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IMPROPERLY ABELIAN VARIETIES

Nota (*) di LEONARD ROTH ( a Londra)

The present note continues the study of the pseudo-Abe-
lian varieties initiated in (7). We begin by recalling that

a pseudo-Abelian variety of type q (1  q , p -1) is any

non-singular variety Wp which is invariant under a conti-

nuous group of ooq automorphisms whose trajectories form a
congruences system of index 1) of Picard varieties Vq ;
it is thus a natural generalization of the elliptic surfaces,
and of the elliptic and hyperelliptic threefolds previously
considered in (8) and (9). Just as the elliptic surfaces con-
tain a subspecies, which we have elsewhere (9) called impro-
perly hyperelliptic, and which map irregular involutions on
a Picard surface (necessarily of particular moduli, containing
pencils of elliptic curves), so the elliptic and hyperelliptic
threefolds include subspecies, namely the improperly Abelian

the principal types of which have been determined
in (10).

In this work the above results are generalized to the case
p &#x3E; 3. We first show that any Abelian variety Wp having
some plurigenus greater than zero, which maps an involution
of superficial irregularity q ( 0  q  p) on a Picar-d variety
V1" is pseudo-Abelian of type q ; then, from the representation
Df Wp obtained in (7) we deduce that Wp is improperly
Abelian, i.e. is r-epresentable parametrically by means of

Abelian functions -of genera less than p: mere precisely, we
show that the coordinates of the general point of W, are
expressible as algebraic functions of Abelian functions of

(*) Pervenuta in Redazione 11 12 Febbraio 1954.
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genus q and other Abelian functions of genus p q, and

that, in many cases, the genera of the functions required for
the representation may be lowered still further.

We also remark that the classification of the improperly
Abelian varieties is a recursive process depending on the

determination of all species of lower dimension which map
involutions on Picard varieties that are generable by finite

groups of automorphisms, including, it should be added, those
species which have all their plurigenera equal to zero. It

follows from this that the classical discussion (2, 4) of the

hyperelliptic surfaces, which excludes all the rational types,
forms an inadequate basis for the treatment of the higher
Abelian varieties.

The note concludes with a brief account of the para-
Abelian, varieties, which bear the same relation to the im-

properly Abelian varieties as do the paraelliptic surfaces (10)
to the improperly elliptic. While these manifolds do not

possess the group of automorphisms characteristic of the im-
properly Abelian varieties, they have certain affinities with

the latter: thus, they are in general superficially irregular,
and they are representable on multiple product varieties with
a particularly simple kind of branch manifold; while their

systems of canonical hypersurfaces are compounded of con-

gruences of Picard varieties.

1. The classification of Abeliais varieties. - We begin
by outlining the process of classifying the Abelian varieties,
on which our work depends, referring to (2), (5), (10) for

details and illustrations of the method. Let Vp be a Picard
variety (Abelian variety of genus p and rank 1) which we
assume to be free from singularities and exceptional mani-
folds ; then any Abelian variety Wp of genus p and rank r &#x3E; 1

may be regarded as the image of a simple involution I. on

7p, so that the problem of classifying Wp is equivalent
to that of classifying In . We call Wp properly or improperly
Abelian, according as the variety cannot or can be repre-
sented parametrically by means of Abelian functions of ge-
nus low er thou p. Thus V 11 itself is properly Abelian (in
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fact we shall find that it is the only superficially irregular
proper type); again, among the proper types, we have the

Wirtinger variety (16): this is of rank 2, and maps an invo-
lution on Vp which is generated by transformations of the

second kind. We then have the following results.
I. The pure canonical and pluricanonical hypersur f aces 1)

o f effective, are all o f order zero.
For the canonical system of V., which is of order zero,

is the transform of the canonical system of W,, together
with the coincidence hypersurface (if any) of 1,,. It follows

that the geometric genus Pg and the plurigenera Pi of Wp
satisfy the inequalities P 1/  1, Pi ~ 1.

II. The superficial irregularity q of wp is at nzost

equal to p.
For a generic surface of Wp maps an involution on a

surface of Vp which is likewise generic and hence of irre-

gularity p, whence the result (2). (Actually, we shall see

that q = p if, and only if, Wp is a Picard variety).
III. I f I n possesses coincidences, then the georne-

genus and plurzgenera o f Wv are all zero.
By hypothesis, there is a coincidence hypersurface on Vp

and hence a branch hypersurface B on Wp. Consider a ge-
neral linear system 1 a I of hypersurfaces on W ; this maps
an irreducible system I on Vp, which belongs to 1", and
whose adjoint system 1 01’1 i is equivalent to the sum of the
transform of C’ i and the coincidence hypersurface. Now
since Vp has a canonical hypersurface of order zero, we

have C’1- 01, from which it follows that C = C’ + B : that

is to say, W, possesses an anticanonical system (11, 12).
Hence, on Wp, the process of successive adjunction always
terminates (11), so that ’Wp must have geometric genus and
plurigenera zero.

- 

The group-theoretic method of classifying the varieties

which was first applied systematically to the case p = 2

1) That is, varieties of dimension p -1.
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by Bagnera and De Franchis (2), is based on the above

concepts, used in conjunction with the following theorem:

IV. I f W p has some plurigenus greater than zero, then

In can be generated by a f inite group of automorphisms
of Vp.

For, in the first place, it can be shown (3, 1) that, on
this hypothesis, In cannot possess a united point which is

conjugate to a hypersurface; in the second place, it follows

from III that In can have at most coincidences. Hence,
by the transcendental-topological argument due to Bagnera
De Franchis (2) and Andreotti (1), it may be shown that

In is generable by a group i3,, of automorphisms of 
It may be noted that the conjecture that, if the involut-

ion 1~,~ has at most eop-2 coincidences, it can be generated
by a group ~n, was first made by Lefschetz (6) w-ithout, howe-
ver, the additional hypothesis concerning the plurigenera
of W~; that this hypothesis is essential may be shown by
examples.

The converse theorems suggested by these results are not
in general true. Thus, in the case p = 2, Bagnera-De Franchis
have shown that a rational involution In inay possess a finite

(non-zero) number of coincidences, and have also indicated

that an involution may be endowed with a coincidence curve

and yet be generable by a finite group of automorphisms;
while Scorza (13) has actually obtained all the involutions -

necessarily rational - of this type. And, generally, it may
be shown that there exist anticanonical involutions ( i.e. such
that ~Vp possesses an anticanonical system) endowed with

coincidences which are generable by finite groups of

automorphisms.
In order, however, to obtain a complete classification of

the varieties Wp within the limits of the group-theoretic
method, it is evidently necessary, in view of III, to exclude
those types for which Pi = 0. In the case p = 2, this amounts
to no more than omitting rational and elliptic scrollar -sur-
faces from the scheme; in the case p &#x3E; 2, however, the pre-
cise extent of such a limitation is not known. Even so, in

-order to obtain aIl the members of this restricted class of
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varieties we shall see that it is still necessary to deter-

mine those types Wr ( r  p) with zero plurigenera which

map involutions on V,. generable by finite groups of auto-

morphisms.

2. The superficially irregular types. - Supposing that,
with the customary notation, the general point of pp has
coordinates ..., u p ), let Wp be an Abelian variety
which represents any (simple) involution 1M generable by a
group ig. ; then it may be shown (2, 5) that !9,, itself can

be generated by a finite set of substitutions of the form

where and b ~ i are constants.

In the case where has superficial irregularity q &#x3E; 0,
we may show further (2, 5) that q of the above relations

may be taken to be

Lefschetz (5) has remarked that, by modifying suitably
the period matrix of Vp, the remaining relations of the set (1)
may be reduced to the form

The constants Ef are called the multipliers of the substitution;
and since the group generated by (2) and (3~ is finite, they
must be roots of unity, other than unity itself.

The first stage in the classification of the varieties Wp
consists in determining the finite groups of collineations re-

presented by (2) and (3); the second stage consists in show-
ing that there exist period matrices for V, of the requisite
kinds. In this process an importante part is played by the

theorem:

V. A neeessary and sufficient condition that should
have geometric genus unity is that each substitution in ~n
s--ho-uld have mOdtl,lus unity. ,
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The necessity of the condition is obvious, for Wp must
then possess a p-ple integral du, of the first
kind, from which it follows that the Jacobian 3( U’l’ ...,

~Z, be equal to unity. The converse result
is likewise true (2).

It is an immediate consequence of (2) that In is invariant

under a continuous group @ of oo q transformations of the

first kind; evidently S is completely transitive and permu-
table, so that its trajectories Vq, which are of course invariant
under g, must be Picard varieties (5); that is, Wp is a pseudo-
Abelian variety of type q (7). Hence

VI. Every variety W p of superficial irregularity
q ( 0  q  p) and with some plurigenus greater than zero is
pseudo-Abelian o f type q.

We may show further that

VII. Every Abelian variety Wp of superficial irregularity
p M a Picard variety.

This result is due to Severi (15); a shorter proof, of

geometrical character, is as follows. Suppose, if possible,
that Wp has geometric genus zero; then (Severi, 14) W~
must contain a congruence of irregularity p, and consequently
VJI must contain a congruence of irregularity p at least, in
contradiction to the known fact that every congruence on Vp
has irregularity less than p. Thus wp has geometric genus
unity and therefore possesses a pure canonical hypersurface
of order zero (1), so that, by (7, § 2), it is a Picard variety.
We have seen that, when q  p, W p contains a con-

gruence ~ I of Picard varieties V~ . Now this congruence
can arise only from a congruence of varieties on 

from the general theory of Picard varieties we know that

this congruence must be of Picard type and that its mem-

bers are Picard varieties; a variety V~ containing such a
congruence is said to be special of type q. We know also

that "Pp must contain a second Picard congruence of Picard
varieties V_.-,, ; evidently these will give rise to a congruence

of varieties on Hence
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VIII. Every Abelian variety W! of superficiale irregula-
ritg q (0  q  p) and with some plurigenu8 greater zero

is the image o f as involutions ou a Picard variety V, which
is special of t ype q ; ih addition, to the congruences B
o f trajectories Vq, W, C0RgrU6PlC6 varie-

ties V..--..
In previous work (7) the existence of this second con-

gruence on a pseudo-Abelian variety Wp was esta-

blished on the assumption that the trajectories of (3 had

general moduli: here, however, such an assumption is not

made.

3. Further properties of Before proceeding it will
be convenient to recall the properties of pseudo-Abelian varie-
ties which will be required later. Let W, be a pseudo-Abelian
variety of type q whose congruence of trajectories Vq is ) 

the varieties of the associated congruences I on Wp
are transforms of one another under the group @ and are thus
birationally equivalent. They cut on the generic Vq an invo-
lution where the number d ^ is called the deter-

minant of W.. This involutions is without coincidences, from
which it follows incidentally that I YIJ-f I is necessarily an
Abelian congruence of a restricted type. Again, while the ge-
neric trajectory ’~a is irreducible, there exist in general redu-
cible members of I V fit I of the form where is

itself a Picard variety; here the number s may a priori be
any divisor of d, including d. The varieties generate a
certain number of irreducible manifolds whose dimensions

may vary from q to p 1.
In the case where d . =1, we may evidently map Wp on the

product Vq X to obtain a representation in the case

where d &#x3E; I, we first construct the variety W p = Yq 
where V~ and are birationally equivalent to ~ t and
I V Q I respectively; then, making correspond the generic point of
wp to the set E vq hp_q) we have a mapping of Wp on the
d-ple variety W~. From this representation we deduce that
the superficial irregularity q, of satisfies the inequality
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q2 ~ q2’ + Q2", where q2’ and qL" denote respectively the irre-
gularities of i Vl I and I Vv-Q I .

It remains only to recall the nature of the branch variety
of the representation. Now the sets define an invo-
lution I d on ~p whose coincidence locus is generated by
the varieties Vq~ s , each counted ( s 1) times; then, corre-

sponding to 17 q, 8. we have a variety Vts of the congruence
which maps constituting an (.92013l)-ple element of the
branch locus. Such varieties generate a number of irreducible
manifolds which may have any dimension from q to p 1 in-
clusive ; and any component of the branch locus with dimension
less than p 1 will be fundamental in the correspondence
between and W * .

4. ’The improperly Abelian varieties. - Suppose now
that the variety T~p has some plurigenus greater than zero,
and that it maps a simple involution In of superficial irre-

gularity q ( 0  q  p) on Vp ; then the congruence I V,7 t on

V~ is mapped, simply or multiply, on the congruence t
and, in the latter case, there will possibly be (s - l)-ple
branch elements Hence is an Abelian congruence.

Similarly, the congruence I is mapped, simply or mul-

tiply, on 1 Vj,-,7 1, although here the representation is with-

out branch elements ( § 3) ; thus, as already remarked, i V p-q I
is an Abelian congruence. It follows that the coordinates -of

the generic point P* of the variety Wp* of § 3 are expressible
as rational functions of the -coordinates of two points, lying
on Abelian varieties of genera q and p q respectively;
hence the coordinates of the generic point P of W,, which
is mapped on the fl-ple variety W~, are expressible as -alge-
-braic functions of the coordinates of P’~. Thus

IX. Every Abelian variety Wp of superficial .irregGlarity
q (0  q  p) and with some plurigenus greater titan zero it’l

representable parametrically by means o f algebraic junctions
o f Abelian functions af genus q and othe-r Abelian functions
o f genus p q.

It is by virtue -of this result that we may call W, an im-
properly Abelian variety. In many cases, one or both of the
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congruences t V q I and are themselves improperly Abe-
lian, and then the genera of the Abelian functions required
for the parametric representation can be lowered further.

The precise form of the representation will evidently depend
on that of the mapping of Wp on W;* ; the problem of deter-
mining this form has so far been solved completely only
for p = 1.

5. The classification of improperly Abelian varieties.
It will now become clear that the determination of all possi-
ble species of variety lT7’p is a recursive process depending
on the dassificatioa of the Abelian varieties  p) re-

presenting involutions which are generable by finite groups
of automorphisms.. In the case p = 2, the solution of this

problem is classical ( 2) ; for p = 3, the procedure to be follo-
wed has been outlined in (10): it must be added that our

present knowledge of the theory of surfaces does not suffice
for a completely geometrical solution in this case.

As an illustration we consider the particularly interesting
ease where In is free from coincidences. We observe first

that in this case W p must be superficially irregular ; for the
equations (3) always admit solutions and, if W, were super-
ficially regular, the corresponding set of equations (2) would
be absent. Next we remark that wp and all its submanifolds
are free from exceptional varieties; for any such variety con-
tains rational curves and, since the correspondence between

Vp and 1V p is without branch points, any rational curve on Wp
would arise from some rational curve on Vp : whereas, as is

well known, such curves do not exist. 
_

Suppose, in the first place, that V q and Vp_q both have
general moduli, so that I and are general Picard
congruences; then I is a Picard congruence of Picard

varieties. For is mapped on I without branch

points, and- is mapped on Vp-q without branch
points.

Again, since I is general, the congruence 7p j I is uni-

quely specified: thus, when p q ~ 1, it is a rational pen-

cil ; when p q = 2y it is a Kummer surface or its genera-
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lization ; and, for p q &#x3E; 2, it is mapped by a Wirtinger
manifold (16), or its generalization, according as regar-
ded as a Picard variety has divisors unity or at least
one divisor greater than unity. With an obvious extension of
the terminology we may say that I is a generalized
Wirtinger congruence. In any case it follows from the ge-
neral theory that the number of varieties -t7,,. is finite.

If, in the second place, we allow either or both of VQ
and to have particular moduli, a great number of possi-
bilities at once present themselves. Thus, supposing that 
has particular m_oduli, all that can be asserted about V p_Q

. is that it maps in a correspondence free from coinci-

dences ; hence, by the above opening remark, is a super-

ficially irregular Abelian variety. Again, if the congruence
has particular moduli, I may be improperly

Abelian of a type which maps an involution without coinci-
dences. And i Vz I may a priori be any Abelian congruence
with ooi branch elements Vq,, (0 if, in

particular i ~ p q 1, the congruence is of anticanonical

type ( § 1).
The fact that involutions of anticanonical type will act-

ually have to be considered is revealed by the case p = 3,
q..- 1 (10); here we may have a W3 which contains an elliptic
pencil IV.1 of Picard surfaces, and a rational congruence
I of elliptic curves which possesses 001 curves V1", and
cuts on each Vg a (rational) involution endowed with

a coincidence curve. As stated in § 1, the involutions of

this type have been classified by Scorza.
Continuing the previous discussion, we next observe that

the congruence I cuts on each an involution of order

d, having for (8 - l)-ple coincidences the points where V,,- q
meets each variety Vq~ , . Now, by a property of pseudo-
Abelian varieties (7), this involution is generable by a finite
group lgd of automorphisms of V" - 0: thus, in a geometrical
treatment of the problem, we require to determine all possible
groups 9_4 and their coincidence loci. When V~~, is a Picard
variety, this problem will already have been solved in the

recursive process ; when, however, Vp ~ is Abelian, it may
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be reduced to the consideration of compound involutions 2)
on a Picard variety 

In conclusion, then, we see that, in order to obtain, by
the group-theoretic method, a complete classification of the
types W,, it 18 necessary to determine all the types W,
(r  p), even those with plurigenera zero, representing invo-
lutions which are generable b y finite groups of automorphisms
of ~.

6. Para-Abelian varieties. Consider the variety Wp con-
structed by analogy with an improperly Abelian variety in

the following manner. Instead of an Abelian congruence

1 vg I of trajectories, we suppose that Wp contains a con-

gruence i V,2 1, of arbitrary character, of Picard varieties Va ;
and that, as before, the irreducible members of the congruence
are non-singular and birationally equivalent. We suppose
further that Wp contains a second congruence I which

is of Abelian type, and such that its irreducible members are

non-singular and birationally equivalent $). As in § 3, we
shall then have on wp an involution I d of sets 

where d = called the determinant of TV,.
We now assume that Wp may be mapped on the d-ple

variety 11 p = V) x where Vq are birationally
equivalent to 1 respectively, in such a way
that the branch locus is generated by varieties T~ and V£--q
corresponding respectively to members of } and }
each counted a certain number of times; and we further

assume that the correspondence between Wp and wp possesses
no exceptional features other than those which result from

these hypotheses. A consequences of these assumptions is that
both I and I will in general contain reducible va-

’ 

2) In this connection we may note Andreotti’s result (1) that A

compound involution on a Picard variety, even if it has soxge pluri-
genus greater than zero, need not be generable by a finite group of

automorphisms.
8) The variety cannot be chosen arbitrarily, since it must

contain the involution cut on it by 
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rieties V q,’ and say, corresponding to generators of
the branch locus, which are respectively and

components of the coincidence locus of 7~.
We shall call the variety Wp so defined a para-Abelian

variety of type q. It is clear that wp does not admit the
group of automorphisms which characterizes the pseudo-Abe-
lian varieties; nevertheless it will appear that there are

certain resemblances between the two classes of manifold,
apart from their representations on multiple product va-

rieties wp .
To begin with, we observe that the superficiale irregularity

q2 of W p satisfies the inequality q2 &#x3E; q’2 -E- q2", where q2’
and q," denote the irregularities of the congruences on W*
which map I and I respectively; thus q2’ and q2..
are the respective irregularities of I Vq land 1 V,,-o }. This

result is stricly analogous to that of § 3.

Again, we remark that every variety belonging to 1
is para-Abelian (effective or virtual) o f type q. This follows

at once from the definition.

Next, supposing (as usual), that is free from exceptio-
nal varieties, we see that the virtual canonical system f
of Wp belongs to also that I X 1’-1 t contains as fixed
(s 1)-pte component every hypersurfaces generated by va-

rieties Vq,., and passes (s-1)-ply through every manifold
of lower dimension generated by those varieties.

This proposition may be established by the method al-

ready adopted for the pseudo-Abelian varieties (7); it results

from the fact that the variety Vq has a canonical hypersurface
of order zero.

It has been shown in (7) that canonical systems }
(k = 0, 1, ..., p 1~ of a pseudo-Abelian variety wp all belong
to the corresponding congruence i or else have order zero.
But the analogous property does not hold for para-Abelian
varieties, as is already clear from an examination of the

cases p = 2y 3.
Another essential difference between the pseudo-Abelian and

para-Abelian varieties is as follows. On the former variety the

involution id cut by I on the generic is generable by
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a finite group Oil of automorphisms: on the latter this is

not in general the case. We note, however, that there exists
a subspecies of para-Abelian variety having the property that

id is so generable and this type, from the point of view of
the analytical representation, is the simplest to deal with;
the discussion, in the cyclic case, of the analogous subspecies
of parahyperelliptic threefold (10) may with obvious modi-
fications, be repeated here.
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