2 , I yl , ’ y2 , and ( ~1, 1 Yl)  ( x2 , I Y2), if and only it

~1  ~’2 ~ .~l ~ .~2 ·

The sets x&#x3E;a, y&#x3E;b; xa, y&#x3E;b; yb; 
y  b will be termed quarters at (a, b), the I, II, III and IV
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quarter respectively. The I and III quarters will be termed
main quarter.

Let ~." ~ I be an at most denumerable set of lines parallel
to the y-axis, and I Bm I an at most denumerable set of lines
parallel to the x-axis.

The point-set union :E"Âtt + 2:,,,B. will be termed grate.
The empty set is a grate. The rectangles we shall deal with
will always be supposed to have their sides parallel to the

axes of the system of coordinates.
The closed rectangle whose two vertices are (a, b), ( c, d)

where 0 ~ a  c ~ 1, 0 ~ b  d ~ 1 will be denoted by ( a, b ;
c, d). By a partition of a rectangte R we shall understand

any finite set of rectangles R, whose union is R and where

any two of which have no interior point in common.
For union of sets we shall use the symbol -r-, E, and for

intersection the dot and 11. The signs mean inclusion
of sets; denote strict inclusion (equality not permitt-
ed). A superscript dash and  ) will denote closure.

Let y) be a function defined on Q, an let R = a, b ;
c, Q be the 

By the Vitali-increnient of f on this generalized rectangle
R we shall understand the number V ( f (~, y) ; R) = f (a, b) +
-~- f ( c, d) f { a, d) f ( c, b).

The function f is said to be of bounded Vitali-variation in
Q if there exists hf &#x3E; 0 such that for every partition y ... , y

We shall rely on Helly-s theorem which is this:

If 1) (n, -1, 2, ...) are increasing functions on

and such that 2) 1,,(0) = 0, and 3) 
2, ...), then there exists an increasing sequence k (n) of indices
such that

exists. Such a is also increasing, f (0) = 0 and
f tx) ~ .I~. This theorem is a particular case of the analogous
theorem, where 2) is dropped and 3) replaced W ~ ;
in the thesis f (0) = 0 and f (x) replaced f (x) 
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A slightly more general theorem for a sequence of functions
of bounded variation is known. It is equivalent to the above
theorems. 

3. The Helly theorem f or functions of two variables.

1. DEFINITION. Let E be an everywhere dense set of points
in and f ( p) = f ( ~, y) a function defined on E. Let (
y°) E Q°. We say that f ( p) has ac limit at (xo , yo) in the I

’

exists for all sequences (xo + an, yo + bn) E E where an &#x3E; 0,
bn &#x3E; 0, a" - 0, bn -· 0.

In this case the limit is the same for all these sequences.
We shall write

Analogously we define the limits

where :J stands for II, III or IV.

2. DEFINITION. We say that a set A of points is a 
there exists a grate (~, such that A C G.
We see that if A is a r -set, so is every subset of A. If

Al , y Â2...., ... are r -sets, so is their The

empty set is a F.set.

3. LEMMA. If

1. E is everywhere dense in Q°,
2. y) is a bounded function defined for all

pEE,
3. for every point (xo , yo) E Q° all four quarter limits

exist
4. we put
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5. F is the set of all discontinuity points of y) in Q°,
then F is a r -set.

3.2. Since F is not a r-set, there exists a closed square Q’
n~c ( x, y) the supremum and the infimum of the function g at ( x, y)
respectively, i. e. the supremum and the infimum of all lim

--. (x, y), z,, E Q°. The numbres y), y)
exist for f is bounded.
z is a discontinuity point of g if and only if m (z)  y).

3.2. Since F is not a r -set, there exists a closed square Q’
such that Q’ C Q° and F’ _ .F’ Q’ is not a F-set. Take such a
square Q’. Let r  8 be rational numbers and put

Since P’ - where the union is taken for all ra-

tionals r, 8, and since the set of all couples r  s is denume-

rable, there exhst, r, s, for which is not a F-set.

3.3. Take such a couple r  8 and partition Q’ into four
equal closed squares Q2’ Q4 . At least one of the sets

must not be a F-set, say F,., s Qi. ·
Partition Q; again and repeat the above argument. We

obtain an infinite sequence of closed squares Rl &#x3E; I~2 &#x3E; ...

shrinking to a point ( xo , y,), and where R~, is not a

h-set whatever n may be.

We have yo) E Q’ C QO.

. 

3.4. Let us partition R n into at most four rectangles JB,/1),
R" ( 2 ), R,, (3 ), R,,(4) by means of the lines and y - yo .
Whatever the case may be there exist a sequence ~i ~2 ? ... , of

number 1, 2, 3, 4, such that

is not a F-set. Hence there exists in a point
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3.5. Consider the sequence ... , which surely tends to
.

We have

Put yn ) and choose an &#x3E; 0 so that the closed square

There exist un , vn E sn such that

Choose squares p V. around Un, 11" respectively and
contained in and find points qn E E such that

We obtain the inequalities

which give

Now this inequality is impossible, since lim = lim 

because, by hypothesis, all four quarter limits exist and

qn pn are lying in the same quarter, and both tend to (xo , yo).
The contradiction thus obtained proves the lemma.

4. We recollect that:

Given two points ( x, y) and ( ~ , y’), the symbols ( x, y) ~
~ (:1/, y’), (x, y) C (x’, y’) mean that x ~ x’, y ’5:. y’ and x  x’,
y  x respectively.

5. We shall say that a function f ( p) defined on a set P in
Q is increasing on P if and only if p ~ p’, p E P, p’ E P imply
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6. LEMMA. If

1. P is everywhere dense in Q,
2. F ( p) is an increasing function on P,
3. zo E QO,

then the main quarter-limits

both exist.

PROOF. 6.1. First we see that if &#x3E; zo,
with lim p" = zo , p n E P, then lim exists.

Indeed, the sequence I is bounded, because there

exists p E P with p  zo  

Analogously, if q, ~ q2 s: ... ::;: qn ~...  zo with lim qn =

= zo , them lim I’ ( q n ) exists.

6.2. Having this, we shall prove that if is any sequence
with Pn &#x3E; zo, i pn -. zo , then lim and lim Ir’(pn) exist.

There exists p E P with p  zo ; therefore F(pn) ... (1)
for all n. There exists a &#x3E; 0 such that, if we put zo =(0153o, yo),
we have + a, a) E There exists N such that, if

n &#x3E; N, we have p n E xo + a, Y9 + a). Now we can find
p’ E P such that p’ E (xo -f - u, 1; yo + a, 1) for P is everywhere
dense.

Consequently, for n &#x3E; N we have p’ and then

F(pn) ~ ~’(p’) ... (2).
From (1) and (2) the statement follows.

6.3. Choose partial sequences I aft I, out of ~ t Pn I
such that

Since and since they are in the I quarter,
it follows that we can select indices tending to infinity nl ,

112’ ... ; ml , m2 , .. , such that
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Since .F( b,~i), F(b",~), ... tends to a limit, we

6.4. Now take two sequences p~ &#x3E; zo, pl &#x3E; zo both tending
to zo and where Since PI’ P2, pz , ... - so ,

the sequence .F’(p2 ),..· also tends to a limit.

This limit equals both the limits lim and lim 

It follows that lim (I) .F’ ( p) exists. In an analogous way we

prove that lim (III) F ( p) exists too.

Obviously lim (III) F(p) ~ lim (I) .F’ ( p) which follows from
the existence of sequences .

7. The following lemma has an easy proof:
If 1. 1 ,,(p) are increasing functions defined on the set P,

2. P is everywhere dense in Q,
3. p ( p) = lim f n ( p) exists for all p E P,

then

p ( p) is an increasing function on P.

8. LEMMA.

If 1. f (z) is defined on Q,
2. f ( o, y) = f ( ~, 0) = 0 f or and y,
3. all Vitali increments of f ( z) in Q are non negative,

then

f ( z) is increasing in Q.
PROOF. Let (a/, y’) c~ (x", y"). We have, in general, 

y) = V o, ~ ; 0, y&#x3E;, where V denotes the Vitali increment.

We have

which concludes the proof.
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9. LEMMA. If

1. P is a dense set in Q,
2. are functions in Q with

f n ( o, y) = f n ( x, 0) = 0 for all s and y,
3. y) has non negative Vitali increments only,

then all four quarter-limits lim ( J) p ( p) ( p --~ z9 exist for

every z9 E Q°.
PROOF. 9.1. By Lemma 8 all are increasing functions

on Q ; hence, by Lemma 7, p (p) is an increasing function on P.
Hence, by Lemma 6, there exist the main quarter limits

lim ( I) p ( p), lim (III) p ( p) at all ,zo E Q°.

It remains to prove the existence of two other quarter
limits. 

°

The proof will be based essentially on Hell‘~’s theorem for
functions of a single variable, (and in analogous way, in a

general cas of n-~~ariables, the proof relies on the Helly’s theo-
rem for (n-1) variables).

9.2. Place a nem system of coordinates at the point 0’ = (0,
1) with the ~ -a.zis concordantly parallel to the and

with y’-axis directed oppositely to the y-axis. The gauge unit
will be the same.

Let z E Q, let a, b be its (~, y)-coordnates. Its (~ , y’)-coor-
dinates are a, 1 b. If a’, b’ are the ( ~’, y’)-coordinates of z,
then ( a’, 1 b’) are its (x, y)-coordinates.
A couple (a, b) of numbers with 0 ~ a~ s 1, denotes

two points in Q, one denoted by (a, b), if we refer them to the
(~, y)-system, and the point denoted by (a, b’), if we refer

them to the (x’, g)-system.

Put
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We have

for

Let us calculate the (e, y’) - Vitali increment of the function
gn(z) on a rectangle R. A simple computation gives:

Since is a function with non-negative ( x , y’)-Vitall
increment in Q. and vanishing on the ~’ and y’ axes, the Lemma
8 gives that gn (z) is a (x’, y’)-increasing function in Q. (3)

We have for every z = (x, y)’

9.4. Notice that hyp. 2 and 3 implies, on account of Lemma
8, that is (x, y)-increasing in Q ; hence the function 
of the single variable x, defined on 0 S x -c-- 1 is increasing
too.

In addition to that we have f n ( o, 1) = 0 and 1) ~
1) · I~, so we are in the conditions of the Helly

theorem for a single variable.
Hence a subsequence 1 ) ~ 1 can be extracted from

I f n(x, 1) I, converging everywhere on  0, 1 ) to an increasing
on  0, 1 &#x3E;,

9.5. Consider the sequence for p E P, (n =1, 2, ...).
Put p = (a, b)’ = (a, 1 b). From (4) we have

By (5) and hyp. 4 we obtain

and
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9.6. Recapitulating, we see that g"~n,(p) ~ I satisfies the follo-

wing conditions : These functions are defined on the everywhere
dense set P; g,~~n,(o, y)’ = g,~~,~~(x, 0)’ ; g"(ft) has a non-negative
(z’, y’}-Vitali increment; t(p) = lim on P; ~ g~~,~~(p) ( ~2g.

Thus we can apply to this sequence the result already
obtained in 9.1. i. e.

lim ( I’) t ( p) and lim ( III’) t ( p) exist for p - zo for all zo E Q° .

Having this, take zo E QO and a sequence I Pre I -. P such

that lim(II) 
Let

We have

hence

It follows, by (6), t(pn) = - p(pn), and is

monotonous, it follows that lim exists.

Thus we have proved that for every p n tending to z, in the

y) - quarter, lim p(p~) exists. By an already used

argument, in 6.4, we prove that this limit does not depend on
the choice of I p" t ~ so

In an analogous way we prove that

lim ( IV) p ( p) ~ I p - zø also exists. The Lemma 9 is proved.

10. DEFINITION. Suppose that the hypotheses of Lemma 9
are satisled. We delne the functions a (z), a (z) for z E Q° by
putting 

-

We have ~ 

11. All preparations being ready, we can apply the argu-
ment taken from ~’t’intner’s book (1929).
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We give it for commodity of the reader in this and in the

next subsection. First we prove that if zo = (xo, y9) E Q°_ is a

continuity point of a (z), 

PROOF. We have

Suppose that

By hypothesis Q is continuous at zo . Hence we can find

(~1, yl) with 3:1  ~o, yl  yo, such that

Hence, by (I)

Put

and chose points p’, p" where

P, (open rectangles).

We have p"  p’, and

Hence) from (2), we obtain

which is impossible, since p is increasing on P.
The assertion is proved.

12. We shall prove an inequality under the hypothesis of
Lemma 9.



277

Let z = (x, y) E QO.
Take four positive numbers a, b, c, d such that

We have

FErzex~. The above inequality shows, on account of 11, that
if zo is a continuity of o~(z), them lim exists.

13. Suppose once more that the hypotheses of Lemma 9 are
satisfied. Since, by Lemma 9, p ( z) possesses everywhere in Q°
all four quarter limits, and since = lim (I) p ( p), ( p E P,
p - z), therefore, by Lemma 3, the set of all discontinuity-points
of Q ( z) is a P-set. The remark in 12. allows to deduce that lim
fx (zo) exists for all za E Q excepting perhaps for points of a
grate G.

Let (~ be composed of lines Ai, A.2’’’. parallel to the 
and of lines B1, ... parallel to the y-axis.

On A1 the functions f " ( z) can be considered as functions of
a single variable. Since f" (z) is on A1 monotonic and the
sequence I is bounded, we can extract a subsequence

I converging everywhere on A1. Q.
From I we analogously extract another subse~uence

I which converges everywhere on 
We apply the same argument respectively to yielding

the indices and so on.

If we use the indices .

we obtain a subsequence of f,~ (z) converging everywhere in Q.
The function f (z) = (z) is, by Lemma 7, an increasing
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function on Q. We also have 0) = f (0, y) = 0 for all x and
y with 

Thus we have proved the following lemma:
LEMMA. Under the hypotheses of Lemma 9, there exists a

subsequence 1 of ~ I converging everywhere in Q.
If we put y) = lim (z), we have

1 ) y) has a non negative Vitali-increment,
2) 0) = f(0, y) = 0 for all x and 1/,

14. Now we can prove the Helly theorem for two dimensions.
TEOREM. If

1. Q is the closed square 0  x  1, 0 ~ y  1,
2. t. (x, y) are functions in Q with non negative Vitali-

increments,

4. 0)==~(0, y) =0 for all x and y,
then there evists a subsequence f x~,~~(x, y) ~ I of I fft converging
everywhere in Q to a function y).

Such a function f (x, y) has the properties
1) y) has a non negative Vitali increment,

PROOF. We choose in Q a denumerable everywhere dense
set P ~

Since t !,.(Zt) I is bounded, we can find an increasing sequence
I n) of indices such that f,,(zl) converges. From I n’ ~ I we extract
another sequence I n" I with converging f ,~~~ ( z~). We repeat this
argument. The sequence

converges on the whole P. If we apply the Lemma 13., we
obtain the theorem.

15. The theorem 14. holds true if we replace the condition
4. by the following more general
4’. Each 0) and each yj are increasing functions.
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Indeed, let us remark that the Vitali increment of a func-
tion of two variables y) on R will not change if we add
to y) any function or q ( y) of a single variable.

Having this, put g4z, y) = y) - f.(x, 0) - 1..(0, y) +
+ f,.(O, 1 0).

For any rectangle R w e have

In addition to that y) = g,,(:e, 0) = 0 and i g,,(:e, y) C 2K.
Since we are in the conditions of Lemma 13, we can find

an increasing sequence k ( n) of indices such that g ( ~, y) _
= lim y) exists.

Since f ~~~,(x, 0) ~ is a bounded sequence of increasing func-
tions, the one dimensional Helly theorem yields a subsequence
i I of k(n) I with converging

A further extraction of a subsequence gives a converging
sequence

and finally a converging sequence 0 t.
This proves the theorem.

1. REMARK. The square Q can be replaced by any rectangle
with sides parallel to the axes of the systm of coordinates.

4. Functions of several variables.

The Vitali increment constitutes a generalization of the

increment f ( b) f (a) of a function f (x) of the single variable
x. We have, for ~’  x", y’  y",

if we put, in general, for a  b, V (g (~) ; a; b) = g ( b) g (a).
This remark yields the recurrent definition of the Vitali-
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increment for ;

where the symbol a?i,...y~; t’ if means the n-dimen~ional
box with sides parallel to the system of coordinates and with

- two opposite vertices (a:i,... ~ ’ If if
Of course we supose that xi  x~ , ... , I  If
If the function ... , has thoroughly non negative

Vitali-increments on every box, and if

then the function is increasing i. e. if x’  x" ..., " theng 1- i X* X* then

2. The method applied in Section 3 can be used succesfully
to the n-dimensional case. By induction we can prove the

ø-dimensional Helly theorem.
THEOREM. If

1. Q is the closed n-dimensional box

2. ... , Zit), (p =1, 2, ...), are functions in Q with
non negati~re all Vitali increments,

then there exists a subsequence I of I fp I converging .
everywhere to a function 1(01,.’" Such a function has

non negative all Vitali increments, and t 1 ~~ K.
_ 

We also get a similar theorem where the condition 3. is

replaced by the condition 3’ stating that ~~,) will

also have a non negative Vitali increments if we replace any
k variables ( k ~ 1, ... , n 1) by zero.
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We suppose that the theorem, under hypotheses 1, 2, 3’, 4, is
true for functions with k variables where k :5- n and we prove
the theorem under hypotheses 1, 2, 3, 4 for k = n -~-1. The
theorem with hypostheses 1, 2, 3’, 4 for k = n + 1 will follow.

The inductive proof requires the same steps as in the case
of two variables.

In the case of n-dimensions, by a grate we shall understand
any at most denumerable union of (n 1) planes parallel
to the system of coordinates, and r-set is defined as any subset
of a grate.

Quarters are replaced, in a case of three dimensions, by
octants, and we do analogously for n-dimensions.

5. Functions of bounded Vitali variation, measure.

1. To avoid unessential complications of n-dimensions we
shall confine oursevels to two dimensions. The general case
can be treated similarly.

Let y) be defined in Q, have non negative Vitali incre-
ments, be bounded, and let 9 (0, y) = g ( ~, 0) = 0 for all o and y.
We shall consider halfopen  rectangles »

ae2; y. , y2) defined as the sets of (~, y) for which

H 0 if and only if y,,  y2 .

We define for all 1~ C Q where H ~ 0 , the set-function

If we partition H into a finite number of halfopen rectangles
Hp disjoint with one another, we see that

This allows to extend the function j(H) to a set function
defined for all sets F which are finite unions of halfopen

rectangles. We call these sets figure.
If F = where the rectangles are disjoint, we define
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The function is finitely additice i. e. if P, - F, = 0
then It is also non negative.

The figures F, if ordered by the inclusion relation of point-
sets, will generate a Boolean finitely additive lattice (B2) with
0 as null element and H ( 0, 0; 1, 1) as unit element.

Indeed, the complement of a figure is a figure too. and the
sum of two figures is also a figure.
We see that ¡J.(F) is a finitely additive, finite an non ne- ~

gative measure on (B~).

2. The Boolean lattice (B2) can be conceived as the cartesian
product (Bl) X (B1) of two Boolean lattices (B1) and (j5J,
where B1 is composed of finite unions of halfopen subintervals.

3. Now suppose that we have defined on (B2) any non ne-
gative, finite, finitely additive measure v(F).

This measure constitutes an extension of the function

OCyCI.
We see that 0) = f ( 0, y) = 0 for all x and y, and that

f is bounded and has non negative Vitali increments.
Indeed

Thus between the functions y) of two variables and

satisfying the conditions stated in subsection 1 of the present
section, and the non negative, finite, finitely additive measures.
on (B2) there exists a one-to-one correspondence, which will
be denoted by C.

4. The above remarks yield the
THEOREM. If

1. &#x3E; 0 are finitely additive measures on «B2),.
(see 2.),

then there exists an increasing sequence of indices such

that
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for all figures .~’ E B2 . The function 1L(P) is also a finitely addi-
tive, non negative measure on (B2) with ::5, K.

PROOF. Let and apply to I g. the theorem 14
of Section 4.

Since 9. (x, y) ~ I~, we also have y) and y)
has non negative Vitali increments.

Now

It follows that

exists for xl  (1)2; yi  y2 .
This equality can be extended to figures, so we get
= lim ( 1~’). The proof is easy to conclude.

5. Let g(x, y) be a function of bounded Vitali variation in

Q, and such that 0) ~- g ( o, y) = 0 for all o and y,
if we take, like in 1., fIJ2; y. , y.), and define

The function can be extended to figures in 

yielding a real-valued, finite, finitely additive measure on (ll2)’
and conversely to every such real valued measure there cor-

responds, in a unique way a bounded function g (a~, y) of bounded
Vitali variation in Q and with g (x, 0) = g (o, y) = 0.

Let I be a sequence of real valued, bounded, finitely
additive measures on (B2), and let (h’) ~ W g, (n = 1, 2, ...).

It is known that 1L. (F) can be represented as the difference
of two non negative measures

where

If we apply the theorem 4. and the method of selecting
sequences, we obtain the
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THEOREM. If

1. y*(F) are finitely additive real valued measures on

where p is a natural number,

then there exists an increasing sequence k (n) of indices such
that

exists. Such a function IL(F) is also a real valued, finitel~ addi-
tive measure on ( B p ) with

6. This theorem is equivalent to the following general Helly
theorem for functions ... , of bounded Vitali va-
riation :

THEOREM. If

1. f ,~ (xi , ... , xp ) are functions of bounded Vitali va-

riation in a box Q,
2. if we put any number k of variables ( k = 1, ... , p - 1)

equal 0, in f", we obtain also a function of bounded
Vitali variation,

4. if the Vitali variation of f" are W N, then there exists
a subseqence f ,n,, ( xl , ... , ~~, ) converging everywhere in Q
toward a function of bounded Vitali variation, satisfying the
analogous conditions 1, 2, 3, 4.

7. A theorem analogous to Theor. ~i. is true for an infinite

sequence of measures on the cartesian product of a denumerable
number of replicas of (Bei) :

Let us recall the definition of this product. In the space
of all infinite sequences x - ~ I X1, x2 , ... , x,~ , ... ~ of real numbers
with 0  x,~ C 1, we consider boxes H, defined as sets of afl o
for which 0~~&#x26;~1, (n = 1, 2, ...), where all a,~ = 0

and all b,~ = 1 excepting for an at most finite number of in-
dices.
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The empty set and finite unions of boxes constitute the

elements of ( B ~ ) .
If these sets F, called figures, are ordered by the relation

of inclusion of sets, they make up a Boolean lattice which is
finitely additive.

Let IJ.p (F) ~ 0 be a finitely additive measure on ( B~ ),
p 1, 2... and suppose that IIJ.J) ( I’) ~ ~ K for p = 1, 2, ...

If we fix m &#x3E; 1 and consider only those figures which are
finite sums of boxes each of which having aft = 0, bx = 1 for
n &#x3E; m, we obtain a Boolean lattice ( A ,n ) on which the measure

satisfies the conditions of Theor. 5. So a subsequence
can be extracted in such a way that lim 

exists for all those figures.
If we take progressively ra = 1, 2, ... and use the principle

og extracting suitable subsequences, we prove the assertion.

Thus the following theorem is true:
THEOREM. If

1. (B w) is the cartesian product of an infinite denumerable
number of replicas of (B1),

(F) is a real valued finitely additive measure on

then a subsequence I I can be extracted out 
such that the limit 

’

exists for all F E B~ , and q(F) is finitely additive on (B~)
with 
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