RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIUSEPPE SCORZA DRAGONI Mario Volpato

Un teorema di unicità per le soluzioni di una equazione alle derivate parziali del primo ordine

Rendiconti del Seminario Matematico della Università di Padova, tome 20 (1951), p. 446-461

http://www.numdam.org/item?id=RSMUP_1951__20__446_0

© Rendiconti del Seminario Matematico della Università di Padova, 1951, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

UN TEOREMA DI UNICITÀ PER LE SOLUZIONI DI UNA EQUAZIONE ALLE DERIVATE PARZIALI DEL PRIMO ORDINE

Nota (*) di Giuseppe Scorza Dragoni (a Padova) e di Mario Volpato (a Ferrara).

In questa Nota ci proponiamo di indicare un teorema di unicità per le soluzioni dell'equazione differenziale

$$p=f\left(x,y,x,q\right) ,$$

dove $p(=x'_x)$ e $q(=x'_y)$ son le derivate parziali prime della funzione incognita x(1).

Preciseremo a suo luogo (nn. 1 e 2) la natura dell'insieme D nel quale l'equazione p=f è data, le ipotesi (n. 7) sulla funzione f stessa e (n. 6) la classe C delle funzioni di x ed y entro la quale la p=f ammetterà al più una soluzione soddisfacente ai dati di CAUCHY. In queste righe introduttive ci limiteremo a dire che:

l'insieme D è del tipo

$$0 \le x \le l$$
, $\sigma(x) \le y \le \tau(x)$, $|x| < +\infty$, $|q| < +\infty$,

- (*) Pervenuta in Redazione il 17 dicembre 1951.
- (1) Il contributo dei singoli Autori si distingue facilmente: i ragionamenti e i risultati contenuti nei nn. 1, 6, 7, 8 e 9 sono di Volpato, se se ne toglie l'osservazione al n. 8, le considerazioni dei nn. 2, 3, 4 e 5 (e l'oss. del n. 8) spettano a Scorza Dragoni; insomma, l'enunciato e la dimostrazione del teorema di unicità (e del lemma del n. 6) sono di Volpato, invece Scorza Dragoni ha indicato condizioni, sufficienti a che siano verificate le ipotesi richieste da Volpato per le sue deduzioni.

dove $\sigma(x)$ e $\tau(x)$ son due funzioni definite nell'intervallo

$$I: \ 0 \le x \le l \qquad \qquad (l > 0)$$

e soggette ivi a condizioni, che si possono considerare come molto larghe nell'ordine di idee in cui si svolge la nostra ricerca;

che:

la funzione f è in sostanza astretta ad una condizione di Cafiero – Lipschitz rispetto alla sola z nell'interno di D e a condizioni di Cafiero – Lipschitz e di Lipschitz – Carathéodory rispetto a z e q sulla frontiera dell'insieme D;

che:

x(x, y) appartiene certamente alla classe C, se: 1), x(x, y) è definita nell'insieme

$$B: 0 \le x \le l$$
, $\sigma(x) \le y \le \tau(x)$,

base del cilindroide D; 2), x(x,y) è assolutamente continua rispetto ad x e continua rispetto ad $y, z(x, \sigma(x))$ e $x(x, \tau(x))$ sono assolutamente continue; 3), le derivate parziali prime di z(x,y) esistono (finite) in tutto il segmento $\sigma(x) \leq y \leq \tau(x)$ per quasi tutti gli x di I; 4), l'estremo superiore di $|x'_x(x,y)|$ nell'intervallo $\sigma(x) \leq y \leq \tau(x)$ è, in quanto funzione della x, sommabile nell'intervallo I; 5), x(x,y) possiede differenziali asintotici regolari o semiregolari nei punti delle curve $y = \sigma(x)$ ed $y = \tau(x)$, e ciò almeno per quasi tutti gli x di I(z);

e finalmente che:

se x(x, y) è una soluzione della p = f, x(x, y) soddisfa alla p = f per quasi tutti gli x di I; cioè l'insieme dei punti nei quali x(x, y) non soddisfa alla p = f è contenuto in un insieme di misura nulla costituito da tante verticali.

Le nozioni di differenziali asintotici regolari (n. 3) e semiregolari (n. 4) qui utilizzate sono ispirate a quelle di differenziale

⁽²⁾ Questa condizione e la III) del n. 2 saranno sfruttate soltanto attraverso una loro conseguenza, la IX) del n. 6.

asintotico regolare, introdotta da Caccioppoli, Radò e Scorza Dragoni, e a quelle di quasi-continuità regolare e semiregolare, introdotte e studiate da Scorza Dragoni, Bajada e Stampacchia. La natura dell'ipotesi 5) e del vincolo imposto alle soluzioni della p=f (precisamente quello di soddisfare alla p=f quasi ovunque sì, ma a prescindere da un insieme contenuto in un insieme di misura nulla costituito da tante verticali) sarà chiarita da condizioni sufficienti a che quell'ipotesi e quel vincolo siano soddisfatti; e queste condizioni potranno essere formulate, appunto perchè le funzioni misurabili rispetto ad alcune variabili e continue rispetto alle altre sono dotate notoriamente di una quasi-continuità semiregolare.

Avvertiamo finalmente che il teorema di unicità dato in questa Nota per la equazione p=f estende una proposizione dello stesso tipo, già indicata altrove da Volpato (3).

- 1. Ipotesi sugli insiemi $B \in D$. L'insieme B del piano reale (4) ed euclideo (x, y) è definito da limitazioni del tipo $0 \le x \le l$, $\sigma(x) \le y \le \tau(x)$, dove l è un numero reale e positivo e $\sigma(x)$ e $\tau(x)$ son due funzioni date nell'intervallo I, cioè nell'intervallo $0 \le x \le l$, e soddisfacenti alle condizioni:
- (3) M. Volpato: Sulle condizioni sufficienti per l'unicità degli integrali di una equazione differenziale alle derivate parziali del primo ordine [«Annali dell' Università di Ferrara», vol. VIII (1950), pagg. 137-149], n. 2 e Criteri di confronto e di unicità per le soluzioni dell'equazione p = f(x, y, x, q) coi dati di Cauchy [questi «Rendiconti», vol. XX (1951), pagg. 232-243], n. 4. La circostanza ricordata nel testo esime il Volpato dall'indicare esplicitamente come si potrebbe colmare una lacuna che egli ha riscontrato nei lavori citati. Ai quali rimandiamo per alcune indicazioni bibliografiche; molte altre si trovano in E. BAJADA, Teoremi di unicità per una equazione differenziale alle derivate parziali del primo ordine coi dati di Cauchy [«Rendiconti dell'Accademia Nazionale dei Lincei», serie 8a, vol. XI (1951), pagg. 158-164]. A proposito della quale Nota di BAJADA riteniamo doveroso avvertire che M. PAGNI ci ha comunicato di avere riconosciuto inesatto il teorema ivi enunciato [e durante la correzione delle bozze di stampa di questa nostra Nota abbiamo appreso che BAJADA pubblicherà una rettifica nei Rendiconti dei Lincei]. Avvertiamo inoltre che anche noi abbiamo preso visione, in bozze, del lavoro di S. Cinquini e di M. Cinquini-Cibrario, citato da Bajada nella nota (3) a piè di pag. 159.
 - (4) Tutte le considerazioni di questa Nota si svolgono nel campo reale.

- I) $\sigma(x) \in \tau(x)$ sono continue in I e derivabili (con derivate finite) in quasi tutto l'intervallo I;
 - II) $\sigma(x)$ è minore di $\tau(x)$, se x è positiva e minore di l.
- ${f 2.}$ Inoltre l'insieme ${f B}$ è astretto alla seguente condizione ulteriore :
- III) le rispettive sezioni s (a) e t (a) di B con le orizzontali $y = \sigma$ (a ed $y = \tau$ (a) hanno densità lineare positiva nei punti S (a) \equiv (a, σ (a)) e T (a) \equiv (a, τ (a)) per quasi tutti gli a dell'intervallo 1,

la condizione analoga relativa alle sezioni di B con le verticali passanti per S(a) e T(a) essendo automaticamente soddisfatta per ogni a di I diverso da 0 e da I, e ciò a norma della Π).

L'insieme D è allora l'insieme definito dalle limitazioni $0 \le x < l$, $\sigma(x) \le y \le \tau(x)$, $|\cdot| < +\infty$, $|q| < +\infty$ nello spazio reale euclideo (x, y, \cdot, q) .

OSSERVAZIONE. – La III) è certamente soddisfatta, se $\sigma(x)$ e $\tau(x)$ sono continue, verificano la II) e sono monotone o monotone a tratti nell'intervallo I.

La III: può essere sostituita dalla condizione che la densità lineare di s(a) nel punto S(a) [di t(a) nel punto T(a)] sia nulla soltanto per a variabile in una porzione di I di misura nulla (5).

3. – Differenziali asintotici regolari e derivazione di funzioni composte. – La funzione w(x,y) sia definita nell'insieme $B \in P_0 \equiv (x_0,y_0)$ sia un punto interno a B. Allora w(x,y) si dice differenziabile in modo regolare o dotata di un differenziale asintotico regolare, nel punto P_0 , se esistono due costanti λ e μ tali che

$$(1) \lim_{P \to P_{\mathbf{0}}} \frac{1}{\overline{PP_{\mathbf{0}}}} \left[w\left(x,y\right) - w\left(x_{\mathbf{0}},y_{\mathbf{0}}\right) - \lambda\left(x-x_{\mathbf{0}}\right) - p\left(y-y_{\mathbf{0}}\right) \right] = 0 ,$$

se il punto $P \equiv (x, y)$ di B tende a P_{x} senza abbandonare un

⁽⁵⁾ Ci si potrebbe chiedere se la III) oppure questa condizione sono conseguenze o meno delle I) e II).

conveniente insieme $J(P_0)$ avente densità superficiale 1 nel punto P_0 e costituito dai contorni di tanti quadrati aventi il centro in P_0 ed i lati diretti come gli assi coordinati (6); e dalla (1) segue allora ovviamente

(2)
$$\lambda = w'_x(x_0, y_0), \quad \mu = w'_y(x_0, y_0),$$

ammesso che w(x, y) sia derivabile nel punto P_0 .

La definizione precedente ha significato anche se P_0 è un punto del contorno di B, e noi la adotteremo senz'altro, anche se in queste condizioni il punto P, che tende a P_0 mantenendosi in B ed in $J(P_0)$, può non descrivere più un insieme di densità superficiale 1 nel punto P_0 . Peraltro si osservi che la I), la II) e la III) portano sempre alle (2), non appena w(x,y) ammetta in P_0 derivate parziali prime, intese come i limiti dei rapporti

$$\frac{w(x_0 + h, y_0) - w(x_0, y_0)}{h}, \frac{w(x_0, y_0 + k) - w(x_0, y_0)}{k},$$

al tendere a zero di h e k in guisa che i punti $(x_0 + h, y_0)$ ed $(x_0, y_0 + k)$ appartengano a B, e non appena x_0 sia tale che $s(x_0)$ e $t(x_0)$ abbiano densità lineare positiva in $S(x_0)$ e $T(x_0)$ (?).

E dimostriamo ora il seguente lemma:

La funzione w(x, y), definita nell'insieme B, sia dotata e di derivate parziali prime e di differenziale asintotico rego-

⁽⁶⁾ La nozique è del tutto simile a quella che si presenta nel caso delle funzioni continue. Cfr.: T. Rado, On the derivative of the Lebesgue area of continuous surfaces [«Fundamenta Mathematicae», vol. XXX (1938), pagg. 34-39], nn. 13-14; On absolutely continuous transformations in the plane [«Duke Mathematical Journal, vol. IV (1938), pagg. 189-221], pagg. 219-220; R. Caccioppoli e G. Scorza Dragoni, Necessità della condizione di Weierstrass per la semicontinuità di un integrale doppio su una data superficie [«Memorie dell'Accademia d'Italia», vol. IX (1938), pagg. 251-268], § 3; G. Scorza Dragoni: Sulla definizione assimatica dell'area di una superficie [questi «Rendiconti», vol. XV (1946), pagg. 8-24], pagg. 9-15.

⁽⁷⁾ Si esservi che in questo caso P_0 coincide appunto o con $S(x_0)$ o con $T(x_0)$.

lare nel punto $P_0 \equiv (x_0, y_0)$ di B; la funxione r(x) sia definita in I e derivabile (con derivata finita) nel punto x_0 ; il punto (x, r(x)) appartenga sempre a B e le sexioni di B con l'orixxontale e la verticale per $(x_0, y_0) \equiv (x_0, r(x_0))$ abbiano densità lineare positiva in (x_0, y_0) ; la funxione composta W(x) = w(x, r(x)) sia derivabile nel punto x_0 ; allora per la derivata di W(x) nel punto x_0 sussiste la solita formula

(3)
$$W'(x_0) = w'_x(x_0, y_0) + w'_y(x_0, y_0) r'(x_0).$$

Consideriamo l'insieme $J(P_0)$ relativo al differenziale asintotico regolare di w(x,y) in P_0 e la curva ρ di equazione y=r(x). Se j è un quadrato di $J(P_0)$ col lato abbastanza piccolo, la curva ρ ha punti interni e punti esterni a j. Di qui segue che esistono valori di h arbitrariamente piccoli, siffatti che il punto di coordinate x_0+h ed y_0+k , con $k=r(x_0+h)-y_0$, appartenga a $J(P_0)$. Per questi valori di h risulta ovviamente

$$W(x_0 + h) - W(x_0) = w(x_0 + h, y_0 + k) - w(x_0, y_0) =$$

= $w'_x(x_0, y_0) h + w'_y(x_0, y_0) k + (h^2 + k^2) \% \alpha$.

con α infinitesimo per h (e k) infinitesimo. Donde la solita conclusione, se si divide per h, si passa al limite per h infinitesimo e si tiene presente che W(x) è per ipotesi derivabile nel punto $x_0(8)$.

4. – Differenziali asintotici semiregolari e derivazione di funzioni composte. – Consideriamo di nuovo una funzione w(x, y) definita in B e sia $P_0(x_0, y_0)$ un punto di B, interno o non. Diremo che w(x, y) è dotata in P_0 di un differenziale asintotico semiregolare rispetto ad y se esistono due costanti λ e μ tali che valga la (1) quando P tende a P_0 senza abbandonare un insieme $K(P_0)$ avente densità superficiale 1 in P_0 e costituito da tante verticali, ivi compresa la verticale per P_0 .

⁽⁸⁾ Nel caso che (x_0, y_0) sia interno a B, queste considerazioni si trovano già nel lavoro di S. Cinquini e di M. Cinquini-Cibrario ricordato nella nota (3); se ne veda il § 2, n. 5, e).

A proposito delle (2) si possono ripetere osservazioni analoghe a quelle fatte nel numero precedente. Anzi nelle ipotesi attuali, si può notare che w è necessariamente derivabile rispetto ad y. È poi ovvio che:

Nel temma del numero precedente, l'ipotesi della differenziabilità ansitotica regolare può essere sostituita da quella della differenziabilità asintotica semiregolare rispetto ad y;

e non è privo di interesse osservare che:

So w(x, y) ammette derivate parziali prime (finite) in ogni punto di B, esclusi al più quelli contenuti in un insieme H, costituito da tante verticali e di misura nulla, e se $w_y'(x, y)$ è misurabile rispetto ad x e continua rispetto ad y (in $B - H \cdot B$ naturalmente). w(x, y) è dotata di un differenziale asintotico semiregolare rispetto ad y in tutti i punti di B, esclusi al più quelli contenuti in un conveniente insieme di misura nulla, L, costituito anch' esso da tante verticali (*).

Poniamo $w'_y(x, y) = 0$ nei punti di B nei quali w(x, y) non è derivabile rispetto ad y; e poniamo poi

$$w'_y(x, y) = w'_y(x, \sigma(x)), \quad \text{se} \quad y < \sigma(x),$$

 $w'_y(x, y) = w'_y(x, \tau(x)), \quad \text{se} \quad y > \tau(x),$

per ogni x di I; allora $w'_y(x,y)$ risulta misurabile rispetto ad x e continua rispetto ad y in tutta la striscia, Σ , $0 < x \le l$, $y_{\perp} < +\infty$ e da un teorema di Scorza Dragoni (10) si deduce subito che $w'_y(x,y)$ è quasi-continua rispetto ad (x,y), semiregolarmente rispetto ad y, nel senso che: dato comunque il

⁽⁹⁾ Non è difficile indicare altre condizioni di esistenza di differenziali asintotici semiregolari; basta esaminare attentamente i passi citati in (8).

⁽¹⁰⁾ G. Scorza Dragoni: Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile [questi «Rendiconti», vol. XVII (1948), pagg. 102-106]. Per altre notizie, scientifiche e bibliografiche, rimandiamo a G. Stampacchia, Sopra una classe di funzioni in due variabili. Applicazioni agli integrali doppi del calcolo delle variazioni [«Giornale di Matematiche» di Battaglini, vol. 79 (1949-1950), pagg. 169-208].

numero naturale n si può trovare una porzione misurabile δ_n di I tale, che la misura di δ_n superi $l-\frac{1}{n}$ e che $w'_y\left(x,y\right)$ sia continua se considerata soltanto come definita nella porzione Δ_n di Σ costituita da quei punti di Σ che hanno l'ascissa contenuta in δ_n . Consideriamo era un punto $P_0 \equiv (x_0,y_0)$ di B e supponiamo che P_0 appartenga a Δ_n , anzi che x_0 sia di densità lineare 1 per δ_n , e che P_0 non appartenga ad H (attesa l'arbitrarietà di n, ad x_0 sono consentite quasi tutte le posizioni in I e P_0 è un punto qualunque di B, se si eccettuano quelli contenuti in un insieme quale l'insieme L dell'enunciato). Allora Δ_n è un insieme costituito da tante verticali, contiene la verticale passante per P_0 ed ha densità superficiale 1 nel punto P_0 . Inoltre, se $P \equiv (x,y)$ tende a P_0 mantenendosi in B e in Δ_n risulta ovviamente

$$w(x, y) - w(x_0, y_0) = w(x, y) - w(x, y_0) + w(x, y_0) - w(x_0, y_0) =$$

$$= w(x, y) - w(x, y_0) + w'_x(x_0, y_0)(x - x_0) + \alpha(x - x_0),$$

dove α è infinitesimo, atteso che w(x, y) è derivabile rispetto ad x in P_0 ; inoltre è, al solito,

$$w(x, y) - w(x, y_0) = w'_y(x, \eta)(y - y_0) =$$

= $w'_y(x_0, y_0)(y - y_0) + \beta(y - y_0),$

dove (x, η) è un punto conveniente interno al segmento di estremi (x, y) ed (x, y_0) , contenuto in $B \in \Delta_n$, e dove β è infinitesimo con $\overline{PP_0}$, attesa la continuità di ω_y' ove la si consideri come definita soltanto in Δ_n . Donde la conclusione.

5. - Ultime considerazioni. - La quasi-continuità semiregolare permette subito di dimostrare che:

Se le funzioni w(x, y) e $w^*(x, y)$, misurabili rispetto ad x e continue rispetto ad y nell'insieme B, coincidono quasi ovunque in B, allora esse coincidono in B, a prescindere da un insieme avente su I una proiezione ortogonale di misura lineare nulla:

e la deduzione è ovvia: infatti, dato il numero naturale n, si consideri una porzione misurabile δ_n di I tale che $w\left(x,y\right)$ e $w^*\left(x,y\right)$ siano continue, se considerate come definite soltanto nei punti di B che hanno l'ascissa in δ_n , e tale che la misura lineare di δ_n superi $l-\frac{1}{n}$. Allora, se x_0 è un punto di δ_n di densità lineare 1 per δ_n , ogni punto di B del tipo (x_0,y) può essere approssimato mediante punti nei quali w e w^* coincidano; epperò risulta $w\left(x_0,y\right)=w^*\left(x_0,y\right)$; ecc.

- **6.** Le classi G e C. Le funzioni g (x, y) della classe G sono definite nell'insieme B e vi soddisfanno alle seguenti condizioni:
- IV) sono assolutamente continue (rispetto alla x) sulle sezioni di B con le orizzontali;
- V) sono continue (rispetto ad y) sulle sezioni di B con le verticali;
- VI) le funzioni composte $g(x, \sigma(x))$ e $g(x, \tau(x))$ sono assolutamente continue nell'intervallo I;

in virtù della IV), g(x, y) è dotata di derivata parziale rispetto ad x (finita) in quasi tutto B; posto $g'_x(x, y) = 0$ nei punti di B in cui g(x, y) non è derivabile (o non ha derivata finita), si supporrà che:

VII) il modulo di $g'_{\boldsymbol{x}}(x, y)$ si mantenga minore di una funzione della sola x, sommabile nell'intervallo I;

naturalmente questa funzione potrà cambiare, se cambia la g che si considera (11).

E dimostriamo che:

Se g(x, y) è una funzione della classe G ed M(x) è il massimo di g(x, y) nel segmento $\sigma(x) \leq y \leq \tau(x)$, M(x) è assolutamente continua nell'intervallo I.

⁽¹¹⁾ La IV) e la VII) potrebbero essere conglobate in una condizione unica di equiassoluta continuità. Le IV), V), VI) e VII) implicano la continuità della g(x, y).

Allo scopo, detta N(x) una funzione, sommabile in I, tale da aversi $|g'_{c}(x,y)| \leq N(x)$, e considerato un sottointervallo $a \leq x \leq b$ di I, basterà provare che risulta

$$(4) |M(b) - M(a)| \leq \int_{a}^{b} N(t) dt + |g(\xi, \sigma(\xi)) - g(\vartheta, \sigma(\vartheta))| +$$

$$+ |g(\xi, \tau(\xi) - g(\vartheta, \tau(\vartheta)))|,$$

con ξ e ϑ punti convenienti di $a \le x \le b$; infatti dopo di ciò la conclusione seguirà dalla VI) e dalla assoluta continuità della $\int\limits_0^x N(t) \ dt$, l'integrazione essendo intesa nel senso di Lebesgue.

Se M(a) ed M(b) coincidono, non vi è nulla da dimostrare. Escluso questo caso, se

$$M(b) - M(a) > 0,$$

risulta

$$M(b) - M(a) \le M(b) - g(a, \sigma(a)),$$

 $M(b) - M(a) \le M(b) - g(a, \tau(a));$

detto allora v un punto di massimo per $g\left(b,y\right)$, risulta ovviamente

$$M(b) - M(a) \le |g(b, \tau(b)) - g(a, \tau(a))| +$$

 $+ |g(b, \sigma(b)) - g(a, \sigma(a))|$

tanto se $v = \tau(b)$ quanto se $v = \sigma(b)$, e la (4) è verificata a più forte ragione; escluse queste alternative, o in tutto l'intervallo semiaperto $a < x \le b$ risulta $\sigma(x) < v < \tau(x)$, nel qual caso è anche

$$M(b) - M(a) \le g(b, v) - g(a, v) \le \int_{a}^{b} N(t) dt$$

cioè sussite sempre la (4), oppure si può determinare un punto c interno all'intervallo a < x < b e tale che per x > c e $\le b$ si abbia $\sigma(x) < v < \tau(x)$, riuscendo invece $\sigma(c) = r$ oppure $\tau(c) = r$, ed allora si trova rispettivamente

$$\begin{split} M\left(b\right) &= M\left(a\right) \leq \left| g\left(b,\,r\right) - g\left(c,\,r\right)^{\top} + \left| g\left(c,\,r\right) - g\left(a,\,\sigma\left(a\right)\right) \right| \leq \\ &\leq \int_{a}^{b} N\left(t\right) \, dt + \left| g\left(c,\,\sigma\left(c\right)\right) - g\left(a,\,\sigma\left(a\right)\right)^{\top}, \\ M\left(b\right) &= M\left(a\right) \leq \left| g\left(b,\,r\right) - g\left(c,\,r\right)^{\top} + \left| g\left(c,\,r\right) - g\left(a,\,\tau\left(a\right)\right) \right| \leq \\ &\leq \int_{a}^{b} N\left(t\right) \, dt + \left| g\left(c,\,\tau\left(c\right)\right) - g\left(a,\,\tau\left(a\right)\right) \right|, \end{split}$$

epperò si ritrova sempre, a fortiori, la (4).

Il caso che sia

$$M(a) - M(b) > 0$$

si esaurisce con un ragionamento analogo.

Dopo di ciò passiamo a definire la classe C. Questa è la classe delle funzioni z(x, y) di G, le quali soddisfacciano alle seguenti condizioni ulteriori :

VIII) le derivate parziali prime di x(x,y) esistono (finite) in tutti i punti di B, esclusi al più quelli di un insieme avente proiezione ortogonale su I di misura nulla;

IX) le funzioni $z(x, \sigma(x))$ e $z(x, \tau(x))$, derivabili in quasi tutto I a norma della VI), abbiano le derivate (totali) espresse rispettivamente dalle

$$\alpha'_{x}(x,\sigma(x)) + \alpha'_{y}(x,\sigma(x))\sigma'(x),$$

$$x'_{x}(x,\tau(x)) + x'_{y}(x,\tau(x))\tau'(x)$$

in quasi tutto I.

Si noti che i teoremi dei numeri 3 e 4 forniscono condizioni sufficienti per la IX), la quale appare quindi come più generale della 5) della prefazione.

È ovvio che la differenza di due funzioni della classe C è ancora una funzione della stessa classe.

7. - Ipotesi sulla funzione f. - La funzione f(x, y, x, q) è definita nell'insieme D. Inoltre esiste una funzione

definita per $x \ge 0$ e $\le l$ ed u > 0, continua rispetto alla u, misurabile rispetto alla x, minore in modulo di una funzione della sola x, sommabile in I, e tale che:

X) le soluzioni dell'equazione

$$u(x) = \eta + \int_{\xi}^{x} F(t, u(t)) dt$$

si mantengono minori di ε a destra di ξ , qualunque sia il punto ξ , interno ad I, e qualunque sia il numero positivo ε , se η è un conveniente numero positivo, dipendente soltanto da ε ; e che:

XI) risulti, per quasi tutti i punti x dell'intervallo I:

(5)
$$f(x, y, x_1, q) - f(x, y, z_2, q) \le F(x, x_1 - x_2)$$

se
$$\sigma(x) < y < \tau(x), z_1 > z_2$$

(6)
$$f(x, \sigma(x), z_1, q_1) - f(x, \sigma(x), z_2, q_2) \leq F(x, z_1 - z_2) + \sigma'(x) (q_2 - q_1)$$

se
$$x_1 > x_2$$
, $q_1 \leq q_2$,

(7)
$$f(x, \tau(x), r_1, q_1) - f(x, \tau(x), r_2, q_2) \leq$$

$$\leq F(x, r_1 - r_2) + \tau'(x) (q_2 - q_1)$$

se
$$z_1 > z_2$$
, $q_1 \ge q_2$ (12).

(12) La (5) è la condizione di Cafiero-Lipschitz rispetto alla alla quale abbiamo alluso nella prefazione. La (6) e la (7) sarebbero le condizioni di

8. – Le soluzioni dell'equazione p = f. – Se f(x, y, z, q) è una funzione definita nell'insieme D, una soluzione dell'equazione p = f è una funzione z(x, y) definita in B e soddisfacente alle IV), V), VI), VII) ed VIII), cioè è una funzione della classe G soddisfacente alla VIII), per la quale accada che:

XII) sia

(8)
$$z'_{x}(x, y) = f(x, y, x(x, y), z'_{y}(x, y))$$

per tutti i punti di B, esclusi al più quelli di un insieme che abbia proiezione ortogonale su I di misura nulla.

OSSERVAZIONE. – Se f(x, y, z, q) è misurabile rispetto ad x e continua rispetto ad (y, x, q) e $z'_y(x, y)$ è misurabile rispetto ad x e continua rispetto ad y (al pari di z(x, y)), la funzione $f(x, y, z(x, y), x'_y(x, y))$ è misurabile rispetto ad x e continua rispetto ad y. Quindi (n. 5), se anche $z'_r(x, y)$ è misurabile rispetto a x e continua rispetto a y e se la (8) è verificata quasi ovunque in B, la (8) è verificata in tutti i punti di B, esclusi quelli di un sottoinsieme che abbia di misura nulla la propria proiezione ortogonale su I.

9. - Il teorema di unicità. - Passiamo ora a dimostrare che:

Se la funzione f(x, y, x, q) soddisfa alle condizioni indicate nel n. 7, le (eventuali) soluzioni della p = f che appartengono alla classe C, sono individuate dai valori che esse assumono per x = 0.

Siano infatti $z_1(x, y)$ e $z_2(x, y)$ due (eventuali) soluzioni della p = f che appartengano alla classe C e che soddisfacciano identicamente alla

$$z_1(0, y) = z_2(0, y) \quad (\sigma(0) \le y \le \tau(0));$$

Cafiero -Lipschitz rispetto alla τ e di Lipschitz Carathéodory rispetto alla q, ricordate anch'esse nella prefazione. Si noti che se parliamo di condizioni di Lipschitz-Carathéodory, non intendiamo perciò che o'(x) e $\tau'(x)$ siano sommabili in I.

allora la loro differenza

$$z(x, y) = z_1(x, y) - z_2(x, y)$$

non è più in generale una soluzione della p=f ma è sempre una funzione della classe C e soddisfa alla

$$: (0, y) = 0 \qquad (\sigma(0) \le y \le \tau(0))$$

e, per quasi tutti gli x di I, alla

(9)
$$z'_{x}(x, y) = f(x, y, z_{1}(x, y), q_{1}(x, y)) -$$

$$- f(x, y, z_{2}(x, y), q_{2}(x, y)) \quad (\sigma(x) \leq y \leq \tau(x)),$$

il significato di $q_1(x, y)$ e $q_2(x, y)$ essendo palese.

Noi dimostreremo ora, ragionando per assurdo, che z (x, y) è identicamente nulla in B.

Infatti, se ciò non accade, si possono sempre supporre scelti i simboli in guisa che in qualche punto (x_0, y_0) di B, con $x_0 > 0$, risulti $z(x_0, y_0) > 0$. Detto di nuovo M(x) il massimo di z(x, y) in quanto funzione (continua) della y nell'intervallo $\sigma(x) \leq y \leq \tau(x)$, M(x) è continua, anzi assolutamente continua, in I, è nulla per x = 0 e positiva per $x = x_0$.

Sia ε un numero positivo minore di $M(x_0)$; e si determini in corrispondenza un numero positivo (e $\le \varepsilon$) quale il numero η , di cui nella X), e lo si chiami η_0 ; si scelga poi il punto ξ_0 in guisa che sia $0 < \xi_0 < x_0$, $0 < M(\xi_0) = \eta_0$ ed M(x) > 0 se $\xi_0 \le x \le x_0$. Le soluzioni dell'equazione

$$u(x) = \eta_0 + \int_{\xi_0}^x F(t, u(t)) dt$$

sono per ipotesi minori di ε , cioè di $M(x_0)$, a destra di ξ_0 .

A norma di un teorema di confronto di Cafiero (18), questo

⁽¹³⁾ F. Cafiero: Sai teoremi di unicità relativi ad un'equazione differentiale ordinaria del primo ordine [«Giornale di Matematiche» di Buttugliai, vol. 78 (1948-1949), pagg. 10-41], § 1, n. 3.

porterà alla $M(x_0) < M(x_0)$, porterà cioè ad un assurdo, non appena si sarà dimostrato che in quasi tutti i punti di $\xi_0 \le x \le x_0$ risulta

$$(10) M'(x) \leq F(x, M(x)).$$

A questo scopo, a sia un numero maggiore di ξ_0 e minore di x_0 . Inoltre si supponga che M(x) sia derivabile nel punto a, che z(x,y) sia dotata di derivate parziali prime in tutti i punti di B del tipo (a,y) e che per x=a sussista la (9), cioè che sussista la

(11)
$$z'_{x}(a, y) = f(a, y, z_{1}(a, y), q_{1}(a, y)) - f(a, y, z_{2}(a, y), q_{2}(a, y)),$$

 $\sigma(a) \leq y \leq \tau(a)$. Allora al punto a sono consentite quasi tutte le posizioni nell'intervallo $\xi_0 < x < x_0$. E sia v(a) un punto di massimo della funzione z(a, y) nell'intervallo $\sigma(a) \leq y \leq \tau(a)$.

Se è
$$\sigma(a) < v(a) < \tau(a)$$
, risulta

$$\mathbf{x_{1}}\left(a,v\left(a\right)\right)>\mathbf{x_{2}}\left(a,v\left(a\right)\right),\quad q_{1}\left(a,v\left(a\right)\right)=q_{2}\left(a,v\left(a\right)\right)$$

e la (11), unita alla (5), porge

$$(12) \ \alpha'_{x}(a,v(a)) \leq F(a,z_{1}(a,v(a)) - z_{2}(a,v(a)) = F(a,M(a));$$

inoltre, se t è minore di a ed abbastanza prossimo ad a, il punto (t, v(a)) appartiene ancora a B e risulta $M(t) - M(a) \ge z$ (t, v(a)) - z (a, v(a)), epperò

$$\frac{M(t) - M(a)}{t - a} \leq \frac{x(t, v(a)) - x(a, v(a))}{t - a};$$

e di qui, passando al limite per $t \rightarrow a$ e ricordando la (12), si trae appunto

$$M'(a) \leq z_x'(a, r(a)) \leq F(a, M(a))$$
 (14).

(11) Se si considerano anche valori di t maggiori di a, si trova addirittura $M'(a) = i'_x(a, v(a))$.

Se r(a) coincide con $\sigma(a)$, si supponga che a sia d'accumulazione per l'insieme dei punti in cui la differenza M(x)— $-:(x,\sigma(x))$ si annulla e che nel punto a la derivata di $x(x,\sigma(a))$ sia uguale a $x'_x(a,\sigma(a))+x'_y(a,\sigma(a))\sigma'(a)$; allora al punto a sono consentite ancora quasi tutte le posizioni nell'intervallo $\xi_0 < x < x_0$, a norma anche della IX); inoltre risulta

(13)
$$M'(a) = i'_{x}(a,\sigma(a)) + i'_{y}(a,\sigma(a))\sigma'(a)$$

 \mathbf{e}

$$q_1(a, \sigma(a)) - q_2(a, \sigma(a)) = i'_y(a, \sigma(a)) \le 0;$$

e la (13), unita alla (11), alla (6) ed alla z_1 $(a, r(a)) > z_2$ (a, r(a)), porge facilmente

$$M'(a) \leq F(a, M(a))$$
.

Il caso che v(a) coincida con $\tau(a)$ si esaurisce con un ragionamento analogo, ricorrendo alla (7). La (10) è quindi valida in quasi tutti i punti di $\xi_0 \le x \le x_0$; e il teorema è dimostrato (15).

Osservazione. – Si noti che nelle nostre ipotesi σ (0) e τ (0) possono coincidere; nel qual caso le soluzioni delle p = f, contenute nella classe C, coincidono in tutto B se coincidono nell'unico punto comune a B ed all'asse delle ordinate.

(15) Durante la correzione delle bozze di questo lavoro, è uscita nei «Rendiconti dell'Accademia Nazionale dei Lincei» [serie 84, vol. XI (1951), pagg. 255-259] una Nota preventiva di S. Cinquini, nella quale questi enuncia un altro teorema di unicità per l'equazione p=f.