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Abstract. We study a continuous version of the capacity and flow
assignment problem (CFA) where the design cost is combined with an
average delay measure to yield a non convex objective function coupled
with multicommodity flow constraints. A separable convexification of
each arc cost function is proposed to obtain approximate feasible so-
lutions within easily computable gaps from optimality. On the other
hand, DC (difference of convex functions) programming can be used
to compute accurate upper bounds and reduce the gap. The technique
is shown to be effective when topology is assumed fixed and capacity
expansion on some arcs is considered.

Résumé. On étudie ici une version continue du problème de dimen-
sionnement et routage dans un réseau de communications, dans lequel
les coûts de conception sont combinés aux mesures de délai moyen
d’acheminement, engendrant un problème de multiflots avec une fonc-
tion objectif non convexe. On propose un encadrement de la valeur
optimale par convexification séparable sur les arcs, d’une part, et par
calcul d’optima locaux issus d’un modèle DC (différence de fonctions
convexes) des fonctions de coût. Cette dernière technique permet de
réduire la distance à la valeur optimale et on illustre son efficacité sur
des problèmes d’expansion de capacités.
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1. Introduction

This paper presents an alternative approach for some models and algorithms
that have been addressed to problems of telecommunication and computer net-
work expansion and operation. Many such models are special issues of the general
network design problem and lead to large-scale non convex or combinatorial opti-
mization problems (see [2] for example). Approximation algorithms and heurisitics
are frequently employed to treat these problems and the need for tight bounds of
the global optimal value is a crucial issue we want to address here.

The motivation behind our modeling approach concerns the need to integrate
the routing mechanisms (commodity flows) together with the control of bandwidth
allocation (capacity assignment) in emerging technologies. The integrated problem
(denoted hereafter by (CFA) for Capacity and Flow Assignment problem) is clas-
sical in network planning, but it has now a greater importance because capacity
assignment can also be done in real time.

The (CFA) problem has been first considered by Gerla in his thesis [8] and the
early approaches used Kleinrock’s delay function and linear design costs, allowing
the application of the Flow Deviation algorithm to solve the corresponding convex
multicommodity flow problem (see Fratta et al. [4]). Most proposed algorithms in
the literature treat alternatively the Capacity Assignment problem and the Flow
Assignment problem like in Gerla and Kleinrock [9] or in successive papers by
Gavish et al. [6, 7]. In [10], Gerla et al. proposed to embed the packet-switched
network into a given backbone facility network and they obtained local optimal
solutions to the non convex design and routing model. Lagrangian relaxation has
been quite often used to split the problem into separate design and routing ([1, 7]
and [19]). Gavish has also introduced Augmented Lagrangians to generate tight
lower bounds in [5].

Recently, the (CFA) problem was solved by generalized Benders decomposition
where the boolean variables represent the choice of capacities among a given set
of facilities [14]. But we can avoid the use of discrete variables by combining the
step increasing capacity expansion cost with the convex delay function, yielding
a nonconvex but continuous increasing function on each arc. Continuous models
have been proposed in the literature (see [21]), but they focus mainly on the
effect of economies of scales which gives the concave-cost multicommodity flow
problem. These latter problems are in general NP-hard, unless the number of
nonlinear variables is kept fixed (see [20]). Further aspects concerning the global
optimization of these difficult problems, which are not addressed here, can be
found in [12].

We are not concerned here with pure topology design of the backbone network,
and assume that an initial graph is given, such that there exists at least one
path between each origin-destination pair and that in each arc is installed a given
capacity which is supposed to be able to support a standard traffic load. The
problem is formulated by minimizing the link expansion costs plus the congestion
costs associated with the total flow circulating on each link.
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We show in this paper how to compute sharp lower and upper bounds of the
optimal value of the capacity expansion problem. In the next section we formulate
the model and present the main result, related with a lower bound for a network
optimization problem where the variables refer to routing and bandwidth alloca-
tion. In Section 3 we show how to solve efficiently the convex multicommodity
flow subproblem by a proximal decomposition algorithm. In Section 4, we exploit
the DC (difference of convex functions) structure of the arc costs to apply the
DCA algorithm for computing local minima. The resulting upper bound is signif-
icantly better than the value of the feasible solution given by the convexification
step. This allows to reduce the gap as shown by the numerical results in the last
section.

2. A continuous model for network expansion

We present in this section the network expansion model. The basic component
of the model is a digraph G = (V,E) with m nodes and n arcs representing a
communication network. Any kind of traffic between a given pair of nodes (Ok, Dk)
is treated as a separate commodity k. The kind of traffic indexed by k is also related
to the parameter dk, which represents consumers demand for commodity k. Given
a commodity k, we consider a given set of directed paths Pkh, h = 1, . . . , Nk
joining Ok and Dk. This set may be the set of all simple directed paths or a
restricted set of feasible paths, for instance with a limited number of hops. Let
ξkh be the amount of flow of commodity k through the path Pkh and akh its
arc-path incidence vector defined by

ajkh =

1 if arc j ∈ Pkh

0 otherwise.

Each component xj of the vector x denotes the total flow on arc j. We assume given
a congestion plus leasing cost function fj(xj) on each arc j, which is increasing on
[0,+∞) and smooth. It aims at distributing the load among all capacitated arcs
to reduce the total cost of leasing (or capacity investment) lines and congestion
expressed in monetary values. Remark that the capacity in any arc may be possibly
increased affording a given expansion cost, in such a case reducing the marginal
time delay. We will not digress here neither on the question of the tradeoff between
money and mean time delay, nor on the approximation in this case of any statistical
congestion function like Kleinrock’s delay function (see for example [2]). Each
link j has an initial capacity c0j ≥ 0 and we assume a fixed cost πj to expand
the capacity from c0j to c1j = c0j + δj , δj > 0. We can now state the Network
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Expansion Problem (NEP) as follows:

min
ξ≥0,x≥0

n∑
j=1

fj(xj) (1)

subject to

dk −
Nk∑
h=1

ξkh = 0 k = 1, ...,K (2)

K∑
k=1

Nk∑
h=1

ajkhξkh − xj = 0 j = 1, . . . , n. (3)

Constraints (2) ensures that the demand for each commodity is supplied by the
path flows activated for the commodity, while constraints (3) impose that the total
flow on each arc is equal to the sum of the individual path flows which use that arc.
We seek for path flows, arc flows and implicit arc capacities in order to minimize a
total cost that includes capacity and queuing components. We observe that each
function fj depends on the actual arc capacity c0j , on the expanded arc capacity
c1j and on the associated expansion cost πj :

fj(xj) = min{f0
j (xj), f1

j (xj) + πj} (4)

where each f qj , q = 0, 1 is typically an increasing function which measures conges-
tion on the arc when its capacity is equal to cqj . For instance, Kleinrock’s average
delay function will give after an appropriate scaling:

fqj (xj) =
xj

cqj − xj
· (5)

A typical combined function is represented in Figure 1 (arc index j is omitted on
the figure). Indeed, we decide to expand the capacity when the flow reaches the
value γj , i.e. when the congestion cost is so high that it is worth investing the
fixed expansion cost πj .

Adding delays with expansion costs could sound strange and many approaches
have introduced scaling factors to get a consistent cost function. These scaling
factors are difficult to estimate, even if they have also an interpretation as a dual
multiplier associated with a Quality of Service (QoS) constraint (see [14]), but the
nonconvex nature of the model turns the use of marginal costs rather empirical.
Another way to interpret the breakpoint γj on the graph of fj (see Fig. 1) is to
decide to expand the arc capacity when congestion reaches a given threshhold, i.e.
if α is the maximum tolerable percentage of the nominal capacity c0j which can
be reached by the total flow xj , then the expansion cost πj is such that:

πj = f0
j (αc0j)− f1

j (αc0j).

This means of course that γ = αc0j .
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The main result on which the present paper relies is based on the convexification
of each arc cost function to yield a lower bound of the global minimal value. Indeed,
these functions are likely to be non convex turning the search of a global optimum
a very hard task. The motivation here is the possibility to use efficient convex
multicommodity flow algorithms.

The following results are summarized from the technical note [13]. Let X be
the non empty convex set of arc flow vectors for which we have feasible multicom-
modity flows, i.e., there exists x ∈ X and correspondent path flows ξkh satisfying
constraints (2) and (3). We will denote by convf the convex hull of a function f ,
i.e. the greatest convex function majorized by f (to be consistent, that definition
requires that f admits at least one minorizing affine function, see [11]).

Proposition 1. Suppose that each function fj is bounded below and that problem
(1–3) has an optimal solution x∗ with optimal value z∗. Then.

z̃ = inf
x∈X

∑
j

convfj(xj)


is a lower bound of the optimal value, i.e. z∗ ≥ z̃. Moreover,

z∗ − z̃ ≤
∑
j

max
xj

[fj(xj)− conv fj(xj)] = ∆.

Proof. From the definition of z̃, we have:

z̃ ≤
∑
j

conv fj(xj), ∀x ∈ X.

Then, using the definition of the convex hull of each arc function, we obtain that
z̃ ≤

∑
j fj(xj), ∀x ∈ X , and thus z̃ ≤ z∗.

Let x̃ ∈ X be the vector with components x̃j for each arc j such that z̃ =∑
j conv fj(x̃j).

z∗ − z̃ =
∑
j

fj(x∗j )−
∑
j

conv fj(x̃j)

≤
∑
j

[fj(x̃j)− conv fj(x̃j)]

≤
∑
j

max
xj

[fj(xj)− conv fj(xj)] = ∆. (6)

2
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Figure 1. The integrated function of congestion and expansion costs.

Observations:

1. The maximal gap ∆ associated with the above lower bound is in general
greater than zero as the convex hull of the sum of a set of functions is in
general different from the sum of the convex hulls of each function. This
is true even if the functions are separable, because we have the coupling
constraints (3). These results can be seen as special cases of the analysis on
convex hulls given by Falk [3].

2. The lower bound z̃ could have been computed by solving the Lagrangian
dual problem associated with (NEP), but that approach would in general
not lead to feasible solutions.

3. Our motivation here comes from the fact that the convex hull of a one-
dimensional function is relatively easy to compute explicitly. In such a case,
we can compute z̃ and the corresponding solution x̃ by solving the convex
multicommodity flow problem by any efficient algorithm (see [16] for ex-
ample). If fj(x̃j) = conv fj(x̃j), ∀j, we can conclude that x̃ is an optimal
solution and z̃ is the global optimal value of the problem. Otherwise, if the
effective gap at x̃ is greater than a given tolerance, we can switch to a local
improvement method, taking x̃ as a starting point, to reduce it gradually.

The convex hull of fj is easily obtained by computing the tangent points at the
flow values x0j and x1j . The calculus may be done explicitly in some simple cases
as shown in [13], and we have observed there that the gap can be rather small in
practical situations.
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Another result which is of practical interest when Kleinrock’s delay function (5)
is used, is the following:

Proposition 2. At the same marginal cost on a given link, the residual capacity
of the expanded link is greater than the residual capacity of the existing link.

Proof. Let rqj = cqj − xqj , j = 0, 1 be the residual capacities; by computing the
derivatives of f qj at two points xqj , j = 0, 1 with the same marginal costs, we get:

c0j
r2
0j

=
c1j
r2
1j

which implies of course that r1j > r0j . 2

3. Solving the convex approximation

To solve the convex cost multicommodity flow subproblems, we can use the
Proximal Decomposition algorithm described in Mahey et al. [15]. It is a primal-
dual method for the decomposition of convex separable problems. It was initially
designed to solve a generic convex constrained program: minimize a convex lower-
semicontinuous F on a closed subspace A. If A⊥ denotes the orthogonal subspace
to A, an optimal primal-dual pair (x, z) must lie in the Cartesian product space
A× A⊥. The algorithm performs two distinct steps at each iteration: a proximal
step which regularizes the objective function by adding a quadratic term depend-
ing on the previous primal-dual pair of solutions, and a projection step on the
corresponding subspaces.

Many distinct strategies are possible to put the multicommodity flow prob-
lem in the generic form. In [15], the arc-path formulation of the multicommodity
flow problem was considered and a coupling subspace A were proposed which
includes the equations (2) and (3). As the set of paths between ok and dk is
not known a priori, the authors substitute it at each iteration t = 0, 1, . . . by a
subset which contains the previously generated paths. The proximal step con-
sists of one-dimensional convex subproblems for each arc j to find aggregate flows
xt+1
j . Then, new paths are generated by shortest paths calculation with link costs
f
′

j(x
t+1
j ) followed by a distributed updating for path flows and potentials. The

whole algorithm is represented below with the following notations: P tk will de-
note the set of paths between ok and dk already generated at iteration t and let
Nk = |P tk|. For each arc j, let ηj be the number of paths sharing j. For each path
h ∈ P tk, let |akh| denotes the number of arcs of the path. The residual vectors
(violation of constraints (2) and (3)) associated with a multicommodity flow xt

are denoted by rk(xt) and rj(xt) respectively. The corresponding dual variables
are denoted by Zk,∀k and zj,∀j ∈ E.

To alleviate notations in the description of the algorithm below, we will denote
by gj the convex hull function on arc j, i.e. gj(xj) = conv fj(xj):
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Algorithm 1.

1. Choose the convergence parameters ε1, ε2, λ > 0,. Set the iteration index
t = 0. The initial vectors x0, z0, Z0 may be chosen arbitrarily.

2. For each arc j compute

xt+1
j = arg min

0≤xj<c1j

{
gj(xj)− ztjxj +

λ

2

(
(xj)2 − 2

(
xtj +

rj(xt)
ηj

)
xj

)}
·

3. For each commodity k, compute the shortest path that joins the origin ok
and the destination dk. The length for each arc j used for this computation
is g′j(x

t+1
j ). This shortest path is added to P tk and Nk is incremented, if

it is not already there. Then, the path flows are updated according to the
following rule:

ξt+1
kh = max

0, ξtkh +
1

λ(1 + |akh|)

Ztk −∑
j∈kh

ztj


+

1
1 + |akh|

rk(xt)
Nk

−
∑
j∈kh

rj(xt)
ηj

 ·
4. Update the dual variables

zt+1
j = ztj +

λ

ηj
rj(xt+1), Zt+1

k = Ztk +
λ

Nk
rk(xt+1).

5. Test (xt+1
j , ξt+1

kh , zt+1
j , Zt+1

k ) for convergence and set t← t+ 1 if one decides
to continue the iteration.

The Proximal Decomposition algorithm has been shown to be very effective on
large multicommodity flow problems with convex costs (see [16]): problems with
more than 100 nodes, 900 arcs and fully dense requirement matrices have been
solved to ε-optimality (with ε < 10−6) in less than one hour cpu-time. In these
tests, the inner iterations split among the arcs and the one-dimensional subprob-
lems were solved by Newton method. As the convex hull functions gj are no
more twice differentiable, we have used a dichotomic search to solve them approx-
imately and the overall average performance decayed in approximately 30 percent
comparatively with the results reported in [16].

4. Computing a sharper upper bound of problem (NEP)

by DCA

We will show in this section how to improve the convexification gap by comput-
ing good feasible solutions. Since each function defined by (4) is DC (Difference of
Convex functions), we can compute an approximate local minimum by applying
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available methods for DC Optimisation. Recently, the so-called DC Algorithm
(DCA), developed in [17], has been reported to be efficient for various large DC
optimization problems. It has been applied to the network design problem with
staircase cost functions in [18]. In this section we provide some preliminary numer-
ical results for DCA applied to the capacity expansion model (NEP) in comparison
with solutions obtained for the convexified problem.

Algorithm DCA is proposed for solving the general DC programming problem

(DCP ) min{g(x)− h(x) : x ∈ Rn}

where g, h are l.s.c convex functions on Rn. In its simplified form, DCA consists
in the construction of two sequences {xk} and {yk} such that

x0 ∈ Dom ∂h, yk ∈ ∂h(xk)

and xk+1 is a solution of the problem

min{g(x)− [h(xk)+ < x− xk, yk >] : x ∈ Rn}·

It has been shown that the sequence {(g − h)(xk)} is decreasing and converges
to a limit whenever problem (NEP) is bounded below. Moreover, under certain
assumptions, one can show that ‖xk+1−xk‖ → 0 and every cluster point x∗ of {xk}
is a local minimizer. In what follows we give a DC formulation of Problem (NEP)
and details of the calculation that we have to perform at each iteration by DCA.

4.1. DC decomposition

It is well known that there are infinitely many DC decompositions for a given
DC function and the choice of a DC decomposition may have a decisive influence
on the performance of DCA for a given problem. When a function is the infimum
of two convex functions g1, g2 we have the following DC decomposition on the
intersection of their domains:

min{g1, g2} = (g1 + g2)−max{g1, g2}

for all x ∈ Dom (g1) ∩Dom (g2).
In the present case, f0

j is not defined on [c0j , c1j], so that we need to add a slight
modification of the component functions to get a feasible DC decomposition. Using
the specific structure of function fj(xj), as represented in Figure 1, we propose
the following DC decomposition fj = gj − hj where

gj(xj) =
{
f0j(xj) + f1j + πj xj ≤ γj
ajxj + bj + f1j + πj otherwise

hj(xj) =
{
f1j + πj xj ≤ γj
ajxj + bj otherwise
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and

aj = f ′0j(γj), bj = f0j(γj)− ajxj .

Proposition 3. gj(xj)−hj(xj) is a D.C. decomposition of fj(xj) on [0, c1j), i.e.
(i) gj , hj are convex functions;
(ii) fj(xj) = gj(xj)− hj(xj) for all xj ∈ [0, c1j ].

Proof. (ii) is immediate. It is clear that gj is convex on each interval [0, γj) and
(γj , c1j). At the value γj ,we have

g′j(γj − 0) = f ′0j(γj) + f ′1j(γj) = aj + f ′1j(γj) = g′j(γj + 0)

hence the graph of gj is lying above the tangent plane at the point (γj , gj(γj)) and
so gj is convex on the whole interval [0, c1j). Analogously for hj we have

h′j(γj − 0) = f ′1j(γj) < f ′0j(γj) = aj = h′j(γj + 0)

which completes the proof.
2

4.2. DCA for problem (NEP)

Denote by S the feasible region of (NEP) and define

g(x) =
∑
j

gj(xj) + χS , h(x) =
∑
j

hj(xj)

(NEP) can be then rewritten as

min{g(x)− h(x) : x ∈ Rn}

where χS denotes the indicator function of S. The DC-Algorithm applied to (NEP)
is summerized as follows
• take x0

j ∈ [0, c1j);
• compute

ykj =
{
f ′1j(xj) xj ≤ γj
aj otherwise;

• solve the problem

min
ξ≥0,x≥0

n∑
j=1

gj(xj)− ykj xj (7)
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subject to

dk −
Nk∑
h=1

ξkh = 0, k = 1, . . . ,K (8)

K∑
k=1

Nk∑
h=1

ajkhξkh − xj = 0, j = 1, . . . , n; (9)

• stopping criterion:

|(g − h)(xk+1)− (g − h)(xk)| ≤ ε.

The problem (7–9) is in fact a separable convex multicommodity flow problem
that can be solved efficiently by the Algorithm 1.

4.3. Preliminary results

Tables 1 and 2 give some preliminary results for a network of 9 nodes, 64
expanded arcs and 30 commodities with the same demand bk = 1.
c0, c1 are the initial and expanded capacities on all arcs, zconv is the optimal

value of the convexified problem and z̄conv is the objective value of Problem (NEP)
at this solution. The values of c0, c1 are chosen so that its ratio c0/c1 is 1/3, 1/2
and 2/3, respectively. For the DCA, we first take as starting point the zero flow,
i.e. xj = 0 for all j = 1, . . . , n and the result is given by the optimal value z1

DCA

and the number N1 of convex multicommodity flow problems to be solved. Then
we take as starting point the solution of convexified problem that provides z2

DCA

and N2 respectively. We run two test examples for different values of α: α = 50%
(Tab. 1) and α = 70% (Tab. 2).

Table 1. γ = 50%, bk = 1.

c0 c1 zconv z̄conv z1
DCA N1 z2

DCA N2 Gap (%)
3 9 28.776497 36.977814 33.560944 6 33.799976 3 16.62
4 12 21.470337 28.505762 27.488590 4 26.995285 3 25.73
5 15 17.078259 22.020987 22.015285 3 21.271002 2 24.55
3 6 37.605270 40.163151 39.910885 4 39.122307 3 4.03
4 8 26.797176 29.077398 28.813215 5 28.508305 3 6.38
5 10 20.561415 22.065268 22.271173 4 21.639713 3 5.24
3 4.5 45.107479 45.775230 45.646366 7 45.490089 3 0.84
4 6 29.967743 30.704700 30.565926 4 30.519283 5 1.84
5 7.5 22.221663 22.489975 22.650450 4 22.360434 3 0.62

Theoretically, DCA provides an upper bound for the optimal value of Problem
(NEP). As can be seen from Tables 1 and 2, this upper bound is better then
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Table 2. γ = 70%, bk = 1.

c0 c1 zconv z̄conv z1
DCA N1 z2

DCA N2 Gap (%)
3 9 40.560810 52.714867 50.327148 4 49.301311 4 21.54
4 12 28.431997 35.871189 34.849823 3 32.951809 4 15.89
5 15 21.534222 24.789640 23.493114 2 23.566057 2 9.09
3 6 48.937592 53.924282 51.028286 6 52.082657 4 4.27
4 8 32.151947 34.862839 34.848812 3 34.101494 3 6.06
5 10 23.097792 23.949223 23.493397 3 23.493670 3 1.71
3 4.5 55.122379 55.841873 55.381149 5 55.382584 5 0.47
4 6 33.839134 34.338093 34.849529 4 34.124561 3 0.84
5 7.5 23.474411 23.538622 23.493290 3 23.493807 3 0.08

the upper bound z̄conv provided by the value of the feasible solution obtained by
the convexification procedure. We can observe too that DCA terminates rapidly.
Indeed, with a stopping tolerance of ε = 10−4, we need to solve in average only
4 convex multicommodity flow subproblems. The optimal value by DCA depends
on starting points but, in most cases, the solution of the convexified problem is a
starting point better than the zero flow. The relative gap (zDCA− zconv)/zconv (in
percentage) between the computed lower bound and upper bound for the optimal
value of Problem (NEP) is shown in the last column of tables. We observe that
it is reasonable for the ratios 1/2 and 2/3 and seems not very good when the
expended capacity is more larger than its initial value.

5. Conclusions

The combination of convexification which leads to the best dual lower bound
and DC programming which can computes sharp upper bounds is a first step
towards the global optimization of large design problems. This paper has pro-
posed a modeling framework to integrate design and operation in modern back-
bone networks. In practice, the capacity of an arc may be expanded from c0 to
any value of an ordered set of standard capacity levels c1, c2, . . . , cN . Let πn be
the fixed cost of expanding the arc from the capacity c0 to the capacity cn, for
n = 1, 2, . . . , N . Let f0 be the congestion cost function before expansion, and
let fn, n = 1, 2, . . . , N be the congestion cost function after the correspondent
expansion. Then, instead of (4), the integrated cost function is defined on [0, cN ]
by:

f(x) = min{f0(x), f1(x) + π1, f
2(x) + π2, . . . , f

N(x) + πN}
and a sequential reduction on the number of pieces of the convex hulls can invoke
the approach studied here for this general case.

Our analysis fits in the framework referred as topology tuning by Gerla et al. [10],
since we address the issue of bandwidth allocation together with the conventional
use of routing strategies. Indeed, our procedure may run as part of network
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management for large networks for which the dynamic adjustement of bandwith
is complex to be carried out manually. We have shown how to consider discrete
changes of capacity within a continuous modeling framework, and we have provided
theoretical means in order to evaluate heuristic solutions with respect to global
optimality in this class of problems.
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