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A NEW RELAXATION IN CONIC FORM
FOR THE EUCLIDEAN STEINER PROBLEM IN R"

MARCIA FAMPA! AND NELSON MACULAN?
Communicated by Pierre Tolla

Abstract. In this paper, we present a new mathematical program-
ming formulation for the Euclidean Steiner Tree Problem (ESTP) in R".
We relax the integrality constrains on this formulation and transform
the resulting relaxation, which is convex, but not everywhere differen-
tiable, into a standard convex programming problem in conic form. We
consider then an efficient computation of an e-optimal solution for this
latter problem using interior-point algorithm.

Keywords: Euclidean Steiner tree problem, conic form, interior point
algorithms.

1. INTRODUCTION

The Euclidean Steiner Tree Problem (ESTP) in R™ can be defined as follows:
given p points in ", find a minimum tree that spans these points using or not extra
points, which are called Steiner points. The distances considered between points
are Euclidean. This is a very well known problem in combinatorial optimization,
see [6]. It has been considered since the 17" century, when Fermat proposed the
following problem: given three points in the plane, find a fourth point such that
the sum of its distance to the three given points is a minimum. Torricelli, in
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1647, proved that the circle circumscribing the equilateral triangles constructed
on the sides of and outside the given triangle intersect in the point that is sought.
Heinen, in 1837, apparently, is the first to prove that, for a triangle in which one
angle is greater than or equal to 120°, the vertex associated with this angle is the
minimizing point.

Bellow, we give some well known properties that can be useful when obtaining
a solution for the ESTP, see [2,6] and [8].

e Property 1
Given p points a’ € R, i = 1,... ,p, the maximum number of Seiner points
is p— 2.

e Property 2
A Steiner point has degree equal to 3.

e Property 3
The edges emanating from a Steiner point lie in a plane and have mutual
angle equal to 120°.

We observe that on the ESTP, we have to determine the number of Steiner points
to be used on the minimal Steiner tree, the edges of this tree, and finally, the
geometrical position of the Steiner points. We define a topology of a Steiner tree
as a tree for which we have fixed the number of Steiner points and the links between
points, but we do not know the geometrical position of Steiner points. Based on
Property 1, we define a full Steiner topology as a topology with p — 2 Steiner
points. A tree which corresponds to some topology, but with certain edges shrunk
to zero length, is said to be degenerate. All nonfull topologies are thus degenerate
full topologies. Some research have been done recently on the computation of the
minimal Steiner tree, for a given topology. See Hwang [4], Hwang and Weng [5],
Smith [11] and Xue and Ye [12], for example. Xue and Ye [12] present an interior-
point algorithm, which efficiently computes an e-optimal solution to the shortest
network under a given full Steiner topology interconnecting N points. The problem
is given as an application to the problem of minimizing a sum of Euclidean norms,
which is initially transformed into a problem in conic form. In this paper we apply
a similar transformation to the relaxation proposed for the ESTP. Our goal is to
present a relaxation for the problem, for which we can also compute an e-optimal
solution efficiently, applying interior-point algorithms.

We consider the Euclidean Steiner tree problem without any given topology.
Our final interest would be then, in the computation of a global minimum for the
ESTP.

The use of interior-point algorithms in the solution of nonlinear problems, such
as semidefinite programming problems, have been considered lately by several au-
thors in the computation of bounds for the solution of difficult combinatorial op-
timization problems (see [1,3,10]). For the max-cut and max-stable problems, for
example, there are well known semidefinite relaxations, as discussed by Lemaréchal
and Oustry in [7].

The rest of the paper is organized as follows. In Section 2, we describe the ESTP
and present a mixed-integer programming formulation for it. In Section 3, we relax
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the integrality constrains on the formulation and transform the given relaxation
into a standard convex programming problem in conic form. In Section 4, we
show that an e-optimal solution for the relaxation can be computed efficiently
using interior-point algorithms. We prove the existence of an interior solution for
the problem and its dual by constructing one such solution to be used as an initial
point for the interior-point algorithms. We conclude the paper in Section 6, and
define some matrices used to formulate the problem in the Appendix.

Notation. In the rest of this paper, when we represent a large matrix with several
small matrices, we will use semicolons “;” for column concatenation and commas
“” for row concatenation. This notation also applies to vectors. We will use the
number 0 to represent a matrix with all elements equal to zero and dimension
indicated by the context. The letter e will denote the vector of ones, e = [1...1]7
and e; denotes the vector with the i-th component equal to one and all the others
equal to zero. Their dimensions are also indicated by the context. Given a vector
x € R", x, denotes the k-th component of z, for k =1,... ,n.

2. A MATHEMATICAL PROGRAMMING FORMULATION FOR ESTP

Following the notation used by Maculan et al. [8], we consider a special graph
G = (V, E) as follows.
Let P = {1,2,...,p — 1,p} be the set of indices associated with the given

points a',a?,... ,a?"ta? (a* € R", for i = 1,...,n) and S = {p + 1,p +
2,...,2p — 3,2p — 2} be the set of indices associated with the Steiner points
Pt ppt2 273 202 (e R fori=1,...,n). Wetake V =PUS. We

denote by [i, j], i, j € V, such that, ¢ < j, an edge of G. Thus we also consider
Ey ={[i,j]li € P,j € S} and Ey = {[i, j]|i € S,j € S}, and we define E = E;UE,.

We denote by || - || the Euclidean norm and define y;; € {0,1} for [i,j] € E,
where y;; = 1 if edge [¢, 7] is in the Steiner tree solution and y;; = 0 otherwise.
Finally, we let M = maximum{||a’ — a/||for 1 < i < j < p}. Since the Steiner
vertices are in the convex hull of the p given points, we have ||a® — 27| < M,
[i,7] € By and |2° — 29| < M, [i,j] € E2. We consider, without any loss of
generality, that (a’), > 0, fori = 1,...,p and k = 1,... ,n. Therefore, we also
have (z), > 0,fori=p+1,...,2p—2and k= 1,... ,n. We propose then, the
following mathematical model for ESTP:

Minimize 32 »ep dij

subject to:  dj; > [la’ — 27| = M(1 —yy;),  [i,j] € B
dij > 2" — 27| = M(1 —yi5),  [i,j] € B
di; >0 [i,7] € E
djesYii =1, i € P (1)
i<jiesYii =1, jeS—{p+1}
Yij € {07 ]-}a [27.7] EX
d’b] eR, Za]] €L

e R, 1€ 8.
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We observe that Property 1, given above, was considered to determine the size of
the set S equal to p — 2. Maculan et al. show in [8] that all full Steiner topologies
corresponding to the p given points are feasible solutions of (1). Considering that
all nonfull topologies are degenerate full topologies, we see that the feasible set of
the given formulation for the ESTP, contains every Steiner tree with at most p — 2
Steiner points.

The three first constrains on the formulation, determine that the distance be-
tween ' and 27 or between a’ and 27 is only considered on the objective function
when the edge [i, j] is in the Steiner tree solution (i.e., when y;; = 1). The fourth
constrain is used to fix each vertex in P with degree equal to 1. And the fifth
constrain is used to avoid the formation of subtours among the Steiner vertices,
as explained in [8].

3. A NEW RELAXATION FOR ESTP IN CONIC FORM
In this section, we first relax the integrality constrains of the formulation pre-

sented on the previous section. The resulting relaxation for ESTP is then given
by the following problem, which is convex, but not everywhere differentiable:

Minimize Z(i fer d;j

subject to:  dij > [|a" — 27| = M(1 —yi;),  [i,j] € E1
dij > ||o* — 27| = M(1 = y5),  [i,j] € B2
di; >0 [i,7] € E
2 jes¥ii =1, iepP (2)
Di<jiesYii =1, jeS—{p+1}
e R, 1€ 8.

Consider now the slacks variables h;; for [i,j] € E, associated to the constrains
yi; < 1, and the following equivalences:

. . .,:d,.+M(1_y,.)
S T s Zij ij. ) ij
dij > [|z" — 27| = M(1 — y;) < { zij > |2t — 2],

and

; ; zij = dij + M(1 —y;5)
s lgt — ] — o ij ij. : ij
dij > la* — 27| — M(1 yw) — { i) > lai — 27|,

where z;; € R for [i,j] € E. The relaxation (2) could then be formulated as the
minimization of a linear function subject to affine and convex cone constrains as
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follows:

Minimize >_(; yep dij
subject to:  z;; —di; + My;; = M, li,jl€ B

Y jesYii =1, ieP

YicjiesYii =1, jeS—{p+1}

Yij + hijA: 1’, [27.7] €L (3)
zij > |la* — 2|, li,j] € E1

zij 2> |lzt — 2|, [i,7] € E2

dij; Yijs hij = 0 li,jle E

dij, Yij, Zij, hij € R, [i,j] € E

e R, i€sS.

Our goal now is to transform the relaxation (3) into a standard convex program-
ming problem in conic form, where the cone and its associated barrier are self-
scaled, as defined by Nesterov and Todd in [9]. We consider two cones mentioned as
examples of self-scaled cones in [9]. The first one is the positive orthant defined by

Ki={zeR":2,>0k=1,... ,n}
The interior of K is defined by
K ={zeR":2,>0k=1,... ,n}
In [9], it is shown that K is a self-scaled cone, which admits an n-self-scaled
barrier defined by Fy(z) := — >, _; Inay.
The other cone considered in this paper is the second-order cone defined by
Ky = {(t;s) € R"" 1 > ||s]|},
which is shown in [9] to be also a self-scaled cone. Its interior is defined by
K3 = {(t;s) e ™1t > |ls])}-
The function Fy(t,s) := —In(t? — ||s||) is a 2-self-scaled barrier for Ks.

Let us consider now the following equivalences for the inequalities constrains of
relaxation (3).

2 > ||ai — JcJH — ] ST a' —a’ where [i,j] € Ey
Y= zij > |lsill 7 ’
and
25 > |2t — 27 || = sij = @' — ! where [i,j] € Es.
= zig > syl ’
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The relaxation (3) can then be written as

Minimize Z(i,j)EE dij

subject to:  z;; —dij + My;; = M, [i,7] € E
Sij +£Ej = ai, [Z,j] c B
sij — ' + 2! =0, [i, j] € B2
2jesYii = 1, iepb
DicjiesYis =1, jesS—{p+1} (4)
Yij + hij =1, [’L,j] cF
zij 2 |lsi;ll, [i,j] € E
dij, Yij, hij > 0 li,j] € E
dij, Yij, Zij, hij € R, li,j]€ B
't e R, ieS
Sij € %n’ [’L,j] cF

where the second and third equalities denote componentwise equalities. Now let

e

x2p72

(#1,p415 51,p41)

(Zzp—2,2p—2§ 82p—2,2p—2)
dipt1
. n|S|+(n+4)|E
€ RISl B

d2p—2,2p—2

Y1,p+1

Y2p—2,2p—2
hl,p+1

h2p—2,2p—2

where ' € R" for all i € S, and z;j, d;j,yij, hi; € R and s;; € R" for all [i,j] € E.
We also define the vectors C and B and the matrix A as it follows, where the
dimensions of each line and column are indicated.

n|S|

(n+1)|E|
C= ||

|E]

|E]

S 4)|E
€ RolSI+m+)|E|

OO0 OO
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|E| Me
al
= a” | ¢ ROHDIBI+IPIFISI-1
n|E2| 0
P e
IS|—=1{ e
|E| e
nlS| (n+DIE| |E[ [E] |E]
E| 0 A —I MI 0
77,|E1| A2 A3 0 0 0
A_ n|E2| A4 A5 0 0 0
~|P| 0 0 0 As 0
IS|-1] o0 0 0 A, 0
|E| 0 0 o I I

The matrix A € RFDIEFIPIH[S|=1)x(nS|+(n+)IED) gnd the submatrices A;, As,
..., Az, which are properly defined by the constrains on (4), are specified on the
Appendix.

Finally, we can write the relaxation (4) in the standard primal form

Minimize CTX
subject to: AX =B

' e Ky ieS

(zi5:8i5) € Ko [i,j]€E (5)
di; € Ky [i,j] € E

yij € K1 [i,j] € B

hij € Ky [i,j] € E.

Which is equivalent to

(P)  Minimize CTX
subject to: AX =B (6)
Xek

where K := Kf‘SHB‘E‘ X KéEl =K x ... x K1 x K9 x...x Ks.
The dual problem associated to (P) is given by

(D) Maximize BTY
subject to: S =C— ATY (1)
Sek.

The pair of problems (P) and (D) is the one considered by Nesterov and Todd
in [9]. In the same paper, the following theorem is given.
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Theorem 1. Let E; and Es be finite-dimensional linear spaces. If cone K; C E;
18 self-scaled with v;-self-scaled barrier F;, i = 1,2, then the cone

K:ZK1XK2gE1XE2

is also self-scaled, with v-self-scaled barrier given by F(x1,x2) := Fi(x1) + Fa(z2),
where v = 11 + vs.

We can now apply successively the theorem above and conclude that K is a self-
scaled cone with v = n|S| + 5|E|. Thus, we can use an interior-point algorithm to
compute an e-optimal solution of the relaxation in polynomial time.

4. SOLVING THE RELAXATION

In recent years rich theories on polynomial-time interior-point algorithms have
been developed. These theories and algorithms can be applied to many nonlinear
optimization problems to yield better complexity results for various applications.
In this paper we have first presented the relaxation (2) for ESTP, which is not ev-
erywhere differentiable. It was shown by Xue and Ye, in [12], that by transforming
this problem into a standard convex programming problem in conic form, we are
able to compute an e-optimal solution efficiently, using interior-point algorithms.

The interior-point algorithms we could apply to approximately solve a problem
in conic form are described in [9]. For the algorithms, it is assumed that the interior
of the feasible set of the primal and dual problems, (P) and (D), are nonempty.
The interior of the feasible sets of (P) and (D) are defined respectively, by

FOP)={xek": AX =B}

and

FUD) ={(¥,S) e Y xK*:S=C— ATy},
where Y = RIOHAIEHIPIHSIZ) and 0 .= (K9)ISHIEN x (KD)3IFl .= K9 x ... x
KIx K x...x KY.

In order to employ interior-point algorithms to approximately solve the relax-
ation of ESTP, the interior of its feasible set should then be nonempty. To fulfill
this assumption, we need to eliminate some variables and constraints from (6),
which are defined by the constraints of (4). Considering the formulation of this
later problem, we note that the constrain ZKMGS yij =1, for j € S—{p+1}
implies that ypt1,p+2 = 1. Then, from the constrain y;; + h;; = 1, for [i,j] € E,
we have that hpy1p+2 = 0 on every feasible solution. Therefore, no feasible solu-
tion satisfies hp41,p+2 > 0, which means that the feasible region of the relaxation,
has an empty interior. To overcome this difficulty, we reformulate the relaxation,
just eliminating the variables yp41,p+2 and hypi1 p12, and taking out the constrains
Yp+1p+2 t hpt1pr2 =1 hpi1py2 > 0 from (4).

Considering the reformulation proposed, we prove on the next section that the
interior of the feasible set of (P) and (D) are nonempty by constructing a pair
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of strictly primal-dual interior feasible solutions. This pair of solutions not only
proves the following theorems, but also can be used as an initial point on interior-
point algorithms.

5. INITIAL POINT

Theorem 2. Considering the reformulation of problem (P) proposed in the last
section, we have that the interior of its feasible set is nonempty.

Proof. Let 27 be any point in the convex hull of the p given points a', ... ,a?, for
j=p+1,...,2p—2, and

sij =a' —ad, for [i,]] € B,

Sij = xi - :L'jv for [27.7] € E2a

hij =1- Yij, for [Zaj] SRS {p+ 15p+ 2}7

Yij = 23, for [i,j] € Ex,

Yij = mv for [27.7] E'EjZa

dij = M(y;; +0.1), for [i,j] € E,

zij = L.1M, for [i,j] € E.

Then, one can verify that X is an interior feasible solution to (P). O

Theorem 3. The interior of the feasible set of the dual problem (D) is nonempty.

Proof. Let:

U

ul w1

u2 Wo (t1;v1)

y= 3 , S=| ws and wy =

Ug w .

us : (t12);v121)
Ws

Ue

where ui, ug € RIZ, uy € RME 45 € RUE2l 4y € RIP! ug € RISI-1 wy € RISI
wy € ROTDIED apg wy, wy € §R‘E‘, t;€eRand v; e R" fori=1,...,|E|
The dual constraints can then be written as:

w1 = 7A%1’u,2 — AZUJ?,

w9 = —AT’ul — A3TUQ — Agug

w3 =€+ u

Wy = 7M’u,1 — Agw; — A?UE, — Ug
We = —Ug

W1, W3, Wq, Ws, We € Kl
(ti;’Ui) e Ky, fori=1,... ,|E|
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Now let u; = —0.5e, ug =0, ug =0, us = 0, ug = —e and
€1
€2
uy = —0.1 . where e; € ®R"°I.
€|p|
Then, one can verify that J and S form an interior feasible solution to (D). O

6. CONCLUSION

In this paper, we have first presented a new formulation for the Euclidean
Steiner tree problem in R™. In order to generate lower bounds for the solution of
this problem, we relax the integrality constrains on the formulation. The given re-
laxation is a convex, but not everywhere differentiable problem. Applying interior-
point algorithms, we show that it is possible to get an e-optimal solution for this
relaxation by transforming it into a standard convex programming problem in
conic form defined by Nesterov and Todd in [9].

The use of interior-point algorithms in the solution of nonlinear relaxations of
combinatorial optimization problems have been discussed lately by several authors
in the literature, but so far we have not found any application of this approach for
the Euclidean Steiner tree problem in R™.

APPENDIX

We now give the submatrices Aj, Ao, ..., A7, of the matrix A, used on the
formulation of (P). In the following, I represents the n x n identity matrix, e;
denotes the vector in 7 F!, with the first component equal to 1 and all the others
equal to 0, e™ denotes the vector with all components equal to 1 and dimension
equal to m, and OI denotes the n x (n + 1) matrix given by
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I
1
Ay =
1
I
oI
Az = (A3|0) ,  where Az= c RrIE1x (n+1)| B
oI
-1 1
—I I
—I I
—I 1
I I
Ay = —1I I
—I 1
-1 1
—1I 1
-1 I
oI
As = (0|/I5) ,  where As= € Rl Ealx(n+1)|Es|
oI
(elShT
Ag = (A6|0) ,  where Ag= c RIPIX|E1]
(@Is1y7
(eh)?
A7 = (0]47), where A7 = c RUSI-1)x|Ea|
(e\S\—l)T
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