RATRO Operations Research
RAIRO Oper. Res. 35 (2001) 71-83

SINGLE MACHINE PREEMPTIVE SCHEDULING
TO MINIMIZE THE WEIGHTED NUMBER OF LATE
JOBS WITH DEADLINES AND NESTED RELEASE/DUE
DATE INTERVALS

VALERY S. GOrRDON!, F. WERNER? AND O.A. YANUSHKEVICH!
Communicated by J. Carlier

Abstract. This paper is devoted to the following version of the single
machine preemptive scheduling problem of minimizing the weighted
number of late jobs. A processing time, a release date, a due date
and a weight of each job are given. Certain jobs are specified to be
completed in time, i.e., their due dates are assigned to be deadlines,
while the other jobs are allowed to be completed after their due dates.
The release/due date intervals are nested, i.e., no two of them overlap
(either they have at most one common point or one covers the other).
Necessary and sufficient conditions for the completion of all jobs in time
are considered, and an O(nlogn) algorithm (where n is the number of
jobs) is proposed for solving the problem of minimizing the weighted
number of late jobs in case of oppositely ordered processing times and
weights.

Keywords: Single machine scheduling, release and due dates, dead-
lines, number of late jobs.

Mathematics Subject Classification. 90B36.

Received October, 1999. Accepted November, 2000.

I Institute of Engineering Cybernetics, National Academy of Sciences of Belarus, Minsk,
Belarus; e-mail: gordon@newman.bas-net.by and yanush@newman.bas-net.by

2 Otto-von-Guericke University of Magdeburg, Germany;

e-mail: frank.werner@mathematik.uni-magdeburg.de
© EDP Sciences 2001

72 V.S. GORDON, F. WERNER AND O.A. YANUSHKEVICH
1. INTRODUCTION

In this paper we consider the n job and single machine preemptive scheduling
problem of minimizing the weighted number of late jobs with nested release/due
date intervals assuming that certain specified jobs have to be completed in time.

In project management and in service industries, it is a widespread situation,
when failure to meet due dates may result in a significant loss. Therefore, it is
expedient to consider a problem of minimizing the weighted number of late jobs
when at least some of the due dates are in fact deadlines. Sidney [16] was the
first who considered the problem of minimizing the number of late jobs in the
situation when certain specified jobs have to be in time. Unlike [16], we consider
this situation for the case of given release dates and the weighted number of late
jobs subject to nested release/due date intervals. The problem of minimizing the
weighted number of late jobs with given deadlines for some jobs and similarly or
oppositely ordered release and due dates was considered in [1]. Nested release/due
date intervals for the problem of minimizing the weighted number of late jobs
without deadlines were first considered by Lawler [9].

The paper is organized as follows. In Section 2, we introduce our notation
and definitions and briefly review the known results related to the problem under
consideration. In Section 3, we consider necessary and sufficient conditions for the
existence of a single machine preemptive schedule in which all jobs are completed
by their due dates. These conditions may be verified in O(n) time for nested
release/due date intervals provided that jobs are indexed in non-decreasing order of
their due dates. In Section 4, we propose an O(nlogn) algorithm for the problem
of minimizing the weighted number of late jobs with deadlines and oppositely
ordered processing times and job weights.

2. PRELIMINARIES

The single machine problem of minimizing the weighted number of late jobs
is one of the classical scheduling problems. We consider this problem under the
assumption that release dates are given, preemption is permitted, release/due date
intervals are nested and certain specified jobs have to be completed in time.

The problem under consideration can be posed as follows. There is a set N =
{1,2,...,n} of jobs which are to be processed on a single machine. The machine
can execute at most one job at a time. Each job i € N is available for processing
at time (release date) r; > 0 and requires a processing time p; > 0. Preemption
(“job splitting”) is allowed: the processing of any job may be interrupted and
resumed at a later time. If C; is the completion time of job i in a schedule, then
job i is late (or tardy) when C; > d;, where d; is the given due date, otherwise
it is in time. Each job i of a given subset Q C N must be completed not later
than its due date, i.e., the due dates for these jobs are considered as deadlines.
If C; > d; for i € N\Q, then there is a unit penalty U; = 1, otherwise U; = 0. There
is also a nonnegative penalty (weight) w; for the job being tardy. The objective is

SINGLE MACHINE PREEMPTIVE SCHEDULING... 73

to find a schedule which minimizes Zz‘e MO w;U; provided that the deadlines are
not violated for all i € @ (it is assumed that there exists a schedule with C; < d;
for all i € Q).

Release/due date intervals [r;,d;], i = 1,...,n, are nested, that is each pair
[ri,d;], [rj,d;] is such that either the two intervals are disjoint (except possibly at
end points) or one interval is contained within the other (see Fig. 1).

1 2 3 7 8
4 9
5
6 10
0 76 T4T1 dy T2 do d3 d4 ds dg ro 7 dy s dg dgy t
s T3 10 dio
FIGURE 1.

If ties between equal [r;,d;] intervals are broken arbitrarily, the nested
release/due date intervals are partially ordered by the inclusion relation. The
transitive reduction of this partial order is represented by a forest of in-trees,
where each vertex of the tree represents a release/due date interval. See Figure 2
for the forest of in-trees which represents the release/due date intervals of Figure 1.
It is obvious that the problem can be decomposed into problems for in-trees, each
of which can be considered separately.

le 260 e 3 7@ [X<
@y %9
Y
®5 ® 10
Y
® (
FIGURE 2.

The problem may be denoted as 1|pmtn;nst;d;,i € Q|> w;U; in the nota-
tion of [3,10], where nst denotes nested release/due date intervals and d;,i € Q,
indicates a given subset of jobs that have to meet their deadlines.

The first result for the single machine scheduling problem under consideration
(subject to Q@ = () is a well-known O(nlogn) algorithm of Moore-Hodgson [15]
which solves the problem 1|| >~ Uj, the special case in which all release dates are
zero and all job weights are equal. The problem of minimizing the weighted num-
ber of late jobs (for the jobs simultaneously available for processing) is known to be

74 V.S. GORDON, F. WERNER AND O.A. YANUSHKEVICH

NP-hard in the ordinary sense (Karp [4]) and it is solvable in pseudopolynomial
time (Lawler and Moore [11]). The problem of minimizing the number of late
jobs with given release dates is strongly NP-hard in consequence of strong NP-
hardness of the problem of minimizing the maximum lateness with given release
dates (Lenstra et al. [13]). The preemptive case of the problem with given release
dates is solvable in polynomial time for equal weights (Lawler [7]) and in pseu-
dopolynomial time for unequal weights (Lawler [8]). Monma [14] gave an O(n)
algorithm for the 1|p; = 1]) U; problem; Lenstra and Rinnooy Kan [12] showed
that the 1|chain,p; = 1| > U, problem is strongly NP-hard, where chain denotes
chain-like precedence constraints.

Some polynomially solvable cases for the problem of minimizing the number of
late jobs with given release dates or minimizing the weighted number of late jobs
were considered by Lawler [6,9], Kise et al. [5], Gordon and Tanaev [2,17], Tanaev
et al. [18].

The problem with @ #) was considered by Sidney [16] for the case r; = 0,
w; =1,i=1,...,n, and by Gordon et al. [1] for the case of similarly or oppositely
ordered release and due dates.

In Section 3, we will consider the following special cases of nested release/due
date intervals. Let jobs be numbered in non-decreasing order of their due dates.

The release/due date intervals are embedded if r; > r;y1,i=1,... ,n — 1. The
inclusion-relation graph of these intervals is a chain.

The release/due date intervals are gathered if N = NyUNyU. . .UNy 41, N;NN;
=0,1 <i# j <m, and the subsets N; are such that

(a) for each of the sets N;,i =1,... ,m+ 1, the release/due dates intervals are
embedded,

(b) each pair of the intervals for the jobs from N; and N;, where 1 <i # j <m,
is disjoint except possibly at end points, and

(c) all the intervals for the jobs from N;,i =1,...,m, are contained in each of
the intervals for the jobs from Ny,4+1 (see Fig. 3 for the case of m = 2).

Note that for any i € N,,j € N7,k € Nppg1,1 < v <o’ <m, we have i < j < k.
Let n; and m; be the jobs with the least and greatest numbers in N;,¢ = 1,...,
m+ 1.

As it has been mentioned before, the nested release/due date intervals are
partially ordered by the inclusion relation and can be represented by a forest
of in-trees. For each tree, starting from the leaves we combine into one vertex a
maximal set of in-degree 1 vertices of a chain (except the starting vertex which
may have in-degree 0 or greater than 1). So, we combine each of such chains of
maximal length into one vertex and transform each in-tree of the forest into an
in-tree in which each vertex corresponds to embedded intervals (see Fig. 4, where
vertices 4, 5 and 6 of Fig. 2 are combined into vertex A, and vertices 9, 10 are
combined into vertex B). We shall use this representation of the forest later on in
Theorem 4.

In this representation, the inclusion-relation graph for gathered intervals is a
tree of height one.

SINGLE MACHINE PREEMPTIVE SCHEDULING... 75

I 1 I
LN SRR R
I I
: 3 : [6 Ny
| 4 | | 7 |
| | I I
I I I 8 I
| | I I
o e J Lo e e]
T 9 |
I I
| N3 10 |
| 11 |
I I
I I
FIGURE 3
1 3 7
o () o o)
<‘? °
A B
FIGURE 4.

On the other hand, each in-tree of the decomposition forest may be also
represented as a tree of height one (as in Fig. 5), where Ny, Na, ..., Ny, are the
sets of jobs with disjoint nested intervals and N,,41 is a set of jobs with embed-
ded intervals. As before, let n, and 7; be the jobs with the least and greatest
numbers in N;,i = 1,... ,m + 1. For example, the first in-tree of Figure 2 can be
represented as in Figure 5 with N7 = {1,2,3,4} and Ny = {5,6} (here m = 1),
or Ny = {1}, Ny = {2,3}, N3 = {4,5,6} (here m = 2), or Ny = {1}, Ny = {2},
N3 = {3}, Ny ={4,5,6} (here m = 3).

N1 Ny Ny,
° e - °
Q»

[J
Nm—i—l

FIGURE 5.

76 V.S. GORDON, F. WERNER AND O.A. YANUSHKEVICH

This representation will be used later on in Theorem 3.

3. DUE DATE FEASIBLE SCHEDULES

In this section we consider necessary and sufficient conditions for the existence
of a schedule where all due dates are maintained (that is, C; < d; for each job
i € N) and we show that these conditions may be verified in O(n) time for nested
release/due date intervals.

We call a schedule due date feasible if all jobs in it observe their due dates
(i.e., C; < d; for each job i € N).

In what follows, let the jobs be numbered in non-decreasing order of their due
dates. The following theorem establishes necessary and sufficient conditions for
the existence of a due date feasible single machine preemptive schedule of jobs
with possibly different release dates.

Theorem 1. [18] Let N} be the set of all jobs i € N with r; > 1 and
d; < dg,1 <k <I1<n. Then a due date feasible schedule exists if and only if
k <1 implies

Z pi < dp —ry. (1)
iEN}
From this theorem we derive the following corollary.

Corollary 1. For embedded release/due date intervals, a due date feasible sched-
ule exists if and only if

ijgdrri, i=1,...,n. (2)
j=1
Proof. For embedded release/due date intervals we have r; > r;41, 1 =1,... ,n—
1. In this case, we obtain N} = {1,...,k} for any k,[such that 1 < k < < n,

and (1) may be rewritten as:

k
> pi<di—ny (3)
=1

foralll<k<l<n.

The latter inequality for k& = I dominates this inequality for k < I: if (3)
holds for [= k, it will be valid for all [> k. Deleting all inequalities except the
dominating, we obtain (2). Therefore, if (2) is valid, a due date feasible schedule
exists.

On the other hand, if a due date feasible schedule exists, then (3) is valid and
for k =1 we obtain (2) from (3). O

SINGLE MACHINE PREEMPTIVE SCHEDULING... 77

We shall prove now the following statement:

Theorem 2. Let release/due date intervals of the set N be gathered. A due date
feasible schedule for N exists if and only if

Z pj<di—ry (4)
j=n,

holds for all i, n, <i<n,,v=1,2,...,m, and
i
Sopit Y pi<di—r (5)
JEN1U...UNpm J=0 41

holds for all i, n,, 1 <1 < Tpy1.

Proof. From Theorem 1, a due date feasible schedule exists if and only if (1) is
valid forall 1 < k <[<n.

Let us show that (4) and (5) are valid if a due date feasible schedule for N
exists.

Since (1) holds for all 1 < k <[< n, and N,i ={n,,...,k}forn, <k <1
<Ty,v=1,...,m+ 1, we have from (1):

k
p; <dp — g
Jj=n,

The latter inequality for | = & leads to (4).
Since N! = Ny U Ny U...UNp, U{npi1,...,i}if k=1=1¢€ Npq1, we have
from (1):

oo+ >, pi<di—m,

JENU...UN,, J=0 41

for n,,,1 <@ <Mpq1, that is, (5) is valid.

Let us show that a due date feasible schedule for N exists if (4) and (5) are
valid.

A due date feasible schedule exists if inequalities (1) are valid for all the jobs.
It is sufficient to show that inequalities (1) are valid for

a) k,l € Ny, k<l,1 <v<m;

b) k€ Ny,l € Ny,1 <v<v <m

¢) k€ Ny,l € Nppy1, 1 <o <m, and

d) k,1 € Nppg1,k < L.
For case (a), we have embedded intervals for the jobs of the set N,,1 < v < m,
and from Corollary 1, a due date feasible schedule for N, exists if (2) is valid,

78 V.S. GORDON, F. WERNER AND O.A. YANUSHKEVICH

which may be rewritten as (4):
i
Y opi<di—ri, i=mn,... 7.
Jj=n

For case (b), the set N! is equal to {n,,... ,k}UNy11U...UNy_1U{n,,...,l},
and the inequality (1) may be rewritten as

> p; < di — 7, (6)

je{n,,....,k}UNy,1U..UN s _U{n/,...,l1}

—v

where kK € N,,l € N,. To prove (6), consider the inequalities which follow
from (4):

k
ij <dip—r1k, k€N,
Jj=n

F
> pj<ds,—7m,, v+l<w<o -1,
Jj=n,,

l

ijgdl—m, l € N,.

J=n,,,

We obtain (6) by adding the above inequalities and taking into account that dy,
<rp,.dm, <rpforke Ny,v+1<w<v —1,1€ N,y.

For case (c), the set N} is equal to {n,,... ,k} UN,+1U...UN,,, and inequal-
ity (1) may be rewritten as

Z pj < dp — g,

Jj€{n,;... ,k}UNy11U...UN,,

where k € N,,l € Ny41. Since (6) with [= @, dominates the last inequality,
we arrive to case (b).

For case (d), the set N! is equal to Ny U...UN,, U {415 --- , k}, and inequal-
ity (1) may be rewritten as

k
>oopit Y pi<di—m, (7)

JEN1U...UNp J= i1

where k,I € Np41. To prove (7), it is sufficient to notice that inequality (5)
dominates (7) since dj, < d. |

SINGLE MACHINE PREEMPTIVE SCHEDULING... 79

From this theorem we obtain the following corollary:

Corollary 2. The existence of a due date feasible schedule of jobs with gathered
release/due date intervals can be verified in O(n) time provided that jobs are num-
bered in non-decreasing order of their due dates.

Proof. To check whether there exists a due date feasible schedule for the set N
= Ny UNyU...U N4 with gathered release/due date intervals, it is sufficient
to verify (2) (or, which is the same (4)) separately for Ny, No, ..., N, and (5) for
Nyyq <0< Mg It is obvious that this may be done in O(n) time. |

Theorem 3. For the nested release/due date intervals which are represented by
Figure 5, a due date feasible schedule exists if and only if due date feasible schedules
exist for the jobs of the sets N;j,i = 1,...,m, and inequality (5) holds for n,,
<t < Mpy1.

Proof. If a due date feasible schedule exists for all jobs, it exists for the jobs of
the sets N;,i =1,...,m, and (1) holds for all 1 < k <1 < n.

For k,l € Np11,k <1, we have N,i =N1UN2U...UNp, U{n,, 1,...,k} and
from (1) we obtain:

k
S opit Y pi<di—m

JEN1U...UN,, J= g1

for all k,1 € N,,4+1. From the latter inequality we obtain (5) for k =1 =14 € Ny41.

Let us show that a due date feasible schedule for all jobs exists if it exists for
each of the sets N;,i = 1,... ,m, and (5) is valid. A due date feasible schedule
exists if inequalities (1) are valid for all jobs. It is sufficient to show that these
inequalities are valid for

(a) k€ Ny,l € Npjpg1, 1 <v <m, and

(b) k,l € Nppg1, k < L.
For case (a), the set N,lC is equal to N' U Nyyp1 U...U N, where N’ is a subset
of N,, and (1) may be rewritten as

> p; < dyp =y, (8)

JEN'UN,41U...UN,,

for k € N,,l € Nppt1.

Since a due date feasible schedule exists for the jobs of the sets N/, Ny11, ...,
Ny, inequality (1) holds for N,lc/ = N'UNy41 U...UN,,, where k € N, and
U =m,,:

Z p; < dm,, — Tk

JEN'UNy41U...UNp,

It is obvious that (8) follows from the latter inequality.
For case (b), the proof is the same as for case (d) of Theorem 2. O

80 V.S. GORDON, F. WERNER AND O.A. YANUSHKEVICH

Now we may formulate the following statement:

Theorem 4. A due date feasible schedule for the set of jobs with nested release/due
date intervals exists if and only if inequalities (4) and (5) hold for the sets of jobs
in the following procedure:

(a) represent the set of intervals as a forest of in-trees with the vertices corre-
sponding to embedded intervals (as described in Sect. 2, see Fig. 4);

(b) consider each of the in-trees separately, and

(¢) moving from the leaves of the tree to the root, verify (4) and (5) for each
vertex with all its immediate predecessors (considering them as gathered in-
tervals or as the intervals of Fig. 5) and combining these vertices into one
nested interval vertex.

Proof. 1t is obvious that the problem of the existence of a due date feasible schedule
can be decomposed into problems for in-trees, each of which can be considered
separately. To prove the theorem, it is sufficient to apply first Theorem 2 and
then Theorem 3 for each subtree of height one, moving from the leaves of each
tree to the root. a

Corollary 3. The existence of a due date feasible schedule of jobs with nested
release/due date intervals can be verified in O(n) time provided that the jobs are
numbered in non-decreasing order of their due dates.

Proof. Step (c) of Theorem 4 represents the following recursion algorithm. Moving
from the leaves to the root (of each tree separately), we apply first Theorem 2
for the gathered intervals of the subtrees of height one, and then (considering
the intervals of these subtrees as one nested interval) we apply Theorem 3 to
the next subtrees of height one until we come to the root. Since the operations
corresponding to the verification of all inequalities (4) and (5) can be done in O(n)
time, the existence of a due date feasible schedule can be verified in O(n) time.
(Note that we do not need to recalculate the sums of processing times in (5) when
we pass to the next subtree. We can use the results of the previous steps.) g

4. NESTED RELEASE/DUE DATE INTERVALS WITH DEADLINES

Throughout this section, we consider the problem 1|pmtn;nst; d;,i € Q| > w;Uj
with the assumption that processing times and job weights are oppositely ordered
which means that there exists an indexing of the jobs such that

Di; <Dip < ... <p;, and wy; > wi, > .0 > Wi,

Note that this order is independent on the numbering of the jobs. As before, the
jobs are numbered in non-decreasing order of their due dates. And at last, we
assume that there exists a schedule with C; < d; for all i € Q.

A schedule which minimizes), en\Q Wi U; provided that no deadline is violated
(i.e., C; < d; for all i € Q) will be called optimal.

SINGLE MACHINE PREEMPTIVE SCHEDULING... 81

We shall use the following fundamental observation [9] that applies to the
general problem in either its nonpreemptive or preemptive versions, i.e.,
to 1|rj| > w;U; or 1pmin, r;| Y w,;Uj: if a job is late, it might as well be arbitrary
late. Hence, there exists an optimal schedule for 1|pmtn;nst;d;,i € Q| w;Uj in
which all jobs that are in time precede all the jobs that are late. So, the problem
is

(a) to find a set R* of late jobs (where R* N Q = 0) with the smallest value
f(R) = >,cpwi among all sets R, RN Q = (), for which there exists a due
date feasible schedule for the jobs of the set N\R;

(b) to construct a due date feasible schedule for the set N\R* (denote this
schedule by s‘fv\R*), and

(c) to join to sle\R* an arbitrary permutation of the jobs of the set R* (denote
this permutation by mg+). Then, an optimal schedule s* for the set N will
be: s* = (sﬁlv\R*, TR).

The following algorithm A provides the construction of an optimal schedule.

Algorithm A:

1. Let R* = (. Starting from ¢ = 1 and increasing ¢ by 1 up to ¢ = n, represent
the set of release/due date intervals as in (a, b) of the procedure of Theorem 4
and verify inequalities (4) and (5) of this procedure. Note that in this case
we move, as in step (c) of the procedure, from the leaves to the root of each
tree. If (4) or (5) is not valid for some i, find a job with the largest p; among
the jobs k, k < i, k &€ Q. Delete this job from the set N and add it to the
set R*.

2. Apply Lawler’s algorithm [9] (which was proposed for the problem
Llpmtn,nst| Y- w;U;) to the jobs of the set N\ R*. As a result, we obtain a
schedule s’ for the jobs of the set N \ R*.

3. Construct a schedule s* = (s', mr«), where g+ is an arbitrary permutation
of the jobs of the set R*.

Theorem 5. If schedule s* is constructed by algorithm A, it is optimal.

Proof. At the first step, if (4) or (5) is not valid for some 7, i € N \ R*, a due
date feasible schedule for the set of jobs N\ R* does not exist (Th. 4). At least
one of the jobs of the set N \ R* must be deleted to obtain a due date feasible
schedule. Since we delete each time the job with the largest pi (and therefore
with the smallest weight), we shall obtain as a result the smallest possible sum
of weights for the set R* when all other jobs (including all jobs of the set Q) are
scheduled without violating their due dates.

When we apply Lawler’s algorithm to the set N \ R* at the second step, we
obtain a schedule with the minimal total weight of late jobs for the set N \ R*.
Since the jobs of the set N\ R* can be scheduled without violating the due dates,
the total weight of late jobs in this schedule will be zero, and s’ will be a due date
feasible schedule for the set N \ R*, i.e. s’ = st\R*.

82 V.S. GORDON, F. WERNER AND O.A. YANUSHKEVICH

Therefore, a schedule s* = (s, mr+), where jobs of the sequence 7+ are late, is
an optimal one. O

Corollary 4. The complezity of Algorithm A is O(nlogn).

Proof. This statement is obvious, since finding a job with the largest py requires
O(logn) time, deleting this job does not violate any valid inequality (4) or (5)
and does not require to recalculate the sums of processing times (it is sufficient to
subtract the processing time of this job). So, due to Corollary 3, the first step of
the algorithm can be done in O(nlogn) time. The second step requires the same
time since the complexity of Lawler’s algorithm [9] is O(nlogn). O

The following statement shows that algorithm A may be used for the situation
when the dependence of the weights on the processing times is the same for all
jobs.

Remark 1. Algorithm A constructs an optimal schedule when there exists a non-
increasing function f such that w; = f(p;) for all jobs of the set N \ Q.

Remark 2. The assumption of the existence of a deadline feasible schedule
(a schedule with C; < d; for all i € Q) can be verified by applying Theorem 4 for
the set Q. If a deadline feasible schedule does not exist, problem 1|pmtn;nst;d;,
i € Q|>_ w;U; does not have a solution.

Remark 3. The Moore-Hodgson algorithm [9] for the problem with nested
release/due date intervals and with opposite ordering of processing times and
weights can be modified for the case of a given subset of jobs with deadlines. In
the modified algorithm, to insert job i € @ into the schedule we have (instead
of deleting from in-time jobs a job with the largest processing time as in [9]) to
delete such a subset of jobs with largest processing times that the sum of their
processing times is equal to or greater than p;. But in this case the algorithm will
run in O(n?) time.

This research was partly supported by the International Association for the Promotion
of Cooperation with Scientists from the Independent States of the Former Soviet Union,
INTAS 96-0820, and the International Science and Technology Centre, project B-104-
98. We are grateful to the constructive suggestions of the anonymous referees which
substantially improved the paper.

REFERENCES

[1] V. Gordon, E. Potapneva and F. Werner, Single machine scheduling with deadlines, release
and due dates. Optimization 42 (1997) 219-244.

[2] V.S. Gordon and V.S. Tanaev, Single machine deterministic scheduling with step functions
of penalties, in: Computers in Engineering. Minsk (1971) 3-8 (in Russian).

[3] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and
approximation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math.
5 (1979) 287-326.

(4]
(5]
[6]
[7]
(8]
(9]

(10]

(11]
(12]
(13]
(14]
(15]

(16]

(17]

(18]

SINGLE MACHINE PREEMPTIVE SCHEDULING... 83

R.M. Karp, Reducibility among combinatorial problems, edited by R.E. Miller and J.W.
Thatcher, Complezity of Computer Computations. Plenum Press, New York (1972) 85-103.
H. Kise, T. Ibaraki and H. Mine, A solvable case of the one-machine scheduling problem
with ready and due times. Oper. Res. 26 (1978) 121-126.

E.L. Lawler, Sequencing to minimize the weighted number of tardy jobs. RAIRO Oper. Res.
10 (1976) 27-33.

E.L. Lawler, Scheduling a single machine to minimize the number of late jobs. Preprint.
Computer Science Division, University of California, Berkeley (1982).

E.L. Lawler, A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Ann. Oper. Res. 26 (1990) 125-133.

E.L. Lawler, Knapsack-like scheduling problems, the Moore-Hodgson algorithm and the
“tower of sets” property. Math. Comput. Modelling 20 (1994) 91-106.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, Sequencing and sched-
uling: Algorithms and complexity, edited by S.C. Graves, A.H.G. Rinnooy Kan and P.H.
Zipkin, Logistics of Production and Inventory. North-Holland, Handbooks Oper. Res. Man-
agement Sci. 4 (1993) 445-522.

E.L. Lawler and J.M. Moore, A functional equation and its application to resource allocation
and sequencing problems. Management Sci. 16 (1969) 77-84.

J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity results for scheduling chains on a single
machine. European J. Oper. Res. 4 (1982) 270-275.

J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling
problems. Ann. Discrete Math. 1 (1977) 343-362.

C.L. Monma, Linear-time algorithms for scheduling on parallel processors. Oper. Res. 30
(1980) 116-124.

J.M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late
jobs. Management Sci. 15 (1968) 102-109.

J.B. Sidney, An extension of Moore’s due date algorithm, edited by S.E. Elmaghraby,
Symposium on the Theory of Scheduling and its Applications. Springer, Berlin, Lecture
Notes in Econom. and Math. Systems 86 (1973) 393-398.

V.S. Tanaev and V.S. Gordon, On scheduling to minimize the weighted number of late jobs.
Vestsi Akad. Navuk Belarus Ser. Fizi.-Mat. Navuk 6 (1983) 3-9 (in Russian).

V.S. Tanaev, V.S. Gordon and Y.M. Shafransky, Scheduling Theory. Single-Stage Systems.
Kluwer Academic, Dordrecht (1994).

to access this journal online:
www.edpsciences.org

