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Abstract. In this paper we will describe a new class of coloring
problems, arising from military frequency assignment, where we want
to minimize the number of distinct n-uples of colors used to color a
given set of n-complete-subgraphs of a graph. We will propose two re-
laxations based on Semi-Definite Programming models for graph and
hypergraph coloring, to approximate those (generally) NP-hard prob-
lems, as well as a generalization of the works of Karger et al. for hy-
pergraph coloring, to find good feasible solutions with a probabilistic
approach.

Résumé. Dans cet article, nous décrivons une nouvelle classe de prob-
lèmes de coloration rencontrés en Allocation de Fréquences militaire :
nous voulons minimiser le nombre de n-uplets distincts utilisés pour
colorier un ensemble doné de n-cliques d’un graphe. Pour approcher
ces problèmes généralement NP-difficiles, nous proposons deux relax-
ations basées sur les modélisations semi-définies de la coloration de
graphes et d’hypergraphes, ainsi qu’une généralisation des travaux de
Karger et al. à la coloration d’hypergraphes, pour trouver de bonnes
solutions faisables par une approche probabiliste.
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1. Introduction

With the recent explosion of mobile communication systems and the growing
needs in transmitting data, available frequencies are becoming scarser, so one of
the most acute issues is to densify frequency occupation with respect to communi-
cation quality criteria. In a military context, a recent technology is used: hopping
frequency, where two radio sets do not communicate on one frequency, but peri-
odically and synchronically change frequencies (typically 1000 times per second).
We consider the case of a deployment composed of N networks (sets of radio sets
communicating with each other). Every network must then be assigned a set of
frequencies (called frequency hopset), which is composed of several frequency in-
tervals in the VHF band. In an electronical war context, studies by the CELAR3

show that partial overlapping of frequency hopsets can be allowed with acceptable
deterioration of the communication quality.

Vehicles spread on an operation field are provided one or more radio sets, each
one belonging to a given network. So, vehicles with two or three radio sets (called
multipost vehicles), can belong to up to three different networks. Frequency
hopsets assigned to such networks must be disjoint enough to avoid interferences,
so we say that there is a “covehicle link” between them. There can also exist
a “cosite link” between two networks when two vehicles are geographically close
enough. We aim at assigning frequency hopsets to all networks so as to avoid
interferencies.

Unfortunately, it is very hard to model, and furthermore to compute, interfer-
encies in this context. Practically, it is necessary to simulate interferencies once
we have a global assignment of frequency hopsets to know if an assignment is
acceptable or not. Furthermore, a large amount of different criteria are used to
evaluate the quality of such assignments. The obvious complexity of the simula-
tion/optimization procedure leads to tremendous calculation time. So we propose
in a first pretreatment step to reduce the problem by grouping networks which
are not linked together into sets of networks to which the same frequency hopset
can be assigned, so as to minimize the parameters which are responsible for the
time-cost: the number of remaining vehicles with three radio sets (such vehicles,
called “trisets”, belong to three networks; this is the strongest constraint between
networks), and of course the number of networks sets.

Assigning frequencies or frequency hopsets to radio sets with respect to exclu-
sion constraints can obviously be regarded as graph-coloring problems: assigning
a color to each vertex of a graph (each vertex corresponding to a network) so that
no edge (corresponding to one or more links between two networks) has both its
endpoints colored the same way.

The most common coloring problem is to find the smallest possible number of
colors, called the “chromatic number” of the graph, which is known to be NP-Hard
in the general case (see [9] for example). Our problem is a little different: it is
to find the lowest number of triangles (corresponding to trisets physically) in the

3Centre d’ÉLectronique de l’ARmement.
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final, reduced graph. A triangle is composed of three vertices mutually linked;
alternatively, it can be called a 3-clique or K3. Obviously, any n-clique of a graph
will need exactly n colors in any coloration. In the following, we will call “flag”
the n-uple of colors used to color a given n-clique of a graph. We can reformulate
our problem this way: “being given a graph G(V,E) and a set T3 of 3-cliques of G,
find a coloration of the graph minimizing the number of distinct flags used to color
the K3s in T3”.

In this paper, we will study the general form of this problem, which we will call
“Kn-Coloring”: minimizing the number of distinct flags to colors the n-cliques in
Tn. Defaix [2] studied the problem with n = 3 through a Simulated Annealing
approach, and the case n = 1 appears to be equivalent to the chromatic number
of a graph, which is one of the most studied combinatorial problems. A recent
and fruitful breakthroughs in this field was the application of a Semi-Definite
Programming (SDP) relaxation by Karger et al. [6], based on the work of Goemans
et al. [5], which we will recall later and adapt to our problem.

In the first part, we will explore the NP-Hardness of Kn-Coloring problems, and
show a negative result on approximability of these problems. In the second part,
we will show that the integer SDP formulation from Karger et al. is equivalent to
Graph Coloring constraints. A peculiar cost function for our case will be discussed
in the third part. In the fourth part we will extend Karger’s approach for Graph
Coloring to the problem of Hypergraph Coloring and show how it can be used to
derive a bound on Kn-Coloring. Finally, practical results will be shown in the fifth
part.

2. Complexity and approximability results

In this part, we will express some complexity results, based on polynomial
transformations from the Vertex-Coloring problems and their decision versions:
p-Coloring (color a graph using at most p colors), which are known to be NP-Hard
for p ≥ 3 (the other cases being polynomial). We will denote p−Kn-Coloring the
decision problem: “can I color a graph G(V,E) using at most p distinct n-uples
of colors to color the n-cliques in an initial set Tn?” There exist obvious transfor-
mations between p−Kn-Coloring problems, leading to the following propositions:

Proposition 1.
∀p ≥ 1, n ≥ 1

p−Kn−Coloring ∝ p−Kn+1−Coloring.

Proof. Let G(V,E) and Tn be any instance of p − Kn-Coloring. We will form
G′(V ′, E′) and Tn+1, an instance of p−Kn+1-Coloring, by adding a new vertex w
linked to all vertices of V , and the cliques in Tn+1 by connecting w to all cliques of
Tn. Any coloring of G′ will consist in a coloring of G and a different color assigned
to w. Clearly, solving p−Kn-Coloring onG is equivalent to solve p−Kn+1-Coloring
on G′, hence the proposition. �
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Proposition 2.
∀p ≥ 1, n ≥ 1

p−Kn−Coloring ∝ (p+ 1)−Kn−Coloring.

Proof. It suffices to create n new vertices forming a clique added to Tn. Linking
at least one of these vertices to all vertices in V will force the new clique to be
assigned a flag distinct from all others, thus the equivalence of both problems. �

More particularly, we can notice that K1-Coloring amounts to solving the prob-
lem of (vertex)-coloring the subgraph of G induced by the vertices in T1. Thus,
we have the following:

Proposition 3. p − K1-Coloring is polynomial for p = 1 and p = 2. p − K1-
Coloring is NP-Complete ∀p ≥ 3.

Proposition 4. 1−K2-Coloring is polynomial. p−K2-Coloring is NP-Complete
∀p ≥ 2.

Proof. 1 − K2-Coloring is equivalent to coloring the subgraph induced by the
vertices involved in T2 with 2 colors, which is polynomial. Moreover, we show that
4-Coloring ∝ 2−K2-Coloring. Given a graph G(V,E) we form a graph G′(V ′, E′)
from G by adding |V | new vertices wi bijectively linked to the vertices vi of V
and we set T2 = {(vi, wi)}. Clearly, G′ is 2 −K2-colorable if and only if G is 4-
colorable. Finally, using previous propositions, we can prove the NP-Completeness
for p ≥ 3. �
Proposition 5. ∀n ≥ 3, p ≥ 1, p−Kn-Coloring is NP-Complete.

Proof. It suffices to prove that 1 − K3-Coloring is NP-Complete, which we do
through a transformation from 3-Coloring: we create |E| new vertices and re-
place all edges in E by triangles using those vertices. Those triangles form T3.
Equivalence between those problems is obvious. �

There exists another polynomial transformation from a Coloring problem to a
Kn-Coloring problem which preserves the optimal values.

Proposition 6.
p−Coloring ∝ p−K ′n−Coloring.

Proof. Given a graph G(V,E) we expand it to a graph G′(V ′, E′) by adding a
K(n−1) clique of new vertices w1, . . . , wn−1, completely linked to the vertices of V .
The set of cliques Tn consists in all Kn of the form (w1, . . . , wn−1, v) with v ∈ V .
In every coloration of G′ the colors assigned to w1, . . . , wn−1 are distinct to the
ones assigned to the vertices of V . It is therefore clear that there exists a p−Kn-
coloration of G′ iff there exists a p-coloration of G. �

We can obtain non-approximability results for Kn-Coloring by combining this
transformation with hardness of approximation results for Coloring, such as the
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result of Lund et al. [9]: “there is a constant δ such that no polynomial approxi-
mation algorithm can achieve a ratio of |V |δ for graph coloring, unless P = NP”,
or the better result of Feige et al. [3]: “for all positive ε, it is intractable to ap-
proximate χ(G) to within N1−ε unless NP ⊆ ZPP”. We get the following:

Theorem 1. For all ε > 0 it is intractable to approximate Kn-Coloring within
(|V | − n+ 1)1−ε unless NP ⊆ ZPP .

3. Semi-definite programming modelization

of graph coloring

Our problem of Kn-Coloring is to find a coloration of a graph which optimizes a
particular cost function. Constraints are in fact the same as for a classical coloring
problem, thus we will try to find a good model of such constraints.

Among all the (polynomial in size) linear models, one of the simplest is to use
the boolean variable xik: “vertex i is assigned the color k”. But this model is
made unefficient because of symmetries in variables k. Nonetheless, we will use it
to derive a second model in boolean variables mij : “vertices i and j are assigned
the same color”. The link between both models is:

mij =
n∑
k=1

xikxjk = uTi uj with ui =

 xi1
...
xin

 .

Hence such matrix M = (mij) is Positive Semi-Definite (we recall that a matrix M
is Positive Semi-Definite if, and only if, there exists a family of vectors u1, · · ·un
such that Mij = uTi uj ∀i, j, and we denote it by M � 0; we will also denote by
S+ the space of Positive Semi-Definite matrices).

More generally, we can define such a matrix M for any kind of partitioning of
a set. The following holds:

Proposition 7. Let S be a set and M a boolean matrix of dimension |S| × |S|.
Formulations (i) and (ii) are equivalent:

(i) S is partitioned into subsets and ∀(i, j) ∈ S × S, Mij = 1 ⇔ i and j belong
to the same subset;

(ii) M � 0, Mii = 1 ∀i ∈ {1, · · · , |S|}.

Proof. If S is partitioned into subsets, defining Mij ∈ {0; 1}: “i and j belong to
the same subset”; we can define variables xik as above. Using the above formula
we have (ii). Reciprocally, if such a matrix M exists, let us define the relation R:

iRj ⇔Mij = 1.

R is reflexive because ∀iMii = 1⇒ iRi;
R is symmetric because M is symmetric;
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if iRj and jRk, let us suppose that we do not have iRk. Then the submatrix of
M corresponding to i, j, k is:  1 1 0

1 1 1
0 1 1

 6� 0,

this in contradiction to the fact that M � 0, so iRk and R is transitive. So, R is
a relation of equivalence, whose classes define a partition of S. �

Corollary 1. In a Semi-Definite Programming model, constraints of a Coloring
Problem can be expressed as follows:

Mii = 1 ∀i ∈ V
Mij = 0 ∀(ij) ∈ E

M ∈ {0; 1}|V |×|V | ∩ S+.

If we want to minimize the number of colors (chromatic number), we can notice
that it is possible to reproduce the same proof in a model where we replace 0 by a
real α ≤ 0, but we must verify that, for a partitioning into κ subsets (especially a
κ-coloring), there exists a set of κ unit vectors in <|S| whose mutual dot products
are exactly α. For any given integer κ, this can be achieved iff α ≥ − 1

κ−1 (see [4]
or [6]). This means that the existence of a matrix M such that:

Mii = 1 ∀i ∈ S
Mij ∈

{
− 1
κ−1 ; 1

}
M � 0

amounts to the existence of a partitioning of S into at most κ subsets. Minimizing
κ amounts to minimizing − 1

κ−1 = α, so we get the following theorem:

Theorem 2. Chromatic number χ(G) = 1− 1
α∗ where

α∗ = min α
s.t.

Mii = 1 ∀i ∈ V
Mij = α ∀(ij) ∈ E

Mij ∈ {α; 1} ∀(i, j) ∈ V 2

M � 0.

Relaxing the discretization constraint into: Mij ∈ [α; 1], ∀(ij) ∈ V 2 yields a poly-
nomially computationable lower bound of χ(G). Karger et al. [6] showed that this
bound was in fact equal to the Lovász number of Ḡ: θ(Ḡ), introduced in [8].

Relaxed solutions are still Positive Semi-Definite matrices M which we can fac-
torize (using a Cholesky method) to obtain N = |V | unit vectors of <N u1, · · · , uN
such that uTi .uj = α, ∀(ij) ∈ E. The idea is to use those vectors to construct a
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stable set by randomly choosing a vector r (center) in <N which will “capture” all
ui such that rT .ui ≥ c where c is a certain threshold. Then, if this set of vertices
is not stable, we will make it stable by removing from the set one endpoint of
any entirely captured edge. Iterating this process on non-captured vertices until
all vertices are captured will result in a coloration of G. It is shown in [6] that
for c =

√
2(1− 2/k) ln ∆ (with ∆ maximum degree of the graph), the expected

number of colors is in O(∆1−2/k
√

ln ∆ lnn).

For Kn-Coloring, we propose to keep the coloring constraints of the SDP mod-
elization of chromatic number, but we will need an other cost function to optimize.

An expression of the cost function forKn-Coloring can be, denoting byK(1), · · · ,
K(|Tn|) the cliques in Tn:

|Tn| −MaxCard
{
i ≤ |Tn| : ∃j < i s.t. K(i) ≡ K(j)

}
,

with ≡ meaning that two cliques are assigned the same flag. The expression means
that we maximize the number of cliques in Tn colored the same way than an other
one; ordering the cliques prevent us from multiple countings.

We can notice that, since ∀u, v, Muv ∈ {α; 1}:

K(i) ≡ K(j) ⇔
∑

u∈K(i)

∑
v∈K(j)

Muv = n+ α(n2 − n).

This way we express the cost function as follows:

|Tn| −MaxCard

i ≤ |Tn| : ∃j < i s.t.
∑

u∈K(i)

∑
v∈K(j)

Muv = n+ α(n2 − n)

 ·
Unfortunately, this exact function is non-linear, so we cannot handle it in polyno-
mial time after relaxing the Semi-Definite Program.

What we will do is to combine the constraint of “relaxed coloration” we have
just obtained to another cost function, linear, such that the resulting vectors ui
are close enough to vectors of a “good” Kn-Coloring to guide the primalization to
a solution with few distinct flags to cover Tn.

4. Linearized cost function: Global resemblance

Given a matrix M corresponding to a coloration C (recall that ∀i, j Mij ∈
{α; 1}), let us define the notion of resemblance between two Kns:

R(K(1),K(2)) ∆=
∑
i∈K(1)

∑
j∈K(2)

Mij .
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Some colors are used to color both a vertex of K(1) and a vertex of K(2). Let us
denote by P1,2 the number of such colors. If a vertex u of K(1) and a vertex v of
K(2) are colored with the same color, then Muv = 1; else, Muv = α. Moreover,
there are n2 pairs (u, v) ∈ K(1) ×K(2).

Hence we have

R(K(1),K(2)) = P1,2 + α[n2 − P1,2].

Our objective will be to maximize the global resemblance on all pairs of Kns. This
will consist in summing entries of M , leading to a sum of the form A+Bα, with
A and B positive numbers depending on the coloration C. For every coloration
matrix M with α, all matrices with the same α, 1 structure but with 0 ≥ α′ ≥ α
will be feasible too, so maximizing the global resemblance will lead α to be zero
at an optimal point; in the following we will consider α = 0. Now, we have the
following cost function:

RG(C) ∆=
∑

K(p)∈Tn

∑
2
4 K(q)∈Tn,

p>q

3
5

R(K(p),K(q))

=
∑

K(p)∈Tn

∑
2
4 K(q)∈Tn,

p>q

3
5

∑
i∈K(p)

∑
j∈K(q)

Mij

=
∑

K(p)∈Tn

∑
2
4 K(q)∈Tn,

p>q

3
5

Pp,q.

Intuitively, a coloration maximizing RG will have a limited diversity of distinct
flags covering Tn.

We can notice that some pairs of Kns cannot be assigned the same flag, if the
subgraph of G induced by the vertices involved in such pairs is not n-colorable.
For constant n, such a test is polynomial. Some pairs of incompatible Kns may
be forced to have up to n − 1 common colors, whereas they are still different in
terms of Kn-Coloring. This phenomenon can lead to non-optimal solutions on
some instances.

For example, if we want to K3-color the graph G of Figure 1 with initial T =
{T1; T2; T3} (both plain and dashed lines indicate the edges, while the K3s appear
as plain-line triangles indicated by a small arc in one angle),we can find a coloring
such that T1 and T3 receive the same flag, so G is 2-colorable. But if we optimize
the global resemblance, we will obtain a coloration such that the resemblance
between every pair of K3s is 2, leading to a 3−K3-coloring of G. Being given any
positive integer p, by stacking p pairwise completely connected replicas of G, we
will construct an instance for which maximizing the global resemblance will lead
to a 3p−K3-coloration whereas it is 2p−K3-colorable. So, the global resemblance
heuristic can lead to arbitrarily bad solutions for Kn-Coloring.
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T

T

1

2

T3

Figure 1. Graph with general resemblance leading to non-
optimal solution.

We will avoid it by removing pairs of incompatible Kns from the cost function.
Then we have a new cost function (“structured resemblance”):

RC(Tn) ∆=
∑

K(p)∈Tn

∑
2
664

K(q)∈Tn,
p>q,

K(p), K(q)compatible

3
775

∑
i∈K(p)

∑
j∈K(q)

mij .

Application to the classic Coloring problem

To see what we can expect from this cost function, we will restrict ourselves to
the case of Graph Coloring, which is actually equivalent to K1-Coloring. We can
express more precisely the corresponding cost function (structured resemblance):

RC(T1) = 1/2
∑
i∈T1

∑
j∈T1\[{i}∪N(i)]

mij ,

with constant factor 1/2 because of double-countings.
In fact, if j is a neighbour of i, we have mij = 0 for any coloration (recall the

hypothesis α = 0), hence those terms can be added to the sum without modifying
the value of RC . We first show that both resemblances are in fact equal:

RC(T1) = 1/2
∑
i∈T1

∑
j∈T1\{i}

mij

= RG(T1) (Global Resemblance).

Furthermore, considering a κ-coloration of color sets C1, · · · , Cκ, we can express
this quantity more explicitly:

RG(T1) = 1/2
∑
i∈T1

∑
j∈T1\{i}
C(i)=C(j)

mij(= 1) + 1/2
∑
i∈T1

∑
j∈T1\{i}
C(i)6=C(j)

mij(= 0)
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RG(T1) = 1/2
∑

(i,j)∈C1×C1

i6=j

1 + . . .+ 1/2
∑

(i,j)∈Cκ×Cκ
i6=j

1

=
κ∑
k=1

|Ck|(|Ck| − 1)
2

·

An exchange-based proof would show that such a cost function tends to favorise
colors of great size; more precisely, any coloration optimal for RG(T1) is a partition
into iterative Max Stable sets.

Modeling Kns as vertices and finding incompatibility constraints between them
will lead to a lower bound for Kn-Coloring obtained through a hypergraph coloring
problem.

5. Hypergraph Coloring formulation

5.1. Relaxation through hypergraph coloring

A hypergraph consists in a set of vertices V and a set of hyperedges E, each
hyperedge being a set of vertices. If all hyperedges are in fact of cardinality 2
(we say “dimension”), the hypergraph is actually a graph (or a multigraph). Let
us partition E into subsets of hyperedges of same dimension: E2, . . . , EQ with
Eq = {e ∈ E : |e| = q}. We define mq = |Eq|.

The problem of hypergraph coloring consists in finding an assignment of colors
on the vertices, such that no hyperedge is monochromatic.

As we saw in the section above, two Kns are incompatible if the subgraph they
induce is not n-colorable. This test can be extended to any subset S of Tn: if the
subgraph induced by the vertices involved in S is not n-colorable, the cliques in S
cannot be all colored with the same flag. Hence, we have the following proposition:

Proposition 8. A coloring of the hypergraph H(VH , EH) defined by:
• vertices in VH represent the cliques of Tn;
• hyperedges in EH correspond to subsets of Tn inducing non-n-colorable sub-

graphs of G;
is a relaxation of Kn-coloring G(V,E) on Tn.

We cannot compute a test for all subsets of Tn; in fact, if a subset S of Tn induces
a non-n-colorable subgraph of G and, so, corresponds to a hyperedge eS of H, any
other subset S′ of Tn containing S will have the same property, corresponding to
a hyperedge of H containing eS , so a weaker constraint of hypergraph coloring.
Hence, we will limit ourselves to sets of cliques with no non-n-colorable subsets.
To make it tractable, practically, we will enumerate all sets of a limited number
of cliques.

Solving Hypergraph Coloring problems is NP-Hard. Some non-approximability
results can be shown, and approximate coloring algorithms were studied for spe-
cial cases of uniform hypergraphs (where all hyperdeges are of the same, given
dimension) with known chromatic number (see [7] for example).
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Finding a relaxed solution of Hypergraph Coloring on such hypergraphs will
give us a lower bound for Kn-Coloring.

We now present an SDP relaxation for Hypergraph Coloring, extending the
approach of Karger et al. [6].

5.2. A Karger-like approach for hypergraph coloring

Formulation

Let H(V,H) be a hypergraph whose vertices are assigned colors, and M ∈
{α; 1}|V |×|V | (α ≤ 0) the matrix corresponding to this coloration (defined as in 3).
Let us consider a hyperedge e of dimension |e| = q. We have the following lemma:

Lemma 1. e is non-monochromatic if and only if∑
i∈e

∑
j∈e\{i}

Mij ≤ (q − 1)(q − 2) + 2α(q − 1).

Proof. If e is monochromatic,
∑
i∈e
∑
j∈e\{i}Mij = q(q − 1) > (q − 1)(q − 2)

+2α(q − 1). If e is not monochromatic, the vertices in e are grouped into p ≥ 2
subsets (colors). If p > 2, we can notice that merging groups always increases the
value of the double sum in the lemma; for p = 2, an exchange argument shows
that this value increases as the sizes of the groups get more ill-balanced. So, the
partition of the vertices of e that has the highest double sum value is the case of a
group with (q−1) vertices and a singleton, whose value is (q−1)(q−2)+2α(q−1). �

To obtain the following theorem, we only replace, in the expression of Graph
Coloring from Theorem 2 the non-monochromaticity constraint on the edges by
the non-monochromaticity constraint on the hyperedges we have exhibited in
Lemma 1, to get an equivalent SDP formulation of Hypergraph Coloring.

Theorem 3. The chromatic number of hypergraph H is:

χ(H) = 1− 1
α∗

where

α∗ = min α
s.t.

Mii = 1 ∀i ∈ V∑
i∈e

∑
j∈e\{i}

Mij ≤ (q − 1)(q − 2) + 2α(q − 1) ∀e ∈ H, q = |e|

M � 0
Mij ∈ {α; 1} ∀(i, j) ∈ V 2.
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Relaxing the discretization constraint gives us k, a lower bound on the chromatic
number of the hypergraph, so on the optimum for Kn-Coloring; as well as for
Graph Coloring SDP relaxation, we get a Semi-Definite Positive matrix that we
factorize to obtain N = |V | unit vectors ui. In [6], a primalixation step for Graph
Coloring was presented. We now see how to adapt it to the case of Hypergraph
Coloring.

Probabilistic primalization procedure

For the hypergraph H(V,E) we denote Q the maximal dimension of the hy-
peredges (dimension of the hypergraph). We denote dqi the degree of vertex i
considering only hyperedges of dimension q. We can also define the notions of
minimal, mean, maximal degrees at dimension q.

Moreover, we will denote by E the expectation of a random variable and by P
a probability, and define:

Φ(x) =
1√
2π

e−
x2
2

and

N (x) =
∫ +∞

x

Φ(t)dt.

We can approximate N (x):

∀x > 0 Φ(x)
(

1
x
− 1
x3

)
< N (x) < Φ(x)

1
x
·

Given N unit vectors ui obtained as above; let c be a threshold number. We
randomly choose a vector r with the normal distribution of <N . We note C =
{i|uTi .r ≥ c} (set of captured vectors), N ′ = |C| (number of captured vectors) and
m′ = |{e ∈ E : ∀i ∈ e, i ∈ C}| (number of hyperedges entirely captured). We
will remove from C one vertex for every entirely captured hyperedge, so at most
m′. So, we want the quantity N ′ − m′ to be large enough to obtain a “good”
hypergraph coloring. The following lemma bounds the expectation of N ′ −m′.
Lemma 2. Let us denote:

∆̃ =
Q∑
q=2

∆q

qaq
, where

{
∆q ≥ mean degree at dim. q,

aq =
√

k−1
[1−2(1/q−1/q2)]k−1 ·

For any threshold c:

E(N ′ −m′) ≥ N
[
N (c) −

Q∑
q=2

∆q

q
N (aqc)

]
.

Proof. First, we can notice that r has the normal distribution in <N , which is
equivalent to: ∀(e1, . . . , eN) orthonormal basis of <N , the variables defined by
(eTi .r) are independent and normally distributed.
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Thus, the probability for a vector to be captured is P(rT .ui ≥ c) = N (c) since
rT .ui is normally distributed. So, we get:

E(N ′) = NN (c).

Let us separate the captured hyperedges according to their dimensions: m′ =
m′2 + . . . + m′Q. Let e be a hyperedge of dimension q; we can (w.l.o.g.) suppose
that e = {v1, . . . , vq}. The probability for e to be entirely captured is:

P(e captured) = P
(
uT1 .r ≥ c, . . . , and uTq .r ≥ c

)
≤ P

(
(u1 + . . .+ uq)T .r ≥ qc

)
= P

([
u1 + . . .+ uq
||u1 + . . .+ uq||

]T
.r ≥ qc

||u1 + . . .+ uq||

)
= N

(
qc

||u1 + . . .+ uq||

)
·

1
q ||u1 + . . .+ uq|| = 1

q

√
u2

1 + . . .+ u2
q +

∑
i6=j ui.uj

≤ 1
q

√
q + (q − 1)(q − 2) + 2(q − 1)α

=

√
[1− 2(1/q − 1/q2)]k − 1

k − 1
= 1/aq.

Hence P(e captured) ≤ N (aqc).
Let us notice that: ∀q a2 ≥ aq ≥ aq+1 ≥ aQ > 1.
We denote mq = |Eq| and δq the mean degree at dimension q. So, Nδq = qmq.

Let ∆q be such that ∆q ≥ δq. Then we have:

E(m′q) = mqP(eq captured) ≤ N∆q

q
N (aqc).

Hence

E(N ′ −m′) ≥ N
[
N (c)−

Q∑
q=2

∆q

q
N (aqc)

]
= F (c). �

For any instance of problems, we can calculate ∆̃ and aQ so as to express F (c)
explicitly and compute a c maximizing F . Alternatively, we will show how to

choose c so as to have: N (c) > 2
Q∑
q=2

∆q

q
N (aqc), leading to a positive value for the

expectation.

Lemma 3. For:

c =

√
[1− 2(1/Q− 1/Q2)]k − 1

(1/Q− 1/Q2)k
ln[(2 + ε)∆̃] (H1)
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with: ∆q and ε chosen so that:

min

(
1, 2

(
1−

√
1/Q− 1/Q2

1− 2(1/Q− 1/Q2)

))
> ε ≥ 4(1/Q− 1/Q2)

2k
k − 2

1
ln(2∆̃)

, (H2)

we have N (c) > 2
Q∑
q=2

∆q

q
N (aqc).

Proof. Using the approximation inequalities for N and the fact that the aq are
decreasing down to aQ > 1:

N (c)
Q∑
q=2

∆q

q
N (aqc)

≥ (1− 1/c2)e−c
2/2(

Q∑
q=2

∆q

qaq

)
e−a

2
Qc

2/2

≥ 1− 1/c2

∆̃
ec

2(a2
Q−1)/2.

To prove the lemma, we will show that, with the choice made in the hypotheses,

(i)
1
c2
≤ ε

2
− ε2

4
⇒ 1− 1

c2
≥ 2

2 + ε
, and

(ii) ec
2(a2

Q−1)/2 = (2 + ε)∆̃.

We notice that a2
Q − 1 = 2(1/Q−1/Q2)k

[1−2(1/Q−1/Q2)]k−1 . Then, (H1) is equivalent to (ii).
From (H1) we can also derive:

1
c2
≤ (1/Q− 1/Q2)

2k
k − 2

1
ln(2∆̃)

≤ ε/4 from hypotheses.

Choosing ε as in (H2) we have: ε < 1 ⇒ ε

2
− ε2

4
>
ε

4
. Then

1
c2
≤ ε

4
<
ε

2
− ε2

4
,

hence (i) is verified.

Combining (i) and (ii), we obtain
1− 1/c2

∆̃
ec

2(a2
Q−1)/2 ≥ 2, hence the lemma. �

Now, we can express the theorem:

Theorem 4. For:

c =

√
[1− 2(1/Q− 1/Q2)]k − 1

(1/Q− 1/Q2)k
ln[(2 + ε)∆̃]
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with:
•

∆̃ =
Q∑
q=2

∆q

qaq
, where


∆q ≥ mean degree at dim. q,

aq =
√

k − 1
[1− 2(1/q − 1/q2)]k − 1

• ∆q and ε chosen so that:

min(1, 2(1−
√

1/Q− 1/Q2

1− 2(1/Q− 1/Q2)
)) > ε ≥ 4(1/Q− 1/Q2)

2k
k − 2

1
ln(2∆̃)

,

we have:

E(N ′−m′) ≥ ((2+ε)∆̃)−
[1−2(1/Q−1/Q2)]k−1

2(1/Q−1/Q2)k
N

2
√

2π
1/Q− 1/Q2

1− 2(1/Q− 1/Q2)
√

ln((2 + ε)∆̃)
·

Proof. Applying both lemmas 2 and 3, we have:

E(N ′ −m′) ≥ NN (c)
2
·

We recall that

N (c) ≥ Φ(c)
(

1
c
− 1
c3

)
with

Φ(c) =
1√
2π

((2 + ε)∆̃)−
[1−2(1/Q−1/Q2)]k−1

2(1/Q−1/Q2)k ,

from hypotheses

1
c
− 1
c3
≥ 1
c

(1− ε

2
) ≥ 1/Q− 1/Q2

1− 2(1/Q− 1/Q2)
1√

ln(2 + ε)∆̃
·

Hence, with the hypotheses we finally get:

E(N ′−m′) ≥ N

2
1/Q− 1/Q2

1− 2(1/Q− 1/Q2)
1√

2π ln((2 + ε)∆̃)
[(2+ε)∆̃]−

[1−2(1/Q−1/Q2)]k−1
2(1/Q−1/Q2)k .

�

This way, if we realize the expected values for each center, we can iterate the
process as in [6], to finally obtain a

O

(
1− 2(1/Q− 1/Q2)

1/Q− 1/Q2
ln((2 + ε)∆̃)((2 + ε)∆̃)

[1−2(1/Q−1/Q2)]k−1
2(1/Q−1/Q2)k

)
coloring of the hypergraph.
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6. Implementation and results

To implement these schemes, we used a Semidefinite Positive resolution code
by Alizadeh et al.: SDPPack4 [1]. Cost functions should be linear, constraints
should be either equalities or Semi-Definite positiveness of a symmetric matrix,
which is the form used in the sections above. This code is also especially designed
for sparse matrices, hence it is particularly interesting since in our applications,
the real graphs we are confronted to are generally not dense at all for topological
reasons. We restricted ourselves to the “triset subgraph”, the subgraph induced
by the vertices of the triangles in T3; clearly, optimizing the Kn-Coloring number
on such a subgraph is equivalent to optimizing on the whole graph.

We now present our results on benchmark graphs (provided by the CELAR),
which are typical of real situations encountered with communication networks of
land forces, and we compare our results to those obtained with a more traditional
simulated annealing approach. The problem considered here is, so, a K3-coloring.

Both graphs presented here have 125 vertices (those networks correspond to
1049 vehicles) and the same triset initial structure, with 22 trisets. They differ in
the definition of cosite links. Thus, the edge structures of the examples are slightly
different:

Benchmark 1 Benchmark 2
#vertices 125 125

#edges 299 376
#trisets of initial graph 22 22

#vertices of triset subgraph 28 28
#edges of triset subgraph 57 72

Defaix enabled us to compare the characteristics of the final frequency assign-
ment obtained by proceeding the assignment procedure on the graph colored by
different methods: “χ” means that we used a coloration optimal on the number of
colors. “SDP” means that we used the SDP K3-Coloring scheme presented here
(we mention between parentheses the lower bound obtained through the hyper-
graph coloring scheme). “SA” a K3-Coloration obtained by a Simulated Annealing
approach. “∅” means that we did not pre-color the graph at all. We obtained the
following results, first on the pre-coloring phase, then on the final assignment:

4We thank the authors for the quasi on-line help they provided us during our experiments.
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Benchmark 1 Benchmark 2
Col. method χ SDP SA ∅ χ SDP SA ∅

#trisets [bound] 3 3[3] 3 22 6 3[3] 3 22
#colors 6 11 14 125 8 9 16 125

CPU time (min) 1 40 63 0 1 35 71 0
TEB saturation

time (min) 4 98 136 [56] 61 53 131 [70]
min. bandwidth 122 54 34 (11) 59 110 48 (21)
mean bandwidth 337 338 379 (800) 321 371 366 (851)

mean overlap (%) 11.1 16.8 21.2 (47.5) 16.1 15.3 20.0 (47.7)

Without pre-coloring, we do not even get all T.E.B. (electromagnetic measures
of interferences) bounded by a certain value, that we set as our constraints on
assignment, within a 24 hour CPU time. SDP relaxation and Simulated Annealing
approach give assignments of the same quality. In the case of Benchmark 1, the
chromatic number approach leads us to an optimal Kn-coloration, thus to a good
assignment, but with a low overlapping rate because of higher constraints between
colors. Unfortunately though, a larger benchmark (250 vertices) was too large to
implement the algorithm on it.

Moreover, bounds obtained by coloring the hypergraph defined in Proposition 8
or restrictions of the hypergraph to a fixed degree (in particular, a graph) are
unefficient in a Branch-And-Bound procedure, even when they are close to the
optimum, because of their slow calculations. In fact, preparing the data is a more
costly step than solving the SDP problem ; finding an implemental procedure
which modifies the matrix of constraints from node to node rather than computing
it from scratch at each node, is likely to dramatically accelerate the whole process.

Concluding remarks

Our study aimed at pre-treating data for the assignment of frequency hopsets,
which raises out a new family of coloring problems, generalizing the chromatic
number problem. Though more theoretical than Simulated Annealing approaches,
SDP relaxation and primalization seem to be particularly well suited to offer a
good trade-off between the quality of feasible solutions found, the duality gap
accuracy (between lower and upper bounds), and computational time.

Furthermore, we have presented here a generalization of Karger et al. proba-
bilistic approach, to the case of Hypergraph Coloring. In [10] a derandomization of
this approach is shown, but since the dimensions of the hypergraphs here are not
bounded, their proof cannot be directly adapted. Derandomizing our algorithm
still remains an open issue.

Some other criteria have not been introduced yet, such as the number of net-
works per color and the level of resulting constraints between colors (hopsets)
improving the communication quality required by military needs. Moreover, an
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other priority will be to adapt our algorithm to larger sizes to anticipate the com-
plexification of deployments.
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