RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIUSEPPE SCORZA DRAGONI

Rettifica alla memoria : « A proposito di alcuni teoremi sulle equazioni differenziali »

Rendiconti del Seminario Matematico della Università di Padova, tome 16 (1947), p. 1-2

http://www.numdam.org/item?id=RSMUP_1947__16__1_0

© Rendiconti del Seminario Matematico della Università di Padova, 1947, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

RETTIFICA ALLA MEMORIA: A PROPOSITO DI ALCUNI TEOREMI SULLE EQUAZIONI DIFFERENZIALI

Nota (*) di Giuseppe Scorza Dragoni (a Padova).

Nel n. 34 della Memoria *A proposito di alcuni teoremi* sulle equazioni differenziali (1) ho esposto un metodo, dovuto a Birkhoff-Kellogg-Schauder-Caccioppoli, per dimostrare l'esistenza di un elemento unito nella trasformazione funzionale

$$\vartheta(x) = F[\tau(x)],$$

dove

î *

(2)
$$F[\tau(x)] = \int_{a}^{x} dt_{n-1} \int_{a}^{(n-1)} dt_{n-2} \dots \int_{a}^{(i_{2})} dt_{1} \int_{a}^{(i_{1})} \{(t, \tau(t), ..., \tau^{(n-1)}(t)) dt - \sum_{i=1}^{n} \frac{(x - x_{1}) \dots (x - x_{i-1}) (x - x_{i+1}) \dots (x - x_{n})}{(x_{i} - x_{1}) \dots (x_{i} - x_{i-1}) (x_{i} - x_{i+1}) \dots (x_{i} - x_{n})} \times \int_{a}^{x_{i}} dt_{n-1} \int_{a}^{(n-1)} dt_{n-2} \dots \int_{a}^{(i_{2})} dt_{1} \int_{a}^{t_{1}} f(t, \tau(t), ..., \tau^{(n-1)}(t)) dt.$$

In quella esposizione ho commesso una svista, facilmente eliminabile da chiunque conosca quel metodo.

- (*) Pervenuta in Redazione il 15 Marzo 1947.
- (1) Questi «Rendiconti», vol. XV (1946), pagg. 60-131.

Comunque, dico qui di che si tratta. Naturalmente mi servo dei simboli usati in quel n. 34 e faccio le stesse ipotesi. Di queste, ricordo esplicitamente soltanto che la x varia nell'intervallo $I: a \leq x \leq b$.

In quel n. 34 ho diviso l'intervallo $a \le x \le b$ in 2^p parti uguali, ho considerato una funzione $\varphi_p(x)$, nulla in $x_1, ..., x_n$, con derivata (n-1) – esima continua in I e lineare in ciascuna di quelle 2^p parti, ho posto $\psi_p(x) = F[\varphi_p(x)]$; ed ho interpretato i valori assunti da $\varphi_p(x)$, $\varphi'_p(x)$, ..., $\varphi^{(n-1)}_p(x)$ nei 2^p+1 estremi degli intervalli parziali di I e quelli analoghi assunti ivi da $\psi_p(x)$, $\psi'_p(x)$, ..., $\psi^{(n-1)}_p(x)$ come coordinate di due punti dello spazio reale, euclideo a (2^p+1) n dimensioni.

Invece, diviso I in 2^p parti uguali, avrei dovuto indicare con $\varphi_p(x)$ una funzione dotata di derivata (n-1) – esima continua in I e lineare in ciascuna di quelle parti, avrei dovuto porre $\psi_p(x) = F\{\varphi_p(x)\}$; avrei dovuto interpretare i valori assunti da $\varphi_p(x), \ldots, \varphi_p^{(n-2)}(x)$ nel punto a insieme con quelli assunti da $\varphi_p^{(n-1)}(x)$ negli estremi dei 2^p intervalli di suddivisione come coordinate di un punto dello spazio reale euclideo a $2^p + n$ dimensioni (2); e come coordinate di un punto dello stesso spazio avrei dovuto interpretare i valori analoghi relativi a $\psi_p(x)$ (3).

⁽²⁾ In conformità di ciò, le dimensioni degli spazi cuclidei considerati nel n. 36 della Memoria citata debbono essere 1+n, 4+n, 8+n, ... in luogo di 3n, 5n, 9n, ...

⁽³⁾ Volendo, avrei potuto imporre a $\varphi_p(x)$ di essere nulla nei punti x,..., x_{n-1} (se n > 1), di avere una derivata (n-1) – esima continua in I e lineare in ciascuna delle 2^p parti di suddivisione di I; avrei potuto interpretare i valori da $\varphi_p^{(n-1)}(x)$ negli estremi di quelle $2^p + 1$ parti e quelli analoghi relativi a $\varphi_p^{(n-1)}(x)$ come coordinate di due punti dello spazio reale euclideo a $2^p + 1$ dimensioni.

E ancora: volendo, avrei potuto imporre a $\varphi_p(x)$ di essere nulla nei punti x_1, \ldots, x_n , di avere una derivata (n-1) – esima centinua in I e lineare in ciascuna delle 2^p parti di suddivisione di I, ed interpretare como coordinate di due punti dello spazio euclideo a 2^p dimensioni i valori medi in ciascuna di quelle 2^p parti della $\varphi_p^{(n)}(x)$ e della $\psi_p^{(n)}(x)$. Ma credo inutile insistere ulteriormente su di ciò: mi limito quindi a osservare che quest' ultimo metodo è quello a cui meglio si addicono le considerazioni svolte a piè delle pagg. 122-123 della Memoria citata in (1).