
RAIRO Operations Research
RAIRO Oper. Res. 35 (2001) 229-250

FAST SIMULATION FOR ROAD TRAFFIC NETWORK

Roberta Jungblut-Hessel
1
, Brigitte Plateau

2
,

William J. Stewart
3

and Bernard Ycart
4

Abstract. In this paper we present a method to perform fast simu-
lation of large Markovian systems. This method is based on the use of
three concepts: Markov chain uniformization, event-driven dynamics,
and modularity. An application of urban traffic simulation is presented
to illustrate the performance of our approach.

Résumé. Dans cet article, nous présentons une méthode pour réaliser
des simulations rapides de grands systèmes Markoviens. Cette méthode
est basée sur l’utilisation de trois concepts : l’uniformisation de châıne
de Markov, une dynamique liée aux événements et la modularité. Une
application de trafic urbain illustre les performances de notre approche.

Keywords: Markov chains, stochastic automata networks, simula-
tion, stochastic modeling.

Received May, 1999.

1 ID-IMAG, 55 avenue Jean Kuntzmann, 38330 Montbonnot, France. Research supported by
the (CNRS – INRIA – INPG – UJF) joint project Apache, CAPES-COFECUB Agreement
(Project 140/93), Brazil and EC Transport RTD Program (Contract No. RO-97-SC-1005)
joint project HIPERTRANS.
2 ID-IMAG, 55 avenue Jean Kuntzmann, 38330 Montbonnot, France. Research supported by
the (CNRS – INRIA – INPG – UJF) joint project Apache and EC Transport RTD Program
(Contract No. RO-97-SC-1005) joint project HIPERTRANS.
3 North Carolina State University, Raleigh, NC 27695-8206, U.S.A. Research supported in
part by NSF (DDM-8906248 and CCR-9413309).
4 UFR Math-Info, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France. Research supported
by EC Transport RTD Program (Contract No. RO-97-SC-1005) joint project HIPERTRANS.

c© EDP Sciences 2001



230 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

1. Introduction

The problems of modelling very large systems are well documented. They
principally include state space generation and storage, and the complexity of the
analysis to be undertaken. In the context of Markov models, the theory pro-
vides elegant theorems for numerically computing both steady state and transient
solutions. These theorems have been exploited in the context of Stochastic Au-
tomata Networks (SAN) [11] where the transition matrices can be expressed in a
very dense manner and ad-hoc numerical algorithms can benefit from this struc-
ture [3, 4]. Such results have also been applied in the context of Petri nets [2, 6].

Such numerical solutions allow models with a few millions states to be solved,
which means a few tens of automata at most. Parallel execution, if available, only
helps to gain a linear factor. If one wants to model systems with a few thousands
of automata, simulation is the only possibility. In this paper we show that we can
simulate SAN systems with of the order of 104 automata by using two arguments:
the system is a Markov chain and is described by a set of interacting components
that operate more or less independently, requiring only infrequent interactions
such as synchronizing their actions, or operating at different rates depending on
the state of parts of the overall system.

We show that this approach is efficient compared to the standard event list
algorithm. Indeed, the event list approach has a number of steps that can be very
costly, namely, the time step implementation which often requires the computation
of a log function and insertion into the event list for very large systems.

The paper is organized as follows. Section 2 is a review of basic results and meth-
ods for simulating Markov chains using a uniformization transformation. Section 3
presents the adaptation of these basic results in the context of SANs. Section 4
presents an application of urban road traffic.

2. Uniformized Markov chain and simulation

2.1. Basic simulation

Consider a continuous time Markov chain X = (Xt) , t ∈ R, with finite5 state
space S and transition matrix (or generator) Q. A non-diagonal element x, y of
Q, denoted by λxy, is the (non-negative) transition rate from x to y. The diagonal
element x, x is denoted by −λxx, with λxx =

∑
y 6=x λxy. The basic simulation

algorithm for this chain is depicted below:

5These results are also valid for countably infinite state spaces, provided that the various
quantities exist.



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 231

Markov-1

• t := 0; Initial state is x;
• Repeat

– choose the next state equal to y with probability
λxy
λxx

; x := y;

– t := t− (log(random))/λxx;
• until the end of the simulation.

In this simulation, y is always different from x. random is a call to a function
that returns an independent and uniformly distributed real number in [0, 1]. Let
us define the uniformized Markov chain Y = (Yn), n ∈ N of this initial chain. It
is a discrete time Markov chain defined by its transition matrix P (I denotes the
identity matrix with appropriate dimension):

P = I +
1
λ
Q with λ = max

x∈S
λxx .

It is well known that Xt and Yn have the same stationary solution (if it exists)
and that the transient solution of Xt can be computed from the transient solution
of Yn by a randomization (or uniformization) of the transition instant of the chain
Yn by a Poisson process of rate λ [5]. The basic simulation algorithm for the chain
Yn is:

Markov-2

• n := 0; Initial state is x;
• Repeat

– choose the next state equal to y 6= x with probability
λxy
λ or y = x with

probability 1− λxx
λ ; x := y;

– n := n+ 1;
• until the end of the simulation.

If each time step of this simulation is scaled to an independent exponentially
distributed random variable of rate λ, denote Yλ = (Yλ,t) the process simulated
by Markov-2. Then, the two algorithms Markov-1 and Markov-2 simulate
stochastic processes with identical distributions. If the simulation Markov-2 runs
for n steps (n large), the law of large numbers allows us to estimate the correpond-
ing time on the continuous time scale by t = n

λ , with a relative precision of order
1/
√
n. For this reason, we call λ the clock rate of the chain Yλ.

Let us now compare the efficiency of the two simulations: an iteration of the
second algorithm is cheaper because the time increment avoids a log call. On the
other hand, the second simulation has more iterations (on average) than the first
one over the same period of simulated time because each time increment is smaller
(λ = maxx∈S λxx): In Markov-1 the mean time increment is 1

λxx
in state x,

and in Markov-2 it is always 1
λ . If Markov-2 has more iterations for the same

simulated time, observe that it has dummy transitions to the same state, with
probability 1− λxx

λ , which never occurs in Markov-1.



232 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

If we consider the M/M/1 queue as an example, almost all the diagonal entries
of the transition matrix are equal to the same value, except for the state with no
customers. So the probability of dummy transitions is zero, except for the zero
state. If this zero state is rarely reached, dummy transitions are seldom. On the
other hand, if the diagonal entries of Q are very different, the second simulation
might compare poorly to the first: a poor case is one very large entry on the
diagonal compared to all the others.

Note that any value h greater than λ leads to a different Markov Yh chain with
transition matrix Ph = I + Q

h , and a uniformized process Yh,t with a larger clock
rate h, but obviously with an identical stationary solution. The transient solution
of X can also be computed from the transient solution of Yh by a uniformization
process of rate h. This can easily be seen: let π(t) be the transient probability
vector of the continuous time Markov chain at time t:

π(t) = π(0) exp(Qt) .

Thus

π(t) exp(ht) = π(0) exp(Qt) exp(ht) = π(0) exp
(
ht

(
Q

h
+ I

))
= π(0) exp(htPh)

and because h ≥ λ, Ph is stochastic and its exponential can be expanded

π(t) = π(0) exp(−ht) exp(htPh) = π(0)
∞∑
k=1

P kh
(ht)k

k!
exp(−ht).

This concludes the proof. In what follows, we shall call Yh the h-uniformized
Markov chain associated with X (abbreviated to h-HM).

From the point of view of algorithm speed, the optimal value for h is obviously
λ = maxx∈S λxx: the simulation (of type Markov-2) of Yh is less efficient in
number of iterations than the simulation of Y , as it leads to more dummy transi-
tions: the rate of dummy transitions in state x is 1− λxx

h = h−λxx
h . Nevertheless,

as will be explained later, this option may ease the computation of a clock.
Basically in this paper, we use h-uniformized Markov chains to estimate by sim-

ulation the steady state probabilities of ergodic systems and not transient prob-
abilities. On the other hand, the traditional use of a uniformized Markov chain
is the numerical computation of transient probabilities [5] and that is why these
short explanations are given here.

2.2. Simulation with multiple components

Assume now that the chain X is a vector of N components
(
X

(1)
t , . . . , X

(N)
t

)
.

To simplify this introduction, assume first that the components are independent
Markov chains on the state space S(i), each with the optimal clock rate λ(i) and



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 233

transition matrix Q(i). The clock rate of X is then λ =
∑N
i=1 λ(i), as6

Q =
N⊕
i=1

Q(i) .

The traditional simulation of X , using the event list method is as follows:

Markov-3

• t := 0; Initial state is x(1), . . . , x(N);
• Initialize the first possible transitions and transition dates in the sorted event list for

each component. An event has the format (component identity, next state, transition
instant);

• Repeat
– pop the first event (i, y(i), t(i)) from the event list;

– t := t(i); x(i) := y(i);

– choose the next state of component i equal to z(i) with probability
λ

(i)

y(i)z(i)

λ
(i)

y(i)y(i)

;

– compute the transition instant t(i) := t− (log(random))/λ
(i)

y(i)y(i) ;

– insert the event (c, z(i), t(i)) in the sorted event list;
• until the end of the simulation.

The cost of the log function call appears again plus the cost of insertion in a
sorted event list. The discrete choice for the next state on component i operates
on a small number of choices (at maximum the size of S(i)).

The simulation of the corresponding uniformized chain is:

Markov-4

• n := 0; Initial current state is x(1), . . . , x(N);
• Repeat

– choose the component to move i and the next state equal to

y(i) 6= x(i) with probability
λ

(i)

x(i)y(i)

λ and x(i) := y(i)

or dummy transition with probability 1−
PN
i=1

λ
(i)

x(i)x(i)
λ ;

– n := n+ 1;
• until the end of the simulation.

Markov-4 is an adaptation of Markov-2 taking into account the vector struc-
ture of X . The complexity of the event list insertion in Markov-3 is reported
in Markov-4 in the discrete choice, which has a number of options proportional
to the sum of the S(i) sizes. This main discrete choice can be done in two steps,
which is more efficient if N is large:

6
L

denotes the tensor product of matrices [3].



234 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

Markov-5

• n := 0; Initial current state to x(1), . . . , x(N);
• Repeat

– choose the component to move i with probability λ(i)

λ ;

– choose the next state equal to y(i) 6= x(i) with probability
λ

(i)

x(i)y(i)

λ(i) and x(i) :=

y(i) or dummy transition with probability 1−
λ

(i)

x(i)x(i)

λ(i) ;
– n := n+ 1;

• until the end of the simulation.

The Appendix contains a discussion (mostly extracted from [15]) on algorithms
to perform efficient discrete choices with preassigned probabilities among a large
number of possibilities.

Comparing the performance of Markov-3, Markov-4 and Markov-5 is gen-
erally very hard since they are model dependent: number of components, size of
each component, size of the reachable state space, rate values, etc. We give only
here an indication of the relative cost of the basic steps of the simulations, namely
random calls, log calls, discrete choices and insertion.

To perform fast random choices, it is compulsory to have an efficient random
generator. The generator we use is FSU-ULTRA developed by researchers at
Florida State University7 [9].

The table below gives the time spent in each function call on an Ultra Sparc 2
with 512 Megabytes of memory. In Table 1 dis(n) indicates a discrete choice from
a set of n possibilities using the Discrete-1 method (see Appendix) and ins(n)
denotes the insertion of an element in a sorted list of n items.

Table 1. Clock increment in microseconds.

add random log(random)
0.05 0.23 0.7

Table 2. Choice calls in microseconds.

dis(10) dis(100) dis(1000) dis(10000) ins(10) ins(100) ins(1000) ins(10000)

0.56 0.8 1.03 1.36 1.42 1.43 1.48 12.7

From Table 1, it can be seen that a constant clock time increment is about
10 times more efficient than the random time increment using a logarithm. From
Table 2 we see that the calls for random discrete choices are more efficient than
corresponding insertion calls for the same data size. Indeed, in our approach,
an insertion in a list of 10 000 items should be typically replaced by two discrete
choices on subsets of 10 and 1000 items and the speed up obtained by this approach
is about 10.

7It may be obtained by contacting Arif Zaman (arif@stat.fsu.edu) or George Marsaglia
(geo@stat.fsu.edu).



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 235

3. Using events and modularity

One of the issues in simulating the λ-HM chain is the computation of λ. Indeed,
if the chain is very large (e.g., a vector of more than 104 components) an exact
computation in the general case is impossible as it involves the explicit computation
of all the diagonal entries of the matrix. Thus, we need methods to compute a
clock rate value which is a reasonable approximation to the optimal clock. The
method developed here is based on the concept of event in Markov chains (rather
than transitions) and the modularity of the description. The concept of event is
important for SANs, but has also been proposed in previous work [5], for Petri
nets and in the event list simulation.

3.1. Markov chain simulation using events

Consider a continuous-time Markov chain X = (Xt), t ∈ R, with finite state
space S and transition matrix Q.

We are interested in one strongly connected reachable set R, on which the chain
is typically ergodic. The dynamics of this chain on R is completely defined by a
set of independent events noted E. We assume that event e has a constant rate λe.
An event is said to be fireable in a state, if and only if it may occur in this state
(this terminology is standard in the context of Petri nets). In modelling, events
are easily identified. We believe that, in most systems, the number of events is
much smaller than the number of transitions. For instance, in a Jackson network,
the events are the arrivals and departures. An arrival leads to several transitions,
as many as there are possible states in which this event may occur.

In state x, a fireable event e may lead to multiple destinations according to rout-
ing probabilities. Denote them pe,xy, for all possible destinations y from state x.
These probabilities induce a discrete probability distributions on the set of possi-
ble destinations, possibly degenerating to a single destination. Denote by Ex the
set of fireable events in state x. This set Ex is such that:
• for all x, y such that λxy 6= 0, there exists a single e ∈ Ex such that λxy =
λe × pe,xy;
• for all x, for all e fireable in x,

∑
y∈R pe,xy = 1, and

• λxx =
∑
y∈R λxy =

∑
e∈Ex λe.

Proposition. h =
∑
e∈E λe is a possible uniformization clock rate and is the

optimal one if there exist a reachable state in the chain X where all the events are
fireable.

Proof. If there exists a reachable state for the chain X where all the events are
fireable, all events compete (independent and exponentially distributed random
variables), and the rate at which the first event occurs is precisely h =

∑
e∈E λe.

If such a state does not exist, λxx =
∑
e∈Ex λe is always strictly less than λ. In

state x, the rate of dummy transitions for this h-HM chain is λ−
∑
e∈Ex λe and

corresponds to the cumulative rate of non fireable events in x. The simulation of
the h-HM chain is as follows:



236 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

Markov-6

• n := 0; Initial state is x;
• Repeat

– choose the event to fire e with probability λe
λ ;

– if e is fireable in state x, choose a destination y with probability pe,xy
then x := y else dummy transition;

– n := n+ 1;
• until the end of the simulation.

This algorithm is a modification of the algorithm Markov-2 by decomposing
the discrete choice of the transition into two levels:

• for an actual transition, x 6= y, the choice of an event is followed by the
choice of the routing probability, and according to the definitions given above,
λxy = λe × pe,xy;
• the dummy transition in state x occurs when choosing an event which is not

fireable in x. The probability of a dummy transition in x is 1−
P
e∈Ex λe
λ =

1− λxx =
P
e/∈Ex λe
λ .

In this algorithm the part “else dummy transition” may be omitted (and will be in
future versions) as it corresponds to a “null” instruction (no change of state).

3.2. Hierarchy of events

It is always possible to classify events into a hierarchy of subsets. To simplify
the demonstration, we propose a classification with one level. Let (B1, . . . , BK)
be a partition of E. The algorithm becomes:

Markov-7

• n := 0; Initial state is x;
• Repeat

– choose the set of events to fire Bk with probability
P
e∈Bk

λe

λ ;

– choose the event to fire e with probability λeP
e∈Bk

λe
;

– if e fireable in state x, choose a destination y with probability pe,xy then x := y;
– n := n+ 1;

• until the end of the simulation.

Markov-7 obviously simulates the same Markov chain as Markov-6 with an
extra level of hierarchy in the choices. As an example, consider a Jackson network
with N queues (external arrivals to queue i with rate λi and service rate µi). The
optimal clock is λ =

∑N
j=1(λi + µi) and the sets Bk can be:

• the events with the same rate. This requires a classification of the rates
and is easy when the networks is built by duplication of basic elements. In
this case, the first discrete choice is that of the class and the second one is
uniform, thus less expensive;



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 237

• the events (external arrival and end of service) of a queue. The first choice
is among N possibilities with respective probabilities

(
λi+µi
λ

)
, i = 1 . . .N .

The second one is a Bernoulli choice between arrival or departure, with
probabilities λi

λi+µi
, µi
λi+µi

;
• all the events of the same type (arrival, end of service). The first choice

determines whether it is an arrival or a departure with probabilities(PN
i=1 λi
λ ,

PN
i=1 µi
λ

)
. The second one selects the queue with probabilities(

λiP
N
i=1 λi

)
, i = 1 . . .N if an arrival has been chosen by the first choice,

and
(

µiPN
i=1 λi

)
, i = 1 . . . N otherwise.

The actual choice of a hierarchy is governed by the values of the rates, which
determine which choices will lead most frequently to fast discrete choice algorithms.

3.3. Functional event rates

Assume now that the rate of an event is not constant, but varies according to the
state in which it takes place (functional rates is another term for state dependent
rates). In a queuing network, this is the case for a queue with multiple server, for a
server with a processor sharing discipline, etc. It is a frequently arising situation.
For any event e, denote by λmax

e the maximum value of the rate function. The
rate of e in state x can always be written as λmax

e ×fe(x). Then fe(x) is a positive
function with maximum value 1 and can be interpreted as a probability.

In this context and without extensive analysis of the diagonal of Q, a possible
clock is h =

∑
e∈E λmax

e . This clock is optimal if and only if there is a state in
which all events are fireable and at a maximal rate. This condition is very strong
and might rarely be reached in practice. Considering the transition matrix of the h-
HM Markov chain, the values fe(x) and 1−fe(x) appear to be routing probabilities:
with probability fe(x) an actual transition occurs and with probability 1− fe(x)
a dummy transition occurs. The simulation is:

Markov-8

• n := 0; Initial state is x;
• Repeat

– choose the event to fire e with probability λe
λ ;

– if e fireable in state x, then with probability fe(x) choose a destination y with
probability pe,xy, then x := y;

– n := n+ 1;
• until the end of the simulation.

In this algorithm, a transition is fired to state y 6= x with probability λefe(x)pe,xy
λ .

A dummy transition is fired if e is not fireable in x or if the Bernoulli trial with



238 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

probability fe(x) is not successful, so with probability
P
e/∈Ex λe
λ +

P
e∈Ex λe(1−fe(x))

λ

= 1 −
P
e∈Ex λefe(x)

λ . Therefore this algorithm simulates the Markov chain with
transition matrix I + Q

λ .
This last algorithm concludes the use of events for the simulation of uniformized

Markov chains. The next section studies further improvements due to modularity
in the context of SANs.

3.4. SAN presentation

A Stochastic Automata Network is a formalism which facilitates the modular
description of vector Markov chains using the concept of event. A SAN is a
collection of components called stochastic automata. There are basically two ways
in which stochastic automata interact [11]: the rate at which a transition may
occur in one automaton may be a function of the state of other automata. Such
transitions are called functional8 transitions. A transition in one automaton may
force a transition to occur in one or more other automata. We refer to such
transitions collectively under the name of synchronized transitions. Synchronized
transitions may also be functional. In any given automaton, transitions that are
not synchronized transitions are said to be local transitions [1, 10]. Transitions
are associated to events that are local or synchronizing events. Events may be
associated with several transitions.

Consider a SAN with N automata. It is an N -component Markov chain whose
components are not independent due to functional transition rates and synchro-
nizing events. A local state for automaton i is denoted by x(i) and the global
state of the SAN is a vector x = (x(1), . . . , x(N)). A vector (x(1), . . . , x(i)), with
i ≤ N is called a partial state. The respective sets of states are denoted by S(i)

and S = S(1)× . . .×S(N). The reachable state space of the SAN is denoted by R.
In a SAN, transitions are described on each automaton. A transition is labeled

with the events names and rates which may cause this transition and a routing
probability indicating the possibility of different transitions from the same ini-
tial local state and for the same event. These routing probabilities may also be
functional and are denoted by pe,x(i)y(i)(x). The events are defined as follows:

• a local event is associated with the transitions of only one automaton;
• a synchronizing event is associated with the transitions of more than one

automaton. Actually, each synchronizing event e is associated with a set of
concerned automata Oe. The event is fired if and only if all the automata
in Oe are ready to procede for this synchronized transition, and effectively
do it. To generalize the notation, if e is local to i, Oe = {i}. Within Oe
an automaton is arbitrarily elected to be the “master” of the synchronizing
event. It can be the automaton which models the triggering component for

8We use the term functional instead of the expression “state-dependent” in order to insist on
the the fact that these rates are dependent on the state of other automata. In queuing theory, a
state dependent rate of a queue depends on the state of the queue itself.



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 239

this event (if there is a single triggering component, which is not always the
case);
• all these events are independent and have functional transition rates in the

form fe(x)λmax
e in state x. Denote by E the set of all events.

Let us extend the use of the terminology fireable:
• an event e is fireable in local state x(i) if there exists a transition labeled

with e from x(i) in automaton i. If e is a synchronizing event and fireable
on a local state, this does not imply that it is -actually-fireable on the global
state (see further);
• an event e is fireable in the partial state (x(1), . . . , x(i)) if for all automata
i ∈ Oe

⋂
[1, i], there exists a transition labeled with e from x(i);

• an event is fireable in the global state x if for all automata i ∈ Oe, there
exists a transition labeled with e from x(i). If e is fireable in the global state
x = (x(1), . . . , x(N)), it is fireable on each x(i) in Oe.

According to these definitions, denote by Ex the set of all fireable events in state x,
x being a global, partial or local state.

Let us consider a Jackson network: the local events are the external arrivals to
a queue, the end of service leading to a departure or a feed-forward routing. The
synchronizing events correspond to transitions of one customer from one queue to
another.

The issue now is to benefit from the SAN structure to compute a good approx-
imation of the clock and propose an efficient hierarchy of discrete choices.

3.5. Simulation of a SAN

The first option in simulating a SAN, is to directly apply the general framework
of Markov-8: the clock is h1 =

∑
e∈E λmax

e and it is obviously greater than the
optimal clock λ as it is the rate at which all the events of the model compete at
their maximum rate.

SAN-1

• n := 0; Initial state is x = x(1), . . . , x(N);
• Repeat

– choose the event to fire e in E with probability
λmax
e
h1

;

– if e fireable in state x, with probability fe(x) choose a destination y with
probability Πi∈0epe,x(i)y(i)(x) then x := y;

– n := n+ 1;
• until the end of the simulation.

In this simulation
• an actual transition from x to y is fired with probability 1

h1
λmax
e fe(x)×

Πi∈0epe,x(i)y(i)(x);

• a dummy transition is fired (as in Markov-8) with rate
P
e/∈Ex λ

max
e

h1

+
P
e∈Ex λ

max
e (1−fe(x))

h1
.



240 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

This simulates a Markov chain with transition matrix I+ 1
h1
Q. The problem here

is that h1 may be much too large and this simulation may produce too many
dummy transitions.

A possible improvement is to define a so-called local clock λ(i) for each automa-
ton as if they were independent. For this denote, for each automaton:
• Ēx(i) ⊂ Ex(i) the set of all local events, fireable in local state x(i) plus the

synchronizing events fireable in local state x(i) if i is the master. Denote
λx(i) =

∑
e∈Ē

x(i)
λmax
e ;

• λ(i) = maxx(i)∈S(i) (λx(i)). λ(i) can be computed from the transition matrix
of automaton i;
• finally, set h2 =

∑N
i=1 λ

(i). h2 is the sum of some maximal rates without
redundancy: local events are counted once on each automaton and synchro-
nizing events once in their master automaton.

Proposition. With the definitions given above, h2 =
∑N
i=1 λ

(i) is a possible uni-
formization clock rate.

Proof. we have to show that h2 is greater than λ to be eligible for being a clock.
As λ is the maximum of all diagonal coefficient λxx of Q (x being a global state),
it is sufficient to prove that for all x, λxx ≤ h2.

Consider a global state x. The set of fireable events in x = (x(1), . . . , x(N)), Ex,
is included in

⋃N
i=1 Ēx(i) . This can easily be seen from the definitions (Sect. 3.4)

since a synchronizing event fireable in x is fireable in x(i) if i is the master of the
transition, and not the opposite. Thus

λxx =
∑
e∈Ex

fe(x)λmax
e ≤

∑
e∈Ex

λmax
e ≤

N∑
i=1

∑
e∈Ē

x(i)

λmax
e ≤

N∑
i=1

λ(i) = h2.

This concludes the proof of λ ≤ h2. It can be seen that h2 ≤ h1 as h2 is the sum
of some maximum rates (without redundancy) and h1 is the sum of all maximum
rates. This clock allows us to define a hierarchical choice: the automaton is chosen,
and then the event as shown in the next simulation, SAN-2:

SAN-2

• n := 0; Initial state is x = x(1), . . . , x(N);
• Repeat

1. choose the automaton i with probability λ(i)

h2
;

2. choose e ∈ Ēx(i) with probability
λmax
e

λ(i) or goto 4 with probability 1 −
P
e∈Ē

x(i)
λmax
e

λ(i) ;

3. if e fireable in state x, then with probability fe(x) choose a destination y with
probability Πi∈0epe,x(i)y(i)(x) then x := y;

4. n := n+ 1;
• until the end of the simulation.



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 241

This simulates a Markov chain with transition matrix I + 1
h2
Q as

• an actual transition from x to y is fired with probability 1
h2
λmax
e fe(x)

×Πi∈0epe,x(i)y(i)(x);

• a dummy transition is fired with rate
P
e/∈Ex λ

max
e

h2
+
P
e∈Ex λ

max
e (1−fe(x))

h2
.

Note that SAN-2 is not obtained from SAN-1 by a simple partition of the set
of events E. SAN-2 takes into account the structure of the SAN. More precisely,
which events may compete (and which do not compete and thus do not increase
the clock) is an important criterion which is partially exploited in SAN-2.

As it is impossible to assess the performance of such a method in general, due
to the impact of the model characteristics, the next section describes an example
of road traffic simulation to demonstrate the effectiveness of this approach.

4. Road traffic analysis

4.1. The model and its simulation

The objectives of road traffic simulation are traffic light regulation, impact
analysis for new infrastructures, traffic jam avoidance, users information, etc. Dif-
ferent types of simulations are possible: microscopic simulations in which cars
and their routes are modeled individually, mesoscopic simulation in which cars
are modeled individually but interactions can be modeled with a higher level of
abstraction, and finally macroscopic simulations which handles subsets of vehicles
and flows [7, 8, 12–14]. The type of simulation we present is mesoscopic in the
sense that the state of the roads are numbers of vehicles per road section and
the movements between sections are done unit per unit (as in queues) and not by
flows. Interactions are modeled by state dependent rates and probabilities.

In the model we present, the basic element (an automaton) is a road section: a
road section is the set of lanes going in the same direction between two separating
elements (traffic lights, signs, crossing, sensor, or user defined separation). We
do not model lane changing, but this can be done within the SAN framework, by
having one automaton per lane.

An urban traffic area is described by a set of road sections. A road section is
characterized by its name, length, width, number of lanes, speed limit, allowed
vehicle types (cars, trucks, bus, bikes, etc.), traffic lights or priorities, possible
output sections, presence of bus stops, pedestrian crossing, lateral parking, traffic
sensors... The traffic in this area is characterized by a set of input and output
points, input flows, an origin/destination (O/D) matrix for these points and the
initial state of the area. The input of all this data requires a dedicated inter-
face [13].

The modelling process gives the following result (i and j denotes sections and
t a vehicle type):

• a road section is modelled by an automaton, whose state is the number of
vehicles per type (cars, buses, etc.). The events are the vehicle inputs in the



242 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

area and the vehicle exits from each section (per type). A road section is a
queue with a state dependent service rate, and synchronizing constraints;
• a road section is characterized by a capacity (computed from the length and

width), one throughput function per vehicle type, routing probabilities pij,t
per vehicle type (for choosing their next section) and a signalization function
(see further);
• the throughput function is pre-computed from static parameters as the num-

ber of lanes, speed limit, presence of bus stops, pedestrian crossing, lateral
parking (all kinds of elements that can increase or decrease the throughput),
and is a function of dynamic parameters such as the number of vehicles in
the section or in the section just ahead, which we shall call, the up-ahead
section. This function has a concave profile and gives the different through-
put values of the section as the number of vehicles increase: first a linear
increase, then a stagnation, finally a decreasing throughput as the number of
vehicles becomes too large and provokes congestion. Computing this profile
is a subject of research in itself and is not within the scope of this paper.
This throughput function has the format λmax

i fei,t(x), i being the section
and ei,t the event “exit from section i of a type t vehicle. This maximum
throughput λmax

i is common to all types of vehicles in the same section (even
if it is never reached for some vehicle types). The sections are classified ac-
cording to their maximum throughput λmax

i (which is not directly connected
to the speed limit). Thus a section class is characterized by a maximum rate
(or throughput);
• the routing probabilities are pre-computed from the origin/destination ma-

trix, using shortest path algorithms with road ponderations and some ran-
domization. They are also possibly functions of up-ahead section occupancy;
• the signalization function is a time dependent function with value 0 or 1 in

case of a traffic light, and a probabilistic rij,t function depending on the sec-
tions occupancy in case of priority rules. This signalization function depends
on the chosen up-ahead section j.

We do not go into details of covered parking, input/outputs, sensors, which are
included in the model. They are not mentioned in the algorithm sketched below
to simplify the presentation.

Without going through a formal (and tedious) description, we shall assume
that the set of sections of an urban area is a SAN with a Markovian behavior
under the assumptions that residence times of vehicles in sections are exponentially
distributed and that inputs are Poisson. If the model has traffic lights or time
dependent inputs or O/D matrix, the Markov process is not homogeneous and is
an extension of the general framework presented in this paper9.

A possible (there exist many alternatives and it is impossible to enumerate
them) simulation is the following:

9In this case, the process is governed by rates with a cyclic behavior (such as traffic lights).
An homogeneous chain is obtained by considering the state of the area only at the starting points
of each cycle.



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 243

Traffic

• n := 0; Initialize;
• Repeat

– choose the section class;
– choose the section within the class;
– if there are vehicles in the section

∗ choose the vehicle type;
∗ choose the up-ahead section;
∗ if e fireable then do it;

– n := n+ 1;
• until the end of the simulation.

This algorithm follows the SAN-2 structure. Items 1 and 2 decompose the
choice of the automaton into two levels and while 3 and 4 decompose the choice
of the event into two levels. These events are mainly synchronizing events as they
synchronize the output and input sections. The condition “fireable” is related to
capacity limits, traffic lights, actual rate, and priority rules. The clock is the sum
of the maximum throughput or rates of all the sections (including input sections),
which are the local clocks for each section. Let us examine the various choices:

1. choice of the section class: if there are K classes containing nk, k ∈ [1,K]
sections, each characterized by a maximum throughput λmax

k , then this choice

is discrete with distribution
(
nkλ

max
k

λ

)
, and the clock of the simulation is

λ =
∑
k∈[1,K] nkλ

max
k . It is implemented with a Discrete-1 algorithm (see

Appendix) and a binary search as the probabilities of the choices are very
different due to the factors nk and the high number of classes;

2. choice of the section within the class: the choice of the section within
the class is done by using a simple uniform choice on nk possibilities since
the sections have the same maximum rate. Once the section i is chosen, the
event set Ex(i) corresponds to a vehicle exit from section i and the routing
probabilities are defined by the vehicle type and the up-ahead section;

3. choice of the vehicle type: as we mentioned before, all the vehicle types
have the same maximum rate in one section. So if T denotes the number
of vehicle types, and xt the current number of vehicles of each type t in the
section, then this choice is a discrete choice with distribution

(
xtP

t∈[1,T ] xt

)
.

Note that this distribution has to be recomputed at each step since the
values xt vary in time. It is implemented with the Discrete-1 algorithm
and a linear search as the probabilities are very different due to the higher
proportion of cars and the number of vehicle types is small;

4. choice of the up-ahead section: this choice is done according to the
routing probabilities of traffic. These routing probabilities depend on the
vehicle type only. It is implemented with the Discrete-1 algorithm and a
linear search as the number of possible destinations is small;

5. firing conditions: if the selected event e is “a vehicle of type t is going
from section i to section j”, the event is not fireable if the up-ahead section



244 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

cannot contain this extra vehicle or if the corresponding traffic light is red
(a traffic light value is associated with each possible up-ahead section). If
these conditions enable the transition, slowing down conditions are due to
actual traffic rates and possible priority rules. The actual rate is in the form
fei,t(x)λmax

i and the transition is accepted with probability fei,t(x). If the
up-ahead section j is chosen, priority is modelled by a probability rij,t(x)
which takes into account the number of vehicles in the conflicting sections.
The transition takes place with probability rij,t(x) and is not allowed other-
wise.

4.2. Experimentations results

To illustrate the performance of this approach, we built an artificial city area
as depicted in Figure 1a. Each line in this model represents 2 street sections, each
section represents a road sense. This area has 88 sections of equal length, width
(which gives a capacity of 25 cars) and speed limit. It has two traffic lights and
the rest is governed by right-hand-side priorities. It has two vehicle types (bus and
cars) and no dedicated lanes. It has 18 input and output points. The input rate
is constant. The routing probabilities are constant and uniform on the number
of possibilities at each crossing. The throughput function is a discretized convex
function of the section load with 10 different values. The priority function is a
decreasing function of the “on the right” section load with 4 different values. The
initial state of the city is 16 cars per section.

(a) (b)

Figure 1. Basic city model with 88 sections and a replication
with 1408 sections.

This small city area is then used to built larger areas by connecting inputs
to outputs as depicted in Figure 1. Basically for our experiment we chose areas



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 245

with 88, 352, 1408, 5632, 22 528 and 90 112 sections (each being 4 times greater
than the preceding one).

In the rest of the section, we study the impact of the model size on different
measures: clock step (Fig. 2a), memory occupancy (Fig. 2b), number of simulation
iterations per CPU time (Fig. 3a), simulation speed (simulated time versus CPU
time, Fig. 3b). Table 3 shows the values that are used to plot the following curves
and represent simulation runs for 4000 seconds of simulated time.

Table 3. General table.

size mem.(Kbytes) clock step CPU time (seconds) number of iterations

88 1264 4167e-6 3.74 960 000

352 1376 916e-6 17.38 4 370 000

1408 1832 216e-6 75.73 18 500 000

5632 3696 52e-6 387.65 76 100 000

22528 11 264 12e-6 1664.48 308 000 000

90112 40 960 3e-6 7352.96 1 245 000 000

In Figure 2a, we see that the clock step (basic increment) is a linear decreas-
ing function of the model size. This result is a logical consequence of the clock
computation algorithm (see Traffic algorithm): we have 3 section classes (inputs,
outputs and inside sections) and as the model size is bigger, the increase of inside
sections dominates. The clock step is roughly a linear function of the number of
inside sections.

In Figure 2b, we show the amount of memory used to run the simulations: an
area of 90 000 sections requires 40 Mgbytes of memory. These values depend on
the chosen area (number of sections, traffic lights, vehicle types, etc.).

By comparing the area with 88 sections and the area with 90112 sections, we
observe that, when the area is roughly 1000 times bigger, the number of iterations
per second increases by a factor of 2 (see Fig. 3a). In a larger town, each iteration
leading to an actual vehicle move is expensive, but the hierarchy of choices reduces
this increasing cost to a minimum. Note that there are more dummy transitions
in a large town and these dummy transitions are cheaper.

In Figure 3b, we see that the simulation speed (number of simulated time units
per CPU time units) is a decreasing function; when it is goes below the value 1,
the simulation is slower that real time. For our experiment, this limit is reached
with about 40 000 sections. Note that this simulation speed decreases when the
model size increases because each iteration is more costly (Fig. 3a) and because
the clock step decreases (Fig. 2a).



246 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

4167e-6

916e-6

216e-6

52e-6

12e-6

3e-6
88 352 1408 5632 22528 90112

cl
oc

k 
st

ep

number of sections

(a)

1.241.34

1.78

3.6

11

40

88 352 1408 5632 22528 90112

m
em

or
y 

oc
cu

pa
nc

y 
in

 M
eg

ab
yt

es

number of sections

(b)

Figure 2. Clock step versus model size (a) and memory occu-
pancy versus model size (b).

5. Further work

This work on simulation using uniformization, events and modularity of SAN
models has shown that this approach may be very efficient. From these first results,



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 247

160000

170000

180000

190000

200000

210000

220000

230000

240000

250000

260000

88 352 1408 5632 22528 90112

nu
m

be
r 

of
 it

er
at

io
ns

/s
ec

on
d(

C
P

U
 ti

m
e)

number of sections

(a)

0.25

1

4

16

64

256

1024

4096

88 352 1408 5632 22528 90112

si
m

ul
at

ed
 ti

m
e/

C
P

U
 ti

m
e

number of sections

(b)

Figure 3. Number of iterations per second of CPU time versus
model size (a) and simulated speed (simulated time versus CPU
time) versus model size (b).

improvements can be achieved by studying various alternatives for choose the clock
and implementing discrete random choices. Here, only two possibilities were given,



248 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

but many others can be suggested. Comparing them and automatically choosing
the best algorithm for a particular model will be the object of future research.
Parallelization is also an issue of interest in order to increase the size of the model
and the relative speed.

Appendix: Fast discrete choices

In this section, Z denotes a discrete random variable on the finite integer state
space [1, N ], with distribution (p1, . . . , pN ). Denote by Fi =

∑i
j=1 pj the cumu-

lative distribution function. The basic algorithm for generating a random variable
with this distribution is the following (random denotes the call to a random gen-
erator returning a real value uniformly chosen in [0, 1]).

Discrete-1

• i := 1; R := random;
• Repeat while R < Fi

– i := i+ 1;
• Z := i.

As the number of tests in the previous algorithm is i with probability pi, the
best ranking of the values is p1 ≥ p2 ≥ . . . ≥ pN . Typically, this method is efficient
if a small number of probabilities pi has a sum close to 1. This sequential search
may be replaced by a binary search if the sequence is long.

Another method for generating the same random variable is called the rejection
method and is depicted in Discrete-2.

Discrete-2

• Repeat
– i := random[1, N ];

• Until random < pi
p1

;

• Z := i.

where random[1, N ] returns an integer uniformly chosen in [1, N ] and p1 is the
largest value of the sequence (p1, . . . , pN ). random is another call to a random
generator returning a real number in [0, 1].

The proof is as follows, if t is the number of turns in the loop:

Prob(Z = i) =
∞∑
t=1

pi
Np1

(
1− 1

Np1

)t−1

=
pi
Np1

×Np1 = pi

since pi
Np1

is the probability of exiting a turn in the loop with value i and 1− 1
Np1

=

1−
∑N
i=1

pi
Np1

is the probability of not exiting the loop.

This is called a rejection algorithm since it can be interpreted as such: the
first random choice proposes a value i as a result, but this proposition can be



FAST SIMULATION FOR ROAD TRAFFIC NETWORK 249

rejected with probability 1 − pi
p1

. Note that the proposition 1 is never rejected.
This algorithm is efficient if the values pi are not very different. Note also that it
is not very sensitive to the value of N .

These two methods (Discrete-1 and Discrete-2) can be combined into a de-
composition method. The framework is as follows: let (B1, . . . , BK) be a partition
of the integer interval [1, N ], qm =

∑
i∈Bm pi and for i ∈ Bm ri = pi

qm
. The algo-

rithm is as follows:

Discrete-3

• choose m according to the distribution (q1, . . . , qK);
• choose i ∈ Bm according to the Bernoulli ri = pi

qm
for i ∈ Bm;

• Z := i.

This decomposition can be used with an arbitrary depth of decomposition, with
the objective of having an efficient discrete choice algorithm at each level, keeping
in mind that the fastest discrete choice is always the one with equal probabilities.

Acknowledgements. Thanks to Guillaume Etievent and his skills for implementing our

graphical interfaces.

References

[1] K. Atif, Modélisation du Parallélisme et de la Synchronisation. Ph.D. Thesis, Institut
National Polytechnique de Grenoble (1992).

[2] S. Donatelli, Superposed stochastic automata: A class of stochastic petri nets with parallel
solution and distributed state space. J. Performance Evaluation 18 (1993) 21-36.

[3] P. Fernandes, B. Plateau and W.J. Stewart, Efficient descriptor-vector multiplications in
stochastic automata networks. J. ACM 45 (1998) 381-414.

[4] P. Fernandes, B. Plateau and W.J. Stewart, Optimizing tensor product computations in
stochastic automata networks. RAIRO: Oper. Res. 32 (1998) 325-351.

[5] W.K. Grassmann, Finding transient solutions in Markovian event systems through random-
ization, in 1st International Workshop on the Numerical Solution of Markov Chains, edited
by W. Stewart. North Carolina State University, NC, U.S.A. (1990) 357-372.

[6] P. Kemper, Numerical analysis of superposed gspns. IEEE Trans. Software Engrg. 22
(1996).

[7] I. Kosonen, HUTSIM – Simulation tool for traffic signal control planning. Ph.D. Thesis,
Helsinki University of Technology, Department of Eletrical and Communications Engineer-
ing, Finland (1996).

[8] R. Liu, Dracula microscopic traffic simulation, ITS Working Paper 431. University of Leeds
(1994).

[9] G. Marsaglia and A. Zaman, A new class of random number generators. J. Appl. Probab. 1
(1991) 462-480.

[10] B. Plateau, On the stochastic structure of parallelism and synchronization models for dis-
tributed algorithms, in ACM SIGMETRICS Conference on Measurement and Modelling of
Computer Systems. Austin, Texas, U.S.A. (1985).

[11] B. Plateau and K. Atif, Stochastic automata network for modeling parallel systems. IEEE
Trans. Software Engrg. 17 (1991) 1093-1108.



250 R. JUNGBLUT-HESSEL, B. PLATEAU, W.J. STEWART AND B. YCART

[12] T. Saito, K. Yasui, S. Fuji and S. Itakura, Development of microscopic simulation model for
traffic network (micstram ii) and traffic flow simulator for evaluation of traffic signal control
(tras-tsc), in 2nd World Congress on Intelligent Transport Systems, Vol. IV, Yokohama
(1995) 1920-1925.

[13] P.L. Toint, Transportation modelling and emerging technologies, Tech. Rep. 93/23, Trans-
portation Research Group. Department of Mathematics, Facultés Universitaires Notre-Dame
de la Paix, Belgium (1993).

[14] Q. Yang and H.N. Koutsopoulos, A microscopic traffic simulator for evaluation of dynamics
traffic management systems. Transportation Res. Part C 4 (1996) 113-129.

[15] B. Ycart, Simulation de modèles markoviens. Cours DESS d’Ingénierie Mathématique,
Université Joseph Fourier, Grenoble, France (1997).
ftp://ftp.imag.fr/pub/MAI/simarrk.ps.gz

to access this journal online:
www.edpsciences.org


