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Abstract. A Levy jump process is a continuous-time, real-valued sto-
chastic process which has independent and stationary increments, with
no Brownian component. We study some of the fundamental proper-
ties of Levy jump processes and develop (s, S) inventory models for
them. Of particular interest to us is the gamma-distributed Levy pro-
cess, in which the demand that occurs in a fixed period of time has
a gamma distribution. We study the relevant properties of these pro-
cesses, and we develop a quadratically convergent algorithm for finding
optimal (s, S) policies. We develop a simpler heuristic policy and derive
a bound on its relative cost. For the gamma-distributed Levy process
this bound is 7.9% if backordering unfilled demand is at least twice as
expensive as holding inventory. Most easily-computed (s, S) inventory
policies assume the inventory position to be uniform and assume that
there is no overshoot. Our tests indicate that these assumptions are
dangerous when the coefficient of variation of the demand that occurs
in the reorder interval is less than one. This is often the case for low-
demand parts that experience sporadic or spiky demand. As long as
the coefficient of variation of the demand that occurs in one reorder
interval is at least one, and the service level is reasonably high, all of
the polices we tested work very well. However even in this region it is
often the case that the standard Hadley–Whitin cost function fails to
have a local minimum.
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1. Introduction

We consider (s, S) inventory models in which both time and inventory are mod-
elled as continuous quantities, lead times are deterministic, and customer service
is modelled through cost minimization rather than constraints on service levels.

We begin be discussing models in which the inventory position has a uniform
distribution. The most popular model for (s, S) and (R,Q) policies is originally
due to Hadley and Whitin [18]. This model has been the mainstay of introductory
textbooks on inventory theory for over 20 years (see, for example, Johnson and
Montgomery [20], Nahmias [21] and Vollman et al. [30]). This model assumes
that the inventory position lands on the reorder point rather then jumping over
it, so the distinction between (s, S) policies and (R,Q) policies disappears. This
model also assumes that the inventory position is uniformly distributed between s
and S. The cost function makes use of approximations (see Sect. 4). This model is
conceptually and computationally simple. Any demand distribution can be used,
continuous or discrete. The computations required are relatively simple, and the
model gives good solutions for most real-world inventory systems.

The main disadvantage of the Hadley–Whitin model is its robustness. When
the backorder cost is sufficiently low or the order cost is sufficiently high the cost
function can fail to have a local minimum. For example, suppose that the holding
cost is 1 dollar per item per day, the mean demand rate is 1 item per day, the
order cost is K dollars, the backorder cost is p̂ dollars per item, and the demand
that occurs during one lead time is uniformly distributed over the interval [0, 2].
If p̂(p̂ − 2) ≤ 2K the cost function has no local minimum ((31) in Sect. 4 is
non-decreasing). Thus if p̂ = 10 and K ≥ 40, or if p̂ = 40 and K ≥ 760, the cost
function has no local minimum.

More recently Zheng developed an elegant (R,Q) inventory model [32]. This
model differs from that of Hadley and Whitin in that Zheng uses a time-weighted
backorder cost of p dollars per item per day rather than p̂ dollars per item. Zheng
assumes that the cumulative demand process is non-decreasing, has continuous
sample paths, and has identically distributed increments. The continuity of the
sample paths implies that the inventory position lands on the reorder point rather
than jumping over it, and that the inventory position is uniformly distributed
between s and S. As in the Hadley–Whitin model, the distinction between (s, S)
policies and (R,Q) policies disappears.

Zheng’s model is gaining in popularity. It makes no approximations in the
cost function, so it is not surprising that Zheng’s model is more robust than the
Hadley–Whitin model. It is more complex than the Hadley–Whitin model, both
conceptually and computationally, but it is simple enough to teach in introductory
courses and efficient enough to use in large, real-world inventory systems. Zheng’s
algorithms work with any demand distribution.

Chen and Zheng [5] study (R,Q) policies for a system in which either time is
discrete or the demand process is compound Poisson. For these systems (R,Q)
policies are not optimal, and the inventory position often jumps over the reorder
point rather than landing on it. However the inventory position has a uniform



OPTIMAL (S,S) INVENTORY POLICIES FOR LEVY DEMAND PROCESSES 39

distribution. The authors give an efficient algorithm for computing an (R,Q)
policy.

A Levy jump process is a continuous-time, real-valued stochastic process which
has independent and identically distributed (i.i.d.) increments, with no Brownian
component. According to the Levy Decomposition theorem (Hida [19], p. 45),
any real-valued Levy process with i.i.d. increments can be expressed as X(t) =
µ · t+σ ·B(t)+J(t), where µ · t is a deterministic drift, B(t) is a Brownian motion
and J(t) is a Levy jump process. Zheng’s cumulative demand process is assumed
to be non-decreasing and continuous. Brownian motion is not non-decreasing and
Levy jump processes are discontinuous, so according to this theorem either Zheng’s
demand process is deterministic or it fails to have independent increments.

Two different demand processes with dependent, identically-distributed incre-
ments that satisfy Zheng’s assumptions have been studied (see Browne and
Zipkin [4] and Serfozo and Stidham [27]). For these processes a stationary (s, S)
policy leads to a uniform distributuion for the inventory position. Browne and
Zipkin [4] give an algorithm for computing optimal (s, S) policies with phase-type
demands. However (s, S) policies are no longer an optimal class because past
demands are correlated with future demands.

We now turn to models in which the distribution of the inventory position
is not uniform. Beyer and Sethi [2] and Sahin [26] make theoretical properties,
but do not give algorithms. When the demand process is either a discrete-time
process or a compound Poisson process, there are efficient policy-improvement
algorithms that compute optimal (s, S) policies (see Federgruen and Zipkin [9,10]
and Zheng and Federgruen [31]). These authors use clever, efficient versions of the
policy improvement algorithm. In each iteration a renewal-type equation defines
the inventory position. These equations can be solved directly when demand has
either a discrete distribution or a continuous phase-type distribution. Fu [12]
estimates the derivative of the cost with respect to s and S, enabling standard
optimization algorithms. Hu [13] computes a differnt derivative with respect to s
and S. With the compound Poisson processes there is a positive probability that
the total demand incurred in any time interval of fixed length is equal to zero.

There are a numerous related models and results. See, for example, Axsater [1],
Cheung [6], Federgruen and Zipkin [8], Gallego [14]. For recent work on service-
constrained models see Robinson [24] and Gallego and Boyaci [15–17]. Song and
Zipkin [29] and Bollapragada [3] study dynamic (s, S) models for systems with
dependent demand.

We study (s, S) inventory models with Levy jump demand processes. Levy jump
processes are a rich class of stochastic processes in which the inventory position
usually jumps over the reorder point rather than landing exactly on it. Compound
Poisson processes are Levy jump processes in which there is a positive probability
of zero demand in a time interval of unit length. As far as we know, this is the
first paper to study (s, S) inventory models for Levy jump demands that are not
compound Poisson.
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We prove some fundamental properties of (s, S) inventory models with Levy
jump demands. We develop a quadratically convergent algorithm for finding op-
timal (s, S) policies for Levy jump processes. We develop a simpler policy called
the Mass Uniform heuristic, and derive a bound on its relative cost. We do com-
putational tests for the gamma-distributed Levy process, in which the demand
that occurs in a fixed period of time has a gamma distribution. For the gamma-
distributed Levy process this bound is 7.9% if backordering unfilled demand is at
least twice as expensive as holding inventory. Our quadratically-convergent algo-
rithm for computing optimal policies can also be used to compute Zheng’s (R,Q)
policy.

Another of our goals in initiating this research was to assess the robustness of
Zheng’s algorithm, by testing its performance for demand processes that overshoot
the reorder point and have non-uniform distributions for the inventory position.
Our computational tests indicate that it is very robust, much more so than the
cost-minimization versions of the Hadley–Whitin model. However it can produce
poor policies in some realistic scenarios.

Overview

This paper is organized as follows. In Section 2 we develop the key proper-
ties of general Levy demand processes and, specifically, of the gamma-distributed
Levy process. In Section 3 we develop our inventory model for (s, S) policies for
Levy demand processes. We also present a quadratically-convergent algorithm for
computing optimal policies, and we discuss service levels. In Section 4 we develop
the Mass Uniform heuristic for computing (s, S) policies, we prove that the rel-
ative cost of the Mass Uniform heuristic is at most 7.9% if backordering unfilled
demand is at least twice as expensive as holding inventory. We develop bounds
on the performance of the (s, S) policy derived from Zheng’s (R,Q) policy, and
we briefly describe the other policies that we have tested. In Section 5 we sum-
marize our computational experiments, and in Section 6 we draw our conclusions.
Appendix 6 contains a glossary of notation. Most proofs omitted from this paper,
but they are found in [25].

2. Levy demand processes

We begin this section a definition.

Definition 1. A Levy demand process D(t) is a non-decreasing right-continuous
Levy process with no Brownian component, satisfying D(0) = 0 and D(t) < ∞
for all t.

We use Levy demand processes to model cumulative demand. Thus D(t) is the
total demand that occurs in the time interval [0, t] and D(t, u) is the total demand
that occurs in the time interval (t, u]. By selecting the units of measure in our
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inventory models appropriately, we assume without loss of generality that

E[D(t)] = t.

Examples of Levy demand processes include the compound Poisson processes.
In a Levy demand process, demand for randomly-sized quantities of inventory
occurs instantaneously at random points in time, creating “demands” or “jumps”
(discontinuities in the cumulative demand process). If the demand quantities are
all integer multiples of some number, we say that the jump sizes are arithmetic
(Feller [11], p. 360). Some of our results require non-arithmetic jump sizes.

Property 1. The jump sizes are non-arithmetic.

Any of three functions can be used to characterize a Levy demand process D(t).
The first of these comes from observing the time epochs at which a demand of size
greater than x occurs. Since the demand process D(t) has i.i.d. increments,
these time epochs form a Poisson process. ψ+(x) is the rate at which demands
of size greater than x occur. Let FD(t)(x) be the distribution function of D(t).
Algebraically we have

ψ+(x) = lim
t→0

1
t

[
1− FD(t)(x)

]
. (1)

(See Feller, p. 302, Th. 1. Note that the distributions of D(t) for t > 0 form a con-
volution semi-group as defined in Feller p. 293.) Clearly ψ+(x) is non-increasing.
The mean rate per unit time at which demand occurs is

∫∞
0 xd{−ψ+(x)} =

E[D(1)] = 1. Because D(t) is well-defined and non-decreasing, limsupx→0xψ
+(x)

= 0. If limsupx→∞xψ
+(x) > 0 we have E[D(1)] = ∞, which is contrary to our

assumptions. Integration by parts leads to

1 = E[D(1)] =
∫ ∞

0

xd{−ψ+(x)} =
∫ ∞

0

ψ+(x) dx. (2)

A Levy demand process can be constructed from any non-negative, non-increasing
function ψ+(x) satisfying (2). Compound Poisson processes are the Levy demand
processes in which demands of any size occur at a finite rate, i.e., ψ+(0) <∞.
For a compound Poisson process P (D(t) = 0) > 0 for all t ≥ 0 and ψ+(x)/ψ+(0)
is the probability that the size of a given jump is greater than x. On the other
hand, if ψ+(x)→∞ as x → 0 then any open interval on the time axis contains a
countably infinite number of jumps, and P (D(t) = 0) = 0 for all t > 0.

The measure d{−ψ+(x)} is called the Levy measure. We define the random
variables J and V by

FJ (z) =
∫ z

0

xd{−ψ+(x)} and FV (z) =
∫ z

0

ψ+(x) dx. (3)

Let 1S = 1 if S is true and 1S = 0 otherwise. The following lemma allows us to
interpret J as the weighted jump size.



42 R.O. ROUNDY AND G. SAMORODNITSKY

Lemma 1. For all T > 0, E

(
1
T

∫ T

0

1(D(t)−D(t−)>z) d{D(t)}
)

= F̄J (z).

All proofs are found in [25]. To illustrate Lemma 1, suppose that demands of
size 1 arrive at rate 1/3, and that demands of size 2 arrive at rate 1/3. Then
ψ+(x) = 2/3 for 0 ≤ x < 1, ψ+(x) = 1/3 for 1 ≤ x < 2, and ψ+(x) = 0
otherwise. Half of the jumps are of size 1 and half are of size 2, but J weights the
probabilities of the jumps by their size, so J = 1 with probability 1/3, and J = 2
with probability 2/3.

The second function that is used to characterize Levy demand processes is the
distribution of D(t). Because D(t) has stationary, independent increments, the
Laplace transform LD(t)(γ) of D(t) satisfies

LD(t)(γ) = [LD(1)(γ)]t. (4)

Since D(t) is a non-trivial, non-negative random variable,

LD(t)(γ) < 1 for t > 0. (5)

By Hida [19]2,

LD(t)(γ) = e−t
R∞
0 γ e−γ xψ+(x) dx = e−t

R∞
0 (1− e−γ x) d{−ψ+(x)}. (6)

The third function that can be used to characterize Levy demand processes is
the expected length of time θ(x) ≡ E[D−1(x)] required to accumulate x units of
demand, starting from a given point in time. θ(x) is related to the steady-state
distribution of the inventory position. Clearly θ(0) = 0. θ(0+) > 0 if and only
if ψ+(0) < ∞, i.e., if and only in D(t) is a compound Poisson process. θ(x) is
left-continuous, and

θ(x)/x→ 1 as x→∞. (7)

One might be tempted to conjecture that θ(x) ≡ x, but this is typically not the
case.

Lemma 2. θ(x) satisfies θ(x) = E[D(D−1(x))] ≥ x for all x > 0. If Property 1
holds then θ(x) − x→ E[V ] as x → ∞.

In general E[V ] can be either finite or infinite. Lemma 2 holds in either case.
Note that D(D−1(x)) ≥ x by definition.

Intuitively, the fact that θ(x) > x can be explained as follows. If we are told
that D(τ) = d then we know that D(t) lands on d rather than jumping over d.
This fact increases the expected length of time that D(t) spends in the interval
[d, d+ δ), δ > 0.

2Theorem 3.3 (p. 42). Hida’s d{n(u)} is our d{−ψ+(u)}. His X(t, ω) +
R∞
0

t u
1+u2 d{n(u)} is

our D(t).
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The overshoot D(D−1(x))− x is the amount by which a Levy demand process
over-shoots a given value x. The expectation of the overshoot is θ(x) − x . Note
that many inventory models, including those of Zheng and Hadley and Whitin,
assume that there is no overshoot, so θ(x)− x is equal to zero for all x. Lemma 2
describes the expectation of the overshoot. The following lemma allows us to
interpret V as the asymptotic distribution of the overshoot.

Lemma 3. If Property 1 holds then P (D(D−1(x)) − x > u) →
∫∞
u ψ+(z) dz =

F̄V (u) as x → ∞.

Equation (3) and the integration by parts formula imply that FV (z) = FJ (z)+
z·ψ+(z) > FJ (z) and E[J ] = 2·E[V ]. The means are finite if

∫∞
0
x ψ+(x) dx <∞.

Thus the asymptotic overshoot V is stochastically smaller than the weighted jump
size J , and has a mean that is half of the mean of the weighted jump size.

The Laplace transform of θ(x) is

Lθ(γ) ≡
∫ ∞
x=0

e−γ·x d{θ(x)} = γ

∫ ∞
x=0

θ(x) e−γ·x dx

= γE

∫ ∞
x=0

D−1(x) e−γ·x dx = γ E

∫ ∞
x=0

(∫ ∞
t=0

1(D(t)≤x) dt
)

e−γ·x dx

=
∫ ∞
t=0

E

(∫ ∞
x=0

1(D(t)≤x) γ e−γ·x dx
)

dt =
∫ ∞
t=0

(
E e−γD(t)

)
dt

=
∫ ∞
t=0

LD(t)(γ) dt =
∫ ∞
t=0

[LD(1)(γ)]t dt =
−1

ln[LD(1)(γ)]
· (8)

The last two equalities follow from (4) and (5).

The gamma-distributed Levy demand process

We now turn our attention to a specific Levy demand process.

Definition 2. The gamma-distributed Levy process is the Levy demand process
D*(t) for which D*(1) has an exponential distribution with mean one.

Note that D*(t) has a gamma distribution with shape parameter t and rate
parameter 1. This is without loss of generality; in continuous-time inventory
models we can choose our units of measure for time and inventory so that the
demand that occurs in one day has a mean of 1 and a variance of 1. This process
is not a new one (see, for example, Prabhu [22] and Feller [11], p. 567). Note that

LD*(t)(γ) =
1

(1+γ)t
· (9)
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Lemma 4. For the gamma-distributed Levy demand process D*(t),

ψ+(x) =
∫ ∞
x

e− y

y
dy and (10)

θ′(x) =
∫ ∞
t=0

xt−1

Γ(t)
e−x dt, (11)

where θ′(x) is the derivative of θ(x), and θ(0) = 0.

For the gamma-distributed Levy process, the weighted jump size J has an ex-
ponential distribution (see (10) and (3)). The graph of ψ+(x) in Figure 1 indicates
that orders for small quanitites of inventory occur much more often than orders
for large quantities, but there is no finite upper bound on the maximum order
quantity. By Lemma 3 the same can be said for the overshoot quantities.
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Figure 1. ψ+(x).
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Figure 2. θ(x) − x.

A graph of θ(x)−x appears in Figure 2. From (10) we obtain E[V ] = 1/2, so by
Lemma 2, θ(x) − x → 1/2 as x → ∞. Suppose that x > 0.3. Figure 2 indicates
that even though the mean demand rate is equal to one, from a given starting
point, the expected amount of time required to accumulate an additional x units
of demand is between x+ 0.4 and x+ 0.5.



OPTIMAL (S,S) INVENTORY POLICIES FOR LEVY DEMAND PROCESSES 45

We now list some other properties of the gamma-distributed Levy processD∗(t).
The presentation of these properties is designed to facilitate the statements of our
lemmas and theorems.

Property 2. θ(0+) = 0. θ(x) is non-decreasing and absolutely continuous. θ′(x)
is non-increasing.

Property 3. θ(x) is continuous, and θ′(x) → 1 as x → ∞.

Property 4. θ(x) > x · θ′(x) for all x > 0.

Property 5. θ′(x) is continuous.

Property 6. For all x > 0 there is a y, 0 < y < x such that θ′(y) > θ′(x).

Lemma 5. Properties 1 through 6 hold for D∗(t).

Note that the first claim of Property 2 implies that D(t) is not a compound
Poisson process.

The Mass-Uniform policy, which we develop in Section 4, makes use of the
following function.

η(x) ≡
∫ x

0

z · [θ′(z)− 1] dz. (12)

Lemma 6. For the gamma-distributed Levy process, η(x) → 1/12 as x → ∞.

In optimizing and evaluating (s, S) inventory policies for the gamma-distributed
Levy process, the functions θ(x), θ′(x) and η(x) are frequently used. They were
tabulated using numerical integration, and numerically approximated. The ap-
proximations are given in Appendix 2. Let IP have the same distribution as
the steady-state inventory position. In the next section we will need to com-
pute E[f(IP )] =

∫Q
0 f(S − x) θ

′(x)
θ(Q) dx numerically for several different functions

f(x). The functions f(x) of interest are well-behaved, but the probability mea-
sure θ′(x)

θ(Q) dx is ill-behaved in the neighborhood of x = 0. In fact, for the gamma-
distributed Levy process, θ′(x) · x (ln(x))2 → 1 as x → 0. Table 1 gives some
values of the probability density θ′(x)

θ(Q) for Q = 1. A transformation described in
Appendix 2 was used to perform these integrations in a numerically stable manner.

Table 1. The density θ′(x)/θ(1).

x 1 e − 10 1 e − 8 1 e − 6 1 e − 4 0.01 0.1 1

θ′(x)/θ(1) 1.3 e+7 2.1 e+5 3.8 e+3 85.9 3.4 1.12 0.70
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3. The inventory model

We now turn our attention to (s, S) inventory policies. We consider a continuous-
review, single-item inventory system with backorders and with a deterministic lead
time L. There is a fixed ordering cost K > 0 (in dollars), a holding cost h (in
dollars per item per day), and a time-weighted backorder cost p (in dollars per
item per day). We choose our units of measure so that the demand D(1) that
occurs in one day has a mean and a variance of one. Let D be a random variable
whose distribution matches the demand that occurs in one lead time. Thus

D ∼ D(L) and E[D] = L.

The minimum order quantity is Q = S − s. For Levy demand processes orders
come in irregular quantities because we usually over-shoot the reorder point. For
the gamma-distributed Levy process the actual order quantity is strictly greater
than Q with probability one.

Let NI(t) be the net inventory at time t and let IP (t) ≡ NI(t+L)+D(t, t+L]
be the inventory position at time t. IP (t) and NI(t) are right-continuous. They
have steady-state distributions FIP (z) and FNI(z), where NI ≡ IP − D, and
D and IP are independent (Zipkin [33]). Since θ(x) is equal to the mean time
required for x units of demand to accumulate after an order is placed, P (IP ≥
S − x) = θ(x)/θ(Q), 0 ≤ x ≤ Q . The average order quantity and the mean
time between orders are both equal to θ(Q). The quantity θ(Q)−Q , referred to
in Figure 2, is the mean quantity by which the demand process overshoots the
reorder point.

Recall that E[D] = L. If the inventory position at time t is IP (t) = x then
the expected rate at which holding and backorder costs will be incurred at time
t+ L is

G(x) ≡ E[h(x−D)+ + p(D − x)+] = h(x− L) + (h+ p) · nD(x) (13)

where nD(x) = E[(D − x)+] is the partial expectation. Note that G(x) is contin-
uous and convex, and that

−p ≤ G′(x) ≤ h,G′(x) → h as x → ∞, and G′(x) → −p as x → −∞. (14)

Let

w ≡ sup{x : G′(x) < h} ·

If D has a gamma distribution then w =∞ and the following properties hold.

Property 7. G(x) is convex, is strictly convex for 0 < x < w, and G′(x) < 0 for
x < 0.

Property 8. G′(x) is continuous, and G′′(x) is continuous except possibly at
x = 0.
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Following Zheng [32] and Zipkin [33], the expected holding and backorder cost
per cycle incurred by an (s, S) policy with Q = S − s is

H(S,Q) ≡ θ(Q) ·E[G(IP )] =
∫ Q

0

G(S − x)θ′(x) dx. (15)

The average cost per day incurred by an (s, S) policy is therefore

c(S,Q) =
K +H(S,Q)

θ(Q)
· (16)

Following the notation in (15), we define

H ′(S,Q) ≡
∫ Q

0

G′(S − x) θ′(x) dx (17)

H ′′(S,Q) ≡
∫ Q

0

G′′(S − x) θ′(x) dx and (18)

E(S,Q) ≡ θ(Q) ·G(S −Q)−K −H(S,Q). (19)

The first-order optimality conditions are

0 = θ(Q) · ∂ c(S,Q)
∂ S

= H ′(S,Q) and (20)

0 =
θ(Q)
θ′(Q)

· ∂ c(S,Q)
∂ Q

= G(S −Q)− c(S,Q) =
E(S,Q)
θ(Q)

· (21)

Note that (21) states that G(S−Q) is the average cost, which corresponds exactly
with Zheng [32]. Zheng’s other optimality condition isG(S−Q) = G(S), a simpler,
special case of (20).

Lemma 7. Suppose that S is chosen optimally for a given Q > 0. Properties 2
and 3 imply that G(S −Q) ≥ G(S) ≥ G(S −Q)− h · [θ(Q)−Q ]. If Properties 4
and 7 also hold then G(S −Q) > G(S).

Recall that θ(Q) − Q → E[V ] as Q → ∞. We claim that if S is chosen
optimally for a given Q then

G(S −Q)−G(S) → h ·E[V ] as Q → ∞.

If S and Q are large then (20), Properties 2 and 3, equation (14), and Lemma 2
indicate that G(S − Q) = G(S) +

∫ Q
0 G′(S − x)[θ′(x) − 1] dx ≈ G(S) +

∫Q
0 h ·

[θ′(x) − 1] dx = G(S) + h · [θ(Q) −Q ] ≈ G(S) + h · E[V ]. A rigorous argument
can be constructed along similar lines.

We define y0 by

G′(y0) = 0. (22)
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G(y0) is often referred to as the newsvendor cost or the buffer cost, because when
the order cost is equal to zero the optimal policy has Q = 0 and S = y0, and
G(y0) is the average cost of that policy.

By the convexity of G(x) and by (20), S ≥ y0 ≥ S −Q.

Lemma 8. Suppose that S is chosen optimally for a given Q > 0. If Properties 7
and 8 hold then

S > y0 > S −Q. (23)

If Property 2 also holds, the solution to the first-order optimality
conditions (20, 21) is unique.

Algebraically the first-order optimality conditions are most conveniently ex-
pressed in terms of S and Q. However cost minimization is most efficiently carried
out in terms of s ≡ S −Q and S. Let C(s, S) ≡ c(S, S − s). Then

∂ C(s, S)
∂ S

=
∂ c(S,Q)
∂ S

+
∂ c(S,Q)
∂ Q

∣∣∣∣
Q=S−s

and
∂ C(s, S)

∂ s
= − ∂ c(S,Q)

∂ Q

∣∣∣∣
Q=S−s

·

(24)

By (21) and (24),

∂2C(s, S)
∂s∂S

=
(
∂

∂S
+

∂

∂Q

)(
−∂c(S,Q)

∂Q

) ∣∣∣∣
Q=S−s

=
θ′(Q)
θ(Q)

[
∂ c(S,Q)
∂ S

+
∂ c(S,Q)
∂ Q

]
+ [ c(S,Q)−G(S −Q)]

[
∂

∂ Q

(
θ′(Q)
θ(Q)

)] ∣∣∣∣
Q=S−s

, (25)

which is equal to zero whenever the first-order conditions are satisfied. This fact
suggests that if we alternate Newton steps in s and S, we are likely to get overall
quadratic convergence. What we actually do is similar, and it works for the same
reason, but the algebra is somewhat simpler. We alternate between Newton steps
in S which attempt to find a zero of H ′(S, S − s) in (s, S)-space, and Newton
steps in s which attempt to find a zero of E(S, S − s) in (s, S)-space. Because the
Newton steps are performed in (s, S)-space rather than (S,Q)-space, the derivative
of H ′(S, S − s) with respect to S and the derivative of E(S, S − s) with respect
to s are computed as in (24). The algorithm for systems with discrete demands
described by Federgruen and Zheng [7] is similar in that it also alternates between
improvements in s and improvements in S.

Cost minimization algorithm

Step 1. Select an initial policy (s, S).

Step 2. Set s′ ← s− E(S,S− s)
G′(s) θ(S− s) ·
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Step 3. Set S′ ← S − H′(S,S−s′)
H′′(S,S−s′)+G′(s′) θ′(S−s′) ·

Step 4. Set s ← s′ and S ← S′.

Step 5. Either terminate or go to Step 2.

Lemma 9. The Cost Minimization Algorithm is quadratically convergent if
Properties 2, 7 and 8 hold, and if θ(x) is twice continuously differentiable in
a neighborhood of the optimal Q.

The proofs of Lemmas 7 through 9 assume that D and θ(x) have certain prop-
erties, but they do not assume that they are related to a common Levy demand
process in the sense of Section 2. In particular, if we assume that θ(x) ≡ x and
allow D to be arbitrary, Lemmas 7 through 9 hold. Under these assumptions
our computation of (s, S) policies corresponds exactly with Zheng’s computation
of (R,Q) policies. The Cost Minimization Algorithm is therefore quadratically
convergent for Zheng’s (R,Q) policies, if Properties 7 and 8 hold.

Service levels

We conclude this section by discussing service levels. In discrete time inventory
models the Type 1 Service Level is defined as the probability that a time period
ends without any backorders. The continuous-time analogue is P [NI ≥ 0], the
fraction of the time that the net inventory is non-negative. The Type 2 Service
Level is the fill rate, the fraction of the demand that is met without backorders. In
many continuous-time inventory models, including that of Zheng [32], these two
service measures are equivalent. However they are not equivalent for Levy demand
processes.

We compute the Type 1 Service Level P [NI ≥ 0] as follows. By (13), G′(x) =
h− (h+ p)F̄D(x). Hence

H ′(S,Q) ≡
∫ Q

0

G′(S − x) θ′(x) dx

= h · θ(Q)− (h+ p)
∫ Q

0

F̄D(S − x) θ′(x) dx

= θ(Q) [h− (h+ p)P [D > IP ]]

= θ(Q) [h− (h+ p)[1− P [NI ≥ 0]] .

We have proven the following lemma, which is reminiscent of Zheng’s fill-rate
formula.

Lemma 10. In (s, S) policies for Levy demand processes,

P[NI ≥ 0] =
p

p+ h
+

H ′(S,Q)
(h+ p) θ(Q)

,

which is equal to p/(p+ h) for an optimal policy.
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Lemma 11. For Levy demand processes, the fill rate of an (s, S) policy is

1− E
[
(J − (IP −D)+)+/J

]
where J is the weighted jump size (see Lem. 1), and J , IP , and D are
independent.

Lemma 11 can be explained intuitively as follows. Suppose that a demand
of size D(t) − D(t−) occurs at time t. At time t− the on-hand inventory is
[IP (t− L)−D(t− L , t−)]+. The number of units ordered at time t, but not
delivered to the client at time t, is{

[D(t)−D(t−)] −
[
IP (t− L)−D(t− L , t−)

]+}+

· (26)

Note that the random variables [D(t) − D(t−)], IP (t − L) and D(t − L , t−)
are stochastically independent. D(t − L , t−) ∼ D, IP (t − L) has steady-state
distribution FIP (z), and the weighted jump size satisfies [D(t)−D(t−)] ∼ J (see
Lem. 1). Thus the steady-state version of (26) is the formula in Lemma 11.

It is interesting to compare these two service measures, P (NI > 0) and the
fill rate. Note that 1(NI≤0) ≤ (J − NI+)+/J ≤ 1(NI≤J). If β is the fill rate
then taking expectations leads to P(NI > 0) ≥ β ≥P(NI > J). If either the
lead time L or the order quantity Q is sufficiently large, the standard deviation of
NI = IP−D will be large relative to the jump size J , and P (NI > J)−P (NI > 0)
will be close to zero.

On the other hand these two service measures can be very far apart. Suppose
that the order cost K, the order quantity Q, the lead time L and the order-up-to
level S are all very small. Then the jump size J will be large relative to NI, and
it is possible for P (NI < 0) to be close to zero and E[(J −NI+)+/J ] to be close
to one. This would correspond to a “veneer inventory” policy, in which only very
small orders can be filled from stock. A large fraction of the total demand comes
in large orders that must be backordered. The backorder costs are time-weighted
and the lead time is assumed to be short relative to the average delay between
consecutive large orders. Therefore the average backorder cost incurred is small,
and the policy can be economical.

For the gamma-distributed Levy process, the computation of the fill rate re-
quires a two-dimensional numerical integration, assuming that FD(x) is evaluated
using efficient approximations.

4. Policies: Description and analysis

We consider four different policies for this problem, two policies that are based
on the classical Hadley–Whitin inventory model, the (s, S) policy whose param-
eters are taken from Zheng’s (R,Q) policy, and a new policy designed for Levy
Jump Processes that we call the Mass Uniform Policy.
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The Hadley–Whitin inventory model is currently the mainstay of introductory
inventory courses. It differs from our inventory model (and from Zheng’s) in that
it uses a cost of p̂ dollars per item for backorders, rather than p dollars per item
per day. The change in units of measure complicates direct comparison of the
models. We will compare them by following the common practice of using service
level targets to determine the backorder costs.

In discussing the Hadley–Whitin model we use λ = 1 to represent the mean rate
at which demand occurs. The Hadley–Whitin cost function for an (s, S) policy
with Q = S − s is

Kλ/Q + h (Q/2 + s− λL) + (p̂ λ nD(s))/Q (27)

(see, for example, Nahmias [21], p. 258). If the demand process can over-shoot
the reorder point, the first term is an approximation. The second and third terms
are also approximations. The third term over-states the marginal benefit of an
extra unit of safety stock and the second term over-states the marginal cost of
an extra unit of safety stock. Although this cost expression never has a global
minimum (let Q > p̂λ/h and let s → −∞), it usually has an easily-computed
local minimum that corresponds to a very effective policy. However when K (and
consequently Q) is sufficiently large, the error in the holding cost term dominates
and (27) fails to have a local minimum.

There are two standard computational approaches to this model – the cost min-
imization approach and the service-constrained approach. The cost-minimization
approach attempts to minimize (27) directly. The service-constrained approach
searches for a policy that meets a specified service target, and that is optimal for
some p̂. We lack a backorder cost p̂, but we know that for optimal policies, the
fraction of time that we have inventory on hand is equal to p/(p+h). According the
Hadley–Whitin model this is equivalent to the fill rate, and is equal to 1−nD(s)/Q.
So we follow the standard service-constrained approach and obtain a policy such
that

1− nD(s)/Q = p/(p+ h). (28)

Setting the derivative of (27) with respect to s equal to zero, we obtain

h− p̂ λ

Q
F̄D(s) = 0. (29)

Similarly, the value of Q at a local minimum of (27) must be

Q =
√

2(K + p̂ nD(s))λ/h . (30)

Substituting (30) into (27) we obtain an average cost of√
2h(K + p̂ nD(s))λ + h(s− λL ). (31)
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The derivative of (31) with respect to s converges to h > 0 as |s| → ∞. If the
derivative ever becomes negative, the supremum of all s for which the derivative is
negative is a local minimum of (27). The corresponding policy satisfies (29), and
the policy can be obtained through either the cost-minimization approach or the
service-constrained approach. However the derivative of (31) may never become
negative, in which case the cost minimization approach will fail to produce a policy
(in (29), hQ/p̂λ > 1). The service-constrained approach is more robust. It never
fails to produce a policy which meets the target service level, and it produces
policies which cannot be obtained using the cost-minimization approach.

We study two policies that are based on the Hadley–Whitin model. Our first
policy, called HW-COST, is the standard service-constrained algorithm (see, for
example, Nahmias [21], pp. 263-264). We eliminate p̂ from (29) and (30), and the
resulting equation is solved together with (28). This algorithm fails only when
h ≥ p. The standard cost minimization algorithm, which is equivalent when it
works, but which works less often, is as follows. Guess at p̂ and find the local
minimum of (27). Then search for a p̂ such that the computed policy satisfies
1− nD(s)/Q = p/(p+ h). It may be that 1− nD(s)/Q > p/(p+ h) for all values
of p̂ for which (27) has a local minimum. In that case we say that HW-COST
has failed, meaning that to obtain the desired service measure we would need to
make p̂ small enough that (27) would not have a local minimum. We compute
and evaluate the policy whether this happens or not.

Our second policy, called HW-EOQ, is the common approach of using the EOQ
model to select Q and using the service target to select s. Thus Q =

√
2K λ/h

and s is selected so that (28) holds (see, for example, Nahmias [21], p. 262). If
s ≥ 0 then (29) gives an imputed p̂. If s < 0 we say that HW-EOQ has failed. In
this case, if Q =

√
2K λ/h then the standard cost-minimization algorithm will

fail (hQ/p̂ λ > 1 in (29)), and all values of p̂ for which (28) has a local minimum
yield policies with service levels that are higher than the target.

Our third policy, called ZHENG, is the (s, S) policy whose parameters are taken
from Zheng’s (R,Q) policy (Zheng [32]). The policy is computed using the Cost
Minimization Algorithm with θ(x) ≡ x.

Our fourth policy is called the Mass Uniform policy, or MASS-U. For a given
Q > 0 we approximate θ(x) with a function µ(x) defined as follows.

q(Q) ≡
∫ Q

0

(
θ′(x) − θ′(Q)

)
dx = θ(Q)− Q · θ′(Q),

a(Q) ≡ 1
q(Q)

∫ Q

0

x · [θ′(x) − θ′(Q)] dx =
[
η(Q)− 1

2
Q

2 (
θ′(Q)− 1

)]
/q(Q),

µ(x) ≡ θ′(Q) · x + q(Q) · 1(x≥a(Q)) . (32)

The dependence of µ(x) on Q is suppressed. The measure µ(x) takes the area that
lies under the curve θ′(x), 0 ≤ x ≤ Q and above θ′(Q), and concentrates it into
a mass of size q(Q) located at x = a(Q) (see Fig. 3). a(Q) is chosen to equalize
the first moments of the measures θ′(x) dx, 0 ≤ x ≤ Q and d{µ(x)}, 0 ≤ x ≤ Q .
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Figure 3. The mass uniform policy.

Since [θ′(x)− θ′(Q)]/q(Q), 0 ≤ x ≤ Q is a probability density, equation (32) and
Properties 2 and 6 imply that

0 < q(Q) and 0 < a(Q) ≤ Q/2 for all Q > 0. (33)

If we use d{µ(x)} in place of θ′(x) dx, and if Q ≥ a(Q), then (16) becomes

cQ(S,Q)≡
[
K+q(Q) ·G(S−a(Q))+ θ′(Q)

∫ Q

0

G(S−x) dx

]
/
[
q(Q)+Q · θ′(Q)

]
.

(34)

Consider the optimization problem

(PQ) min: cQ(S,Q)

such that: Q ≥ a(Q).

Let S(Q) and Q(Q) solve (PQ), and suppose that a(Q) < Q(Q). Lemma 9 implies
that the Cost Minimization algorithm converges quadratically to (S(Q), Q(Q)).
The Cost Minimization Algorithm is easily adapted to solve (PQ).

To compute the Mass Uniform policy we select a Q and we use the Cost Mini-
mization Algorithm with appropriate modifications to solve (PQ). We iteratively
adjust Q to make Q = Q (Q). The approximations in Appendix 2 are helpful.
Unlike the computation of optimal policies, equation (32) allows us to avoid nu-
merical integrations. The following lemma guarantees that the approach works.
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If we use d{µ(x)} in place of θ′(x) dx, and if Q ≥ a(Q), then (16) becomes

cQ(S,Q)≡
[
K+q(Q) ·G(S − a(Q))+ θ′(Q)

∫ Q

0

G(S−x) dx

]
/
[
q(Q)+Q · θ′(Q)

]
.

(35)

Consider the optimization problem

(PQ) min: cQ(S,Q)

such that: Q ≥ a(Q).

Let S(Q) and Q(Q) solve (PQ), and suppose that a(Q) < Q(Q). Lemma 9 implies
that the Cost Minimization algorithm converges quadratically to (S(Q), Q(Q)).
The Cost Minimization Algorithm is easily adapted to solve (PQ).

To compute the Mass Uniform policy we select a Q and we use the Cost Mini-
mization Algorithm with appropriate modifications to solve (PQ). We iteratively
adjust Q to make Q = Q (Q). The approximations in Appendix 2 are help-
ful. Unlike the computation of optimal policies, equation (32) allows us to avoid
numerical integrations. The following lemma guarantees that the approach works.

Lemma 12. Assume that Properties 2, 3, 5, 6, 7 and 8 hold and that Q > 0. The
optimal solution (S(Q), Q(Q)) of (PQ) is the unique solution of the first-order
optimality conditions for (PQ). S(Q) and Q(Q) are continuous functions of Q. If
Q is sufficiently large then Q > Q(Q), and if Q > 0 is sufficiently small then
Q < Q(Q).

The relative cost of a policy is defined to be (c′− c∗)/c∗ where c′ is the average
cost of the policy and c∗ is the average cost of an optimal policy. Optimal policies
are computed using use the Cost Minimization Algorithm.

Lemma 13. The relative cost of Zheng’s policy is at most
min

{
θ(Q)−Q

Q+G(y0)/p ,
h+p
p

[ θ(Q)−Q ]2+η(Q)
Q2

}
, where Q = S − s is the optimal order

quantity (not Zheng’s order quantity).

For the gamma-distributed Levy process, θ(Q) − Q → E[V ] = 1/2 and
η(Q) → 1/12 as Q → ∞, so the relative cost of Zheng’s policy is at most
min

{
0.5

Q+G(y0)/p , h+p
p

1
3 Q2

}
.

Note that G(y0) → 0 as L → 0, and G(y0) → ∞ as L → ∞. The bound
of Lemma 13 implies that if L > ε > 0 then Zheng’s policy works very well
as Q → 0, as Q → ∞ and as L → ∞ . However there is no uniform, finite
upper bound on the relative cost of Zheng’s policy (proof omitted), and the trends
illustrated by this bound are similar to the computational results of Section 5.
If the lead time is zero or close to zero, and the order cost K is small, Zheng’s
policy can be far from optimal. This statement probably applies to all existing
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Figure 4. The relative cost of the mass uniform policy.

continuous-time (s, S) inventory models which assume the inventory position to
be uniformly distributed.

Lemma 14. The relative cost of the Mass Uniform Policy (S,Q) is at most
h+p
p B(Q), where

B(Q) ≡ 1
Q · θ(Q)

∫ Q

0

x · (θ′(x)− θ′(Q)) dx =
q(Q) · a(Q)
Q · θ(Q)

·

For the gamma-distributed Levy process, the function B(Q) is graphed in Figure 4.
Since B(Q) achieves its maximum value of 0.0527 at Q = 0.0307, the relative cost
of the Mass Uniform policy is at most 0.0791 if p/h ≥ 2. Since B(1) = 0.0235,
the relative cost of the Mass Uniform policy is at most 0.0353 if p/h ≥ 2 and
Q ≥ 1.

5. Computational results

The main purpose of our computational study is to use the gamma-distributed
Levy process as a vehicle for testing the robustness of the (s, S) inventory policies
described in Section 4. The bound in Lemma 14 is strong enough that MASS-U
does not need computational validation, but the performance that can be expected
of the other policies is less certain. In addition we want to gain intuition into
the nature of optimal policies for the gamma-distributed Levy process and to
explore the importance of modelling the overshoot and the non-uniformity of the
distribution of the inventory position.

As has been mentioned before, we scale our units of measure for time and
inventory so that the demand which occurs in one time period has a mean and
a variance of one. In this section we select our unit of measure for money so
that the holding cost is h = 1. The fact that we re-scaled out units of measure
alters the intuitive meaning of the remaining parameters. The backorder cost p
is interpreted as a measure of service. Lemma 10 implies that 1/(1 + p) is the
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fraction of time that we are out of stock. L can be thought of as a measure of
the variability of the demand that occurs in one lead time. In particular, D has a
squared coefficient of variation of 1/L . The order cost K is a prime determinant
of the minimum order quantity Q. We define the reorder interval to be Q , the time
interval corresponding to the minimum order quantity. The squared coefficient of
variation of the demand that occurs in a reorder interval is 1/Q .

Application range

As a vehicle for interpretating our results we define the “application range”,
a domain of the parameter space in which most real-world applications of (s, S)
inventory systems lie. Since this is primarily based on personal experience it is
bound to be somewhat controversial. In our experience lead times can be long
or short, so all lead times are included in the application range. Most inventory
systems operate with at least moderately high service levels, so for membership in
the application range we require p ≥ 3 (the system is out of stock at most 25% of
the time; see Lem. 10).

We define the order costs that lie in the application range indirectly, through the
order quantities Q. In our experience most large and moderately large inventory
systems have a substantial number of items which experience spikey or sporadic
demand. For these items the squared coefficient of variation of the demand that
occurs in Q days is often very high. Maintaining inventories for these products
tends to be very expensive. In a great many cases distribution systems should be
re-designed to eliminate the need to inventory these parts, but this is not always
possible. Our application range is intended to include some parts of this type, but
not all of them.

We considered the following criteria for an order quantity that falls within the
application range. First, the mean order quantity is at most twice the minimum
order quantity, i.e., θ(QZ) ≤ 2QZ , where QZ comes from ZHENG. (This translates
into QZ ≥ 0.444 . Taking Q from HW-COST or HW-EOQ gives results that are
comparable, but somewhat different.) Second, the demand that occurs inQZ days
has a squared coefficient of variation of at most 2. (This translates into QZ ≥ 0.5.)
Third, the demand that occurs in θ(QO) days has a squared coefficient of variation
of at most 2, where QO comes from the optimal policy. (This translates into
QO ≥ 0.134. Taking Q from MASS-U gives nearly identical results.)

In the context of our computational studies these three criteria turned out to
be nearly equivalent. We chose the first one. Thus a problem instance is said to
fall within the application range if p ≥ 3 and if QZ ≥ 0.444, where QZ comes from
ZHENG.

Results

Figure 5 illustrates how the relative order quantities change as the order cost
decreases. For K ≥ 0.25 it appears that the Q values for ZHENG approximate
the optimal value of θ(Q). This trend has intuitive appeal because the average
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order quantity is θ(Q) for these processes, and it is Q in Zheng’s paper. However
the trend breaks down for smaller order quantities. Qualitatively, HW-COST and
HW-EOQ behave similarly to ZHENG, MASS-U behaves like the optimal policy,
and the backorder cost and the lead time have little or no impact.

Figure 6 illustrates the fact that the relative cost of ZHENG matches the qual-
itative behavior of the theoretical bound in Lemma 13. ZHENG, HW-COST and
HW-EOQ all have have unbounded relative cost for L = 0 and K ≈ 0. This is
true of all policies for which, if we set L = 0, Q /

√
2Kλ/h fails to converge to

0 as K → 0, including both HW-COST and HW-EOQ. For a fixed L > 0 the
relative cost of these three policies (and most other (s, S) policies in the literature)
converges to 1 as K → 0.

These observations can be explained as follows. Because of the non-uniformity
of the distribution of the inventory position, in optimal policies the order-up-to
level S is closer to y0 than it otherwise would be. As K gets small this trend
becomes more pronounced. In addition, the expected overshoot grows relative to
the minimum order quantityQ, effectively reducing the average order cost incurred
per day. Figure 5 confirms this by showing that for ZHENG, Q is too large when
the order costs are small. If the lead time is zero or very small these errors can be
very costly. On the other hand, if the lead time is positive then the costs of all of
these policies converge to the Newsvendor Cost G(y0) as K → 0, so the relative
cost tends to 0.

Our main computational experiment used all combinations of order costs K =
0.0625, 0.25, 1, 4, 16, 64, 256, 1024, 4096, 16384, backorder costs of p = 1, 2,
4, 8, 16, 32, 64, 128, 256, 512, and lead times L = 0, 0.0625, 0.25, 0.5625, 1,
1.5625, 2.25, 3.0625, 4, 5.0625. Since the HW-COST algorithm does not work for
p ≤ h = 1, we substituted p = 1.2 for p = 1 for the HW-COST policy. In all
1 000 parameter sets were tested. Of the 1 000 parameter sets, 792 are inside of
the application range. 200 parameter sets have backorder costs p that are less
than 3. For 9 parameter sets ZHENG produces Q values that are less than 0.444,
and both of these criteria apply to one parameter set. Note that Figure 6 includes
data sets with smaller order costs than our main experiment, but only for p = 10.

Table 2 summarizes the results. MASS-U consistently out-performs the theo-
retical bound given by Lemma 14, usually by a very substantial margin. It was
never more than 3.2% from optimal, and its average relative cost was negligible.
On average ZHENG was only 1.3% from optimal, but it was off by as much as 52%,
and within the application range it was off by as much as 20.6%. Both HW-COST
and HW-EOQ perform well on average, but within the application range they both
had maximum relative costs of over 27%. If we had defined the applicaiton range
via QZ ≥ 1 rather than QZ ≥ 0.444 the maximum relative costs would have been
much smaller.

Our main computational experiement contains 1 000 parameter sets, but the
gaps between parameter values are still large enough to make the maximum errors
reported in Table 2 unreliable. For example, in the experiment that generated the
data for Figure 6 we included the parameter set K = 0.125, L = 0, p = 10. This
parameter set falls within the application range (Q = 0.52), and it has relative
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Figure 5. Comparison of order quantities.

costs of 40% for HW-Cost, 40% for HW-EOQ, and 33% for Zheng. These numbers
are substantially larger than the maximum errors reported in Table 2.

Even within the application range the cost-minimization versions of HW-COST
and HW-EOQ fail for over 33% of the parameter sets, because the cost function
does not have a local minimum.

Tables 3, 4 and 5 illustrate the combinations of parameters that cause problems
for the different policies. Because MASS-U is uniformly very effective no tables
were produced for it. The cost-minimization versions of HW-COST and HW-
EOQ fail often, both in and out of the application range, especially for larger
order costs K, lower backorder costs p, and lower lead times. The HW-COST
policy is more than 20% from optimal only when the backorder cost is outside
of the application range (p < 3), or when both the order cost and the lead time
are small. Relatively speaking, HW-EOQ has more trouble when both the order
cost and the lead time are small, and is more robust with small backorder costs.
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Figure 6. Relative costs of the Zheng policy.

ZHENG is more robust than either of the others, but both inside of the application
range and outside of it, Zheng’s policy has trouble when both the order cost and
the lead time are small.

The errors that occur when both the order cost and the lead time are small were
explained when we discussed Figure 6. Both the order quantity and the relative
cost of the HW-COST policy grow without bound as p approaches h = 1. With
p = 1.2, HW-COST clearly had problems.



60 R.O. ROUNDY AND G. SAMORODNITSKY

Table 2. Relative costs of the policies.

Relative Cost = (Policy Cost) / (Opt. Cost) −1
HW-Cost HW-EOQ ZHENG MASS-U

All Test Problems
Mean 0.077 0.051 0.013 9.2E-05
St. Dev. 0.166 0.111 0.057 0.001
Max 1.820 0.929 0.523 0.032
% Heur. Fails 0.452 0.411
In the Application Range (79% of total)
Mean 0.017 0.030 0.006 4.9E-06
St. Dev. 0.031 0.061 0.023 4.5E-05
Max 0.275 0.392 0.206 0.001
% Heur. Fails 0.343 0.337
When Q ≥ 1 and p ≥ 3
Max 0.128 0.096 0.070 0.000
When the Heuristic does Not Fail
Mean 0.025 0.066
St. Dev. 0.045 0.127
Max 0.404 0.929

As Figure 7 illustrates, the ratio of the relative cost of the ZHENG policy to
the bound in Lemma 13 is usually much less than one. But in our tests, when
the order cost is 16 or more the arithmetic difference between the bound and the
relative cost of the policy is at most 1%. Lemma 14 gives a bound on the relative
cost of the MASS-U policy. The ratio of this bound to the relative cost of the
MASS-U policy is less than 6 in only 2 of the 1 000 parameter sets in the test.
Usually it is much higher. However the arithmetic difference between the bound
and the relative cost of the policy is never more than 5.2%, and is usually much
smaller (see Fig. 7).

Table 6 gives the CPU time per problem instance, in seconds. All policies re-
quiring an initial guess were started from the HW-EOQ policy. For Zheng’s policy
we used the Cost Minimization Algorithm, which is faster than the algorithm that
Zheng proposed. All of the policies have very low computation times except for
the optimal policy. The optimal policy requires three numerical integrations for
each iteration of the Cost Minimization Algorithm.
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Table 3. Performance of the HW-cost policy.

The Largest Lead Time for which HW-Cost Fails
Lead Times Tested: 0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06

Order Costs
0.06 0.25 1 4 16 64 256 1024 4096 16384

1.2 0.25 1 All All All All All All All All
Back- 2 0.06 0.25 1 1.6 All All All All All All
order 4 0.06 0.06 0.25 0.56 1 3.1 All All All All
Costs 8 0 0.06 0.06 0.25 0.56 1 3.1 All All All

16 0 0 0.06 0.06 0.25 0.56 1 3.1 All All
32 0 0 0 0.06 0.06 0.25 0.56 1 2.3 All
64 0 0 0 0 0.06 0.06 0.25 0.56 1 2.3
128 0 0 0 0 0 0.06 0.06 0.25 0.56 1
256 0 0 0 0 0 0 0.06 0.06 0.25 0.56
512 0 0 0 0 0 0 0 0.06 0.06 0.25

Note: When the lead time L is equal to zero, the standard cost-minimization
approach leads to a reorder point of 0 and a fill rate of 100%.
Note: In each each row, in the limit as K → ∞, we eventually get ALL.

Lead Times for which HW-Cost has Relative Cost > 20%
Lead Times Tested: 0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06

Order Costs
0.06 0.25 1 4 16 64 256 1024 4096 16384

1.2 All All All All All All All All All All
Back- 2 *0.25 *0.06 None None None None None None None None
order 4 0 0 None None None None None None None None
Costs 8 0 0 None None None None None None None None

16 0 0 None None None None None None None None
32 0 0 None None None None None None None None
64 0 0 None None None None None None None None
128 0 0 None None None None None None None None
256 0 0 None None None None None None None None
512 0 0 None None None None None None None None

Order Mean 2.2 2.4 2.9 4.2 6.9 12.6 24.0 46.6 92.0 183
Quan- Min 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
tities Max 10.1 10.2 10.3 10.9 12.7 17.5 28.2 50.6 95.7 186
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Table 4. Performance of the HW-cost policy.

The Largest Lead Time for which HW-EOQ Fails
Lead Times Tested: 0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06

Order Costs
0.06 0.25 1 4 16 64 256 1024 4096 16384

1 0.06 0.25 0.56 1 2.3 All All All All All
Back- 2 0.06 0.06 0.25 0.56 1.6 3.1 All All All All
order 4 0.06 0.06 0.25 0.56 1 2.3 4 All All All
Costs 8 0 0.06 0.06 0.25 0.56 1 2.3 4 All All

16 0 0 0.06 0.06 0.25 0.56 1 2.3 All All
32 0 0 0 0.06 0.06 0.25 0.56 1 2.3 All
64 0 0 0 0 0.06 0.06 0.25 0.56 1 2.3
128 0 0 0 0 0 0.06 0.06 0.25 0.56 1
256 0 0 0 0 0 0 0.06 0.06 0.25 0.56
512 0 0 0 0 0 0 0 0.06 0.06 0.25

Note: When the lead time L is equal to zero, the standard cost-minimization
approach leads to a reorder point of 0 and a fill rate of 100%.

Lead Times for which HW-EOQ has Relative Cost > 20%
Lead Times Tested: 0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06

Order Costs
0.06 0.25 1 4 16 64 256 1024 4096 16384

1 All ≥ 1 ≥ 4 None None None None None None None
Back- 2 6= 0.06 ≥ 1.56 None None None None None None None None
order 4 6= 0.06 ≥ 5.06 None None None None None None None None
Costs 8 6= 0.06 None None None None None None None None None

16 ≥ 0.25, None None None None None None None None None
≤ 2.25

32 0 None None None None None None None None None
64 0 0 None None None None None None None None
128 0 0 None None None None None None None None
256 0 0 None None None None None None None None
512 0 0 None None None None None None None None

Order Mean 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
Quan- Min 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
tities Max 0.4 0.7 1.4 2.8 5.7 11.3 22.6 45.3 90.5 181
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Table 5. Performance of the Zheng policy.

Lead Times for which Zheng has Relative Cost > 20%
Lead Times Tested: 0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06

Order Costs
0.06 0.25 1 4 16 64 256 1024 4096 16384

1 ≤ 0 ≤ 0 None None None None None None None None
Back- 2 ≤ 0 ≤ 0 None None None None None None None None
order 4 ≤ 0.06 None None None None None None None None None
Costs 8 ≤ 0.06 None None None None None None None None None

16 ≤ 0.06 None None None None None None None None None
32 ≤ 0.06 None None None None None None None None None
64 ≤ 0.06 None None None None None None None None None
128 ≤ 0.06 None None None None None None None None None
256 ≤ 0.06 None None None None None None None None None
512 ≤ 0.06 None None None None None None None None None

Order Mean 0.9 1.4 2.3 3.9 7.0 13.0 25.2 49.7 98.8 197
Quan- Min 0.4 0.7 1.4 2.8 5.7 11.3 22.7 45.3 90.7 181
tities Max 1.2 1.9 3.2 5.3 9.0 16.6 32.3 64.2 128 256

Range of Order Quantities for the Optimal Policy
Lead Times Tested: 0, 0.06, 0.25, 0.56, 1, 1.56, 2.25, 3.06, 4, 5.06

Order Costs
0.06 0.25 1 4 16 64 256 1024 4096 16384

Order Mean 0.5 1.0 1.8 3.4 6.4 12.5 24.7 49.2 98.3 197
Quan- Min 0.1 0.3 0.9 2.3 5.1 10.8 22.1 44.8 90.1 181
tities Max 0.9 1.6 2.8 4.8 8.5 16.1 31.8 63.7 128 256

Table 6

Computation Times: Avg. Seconds per Problem Instance

HW-COST HW-EOQ ZHENG MASS-U Optimal

.027 .007 .076 .069 36.5

Computations done on a 486-based, 50 megahertz PC
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Figure 7. Quality of bounds on the relative cost.

Recommendations

Heuristic policies are usually measured on the quality of the policies that they
produce and on the computational effort that they require. All of the four heuristic
policies studied can be computed very efficiently.
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The standard Hadley–Whitin cost function often fails to have a local minimum.
However the standard algorithms for computing polices with a given fill rate,
Zheng’s policy, and the Mass Uniform policy are all much more robust. When the
service level is reasonably high (p/(p+ h) ≥ 2/3 ), and Q ≥ 1, all of these policies
perform very well.

The main negative result of these tests is that when Q < 1, as it often
is with low-demand parts that experience sproadic or spikey demand, only the
MASS-U policy can be relied on. (Recall that because of the way we scaled time
and inventory, Q should be interpreted as the coefficient of variation of the demand
that occurs in one reorder interval.) Other policies that assume the inventory po-
sition to be uniformly distributed would almost certainly experience similar prob-
lems. If inventory levels are discrete the algorithm of Federgruen and Zheng [7]
should be used. To our knowledge this is the only paper that efficiently computes
good (s, S) inventory policies for systems with continuous inventory levels, that
does not assume the inventory position to be uniform, and that allows the demand
process to over-shoot the reorder point.

6. Conclusions

Levy demand processes are a useful and interesting set of demand processes
for inventory models. Numerical approximations for the distribution of D, of θ,
and/or both will be required. The gamma-distributed Levy process is particularly
attractive, and we have provided the appropriate approximations.

For Levy demand processes the distribution of the inventory position does not
need to be uniform, and the demand process is allowed to over-shoot the reorder
point. Most easily-computed (s, S) inventory policies require the inventory posi-
tion to be uniform and assume that there is no overshoot. Our tests indicate that
when the coefficient of variation of the demand that occurs in the reorder interval
is greater than one, it is important to model the inventory position as non-uniform
and to model the overshoot when it occurs. This is often the case for low-demand
parts that experience sporadic or spiky demand.

As long as the coefficient of variation of the demand that occurs in one re-
order interval is at least one, and the service level is reasonably high, the stan-
dard service-constrained Hadley–Whitin (s, S) inventory polices and Zheng’s policy
work very well. However even in this region it is often the case that the standard
Hadley–Whitin cost function fails to have a local minimum.

The Mass Uniform heuristic applies to all Levy demand processes. For the
gamma-distributed Levy process it is guaranteed to be within 8% of optimal when-
ever backorders are at least as expensive as inventory.

For any Levy demand process, the Cost Minimization Algorithm applies to
Zheng’s (R,Q) inventory model, to the Mass Uniform heuristic and to the com-
putation of optimal policies. The algorithm is quadratically convergent.
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Appendix 1: Notation

a(Q) The location of the point mass associated with the Mass Uniform

policy (see (32)).

B(Q) q(Q)·a(Q)
Q·θ(Q) (see Lem. 14).

c(S,Q) The average cost of the (s, S) policy with S − s = Q (see (16)).

C(s, S) c(S, S − s) , the average cost of an (s, S) policy.

D(t, u) The demand that occurs in the time interval (t, u].

D(t) The demand that occurs in the time interval [0, t].

D D(L), the demand that occurs in one lead time.

E(S,Q) θ(Q) ·G(S −Q)−K −H(S,Q) (see (19)).

η(Q)
R x

0
z · [θ′(z)− 1] dz (see (12)).

FD(x) P (D ≤ x), the cumulative distribution function of the random

variable D.

F̄D(x) P (D > x), the complementary cumulative distribution function

of the random variable D.

G(x) E[h(x−D)+ + p(D − x)+], the expected rate at which holding

and backorder costs are incurred (see (13)).

G(y0) The Newsvendor Cost or the Buffer cost. y0 minimizes G(x) (see (22)).

h The holding cost, in dollars per item per day.

H(S,Q)
R Q

0
G(S − x)θ′(x) dx, the expected holding cost incurred per cycle

(see (15)).

IP (t) NI(t+ L) +D(t, t+ L), the inventory position at time t.

J The Weighted Distribution of the Jump Size (see (3) and Lem. 1).

K The fixed order cost, in dollars.

L The lead time.

LD(γ) E
�
e−γD

�
, the Laplace Transform of the random variable D.

Lθ(γ)
R∞
x=0

e−γ·x d{θ(x)} , the Laplace Transform of the function θ.

λ The demand rate (assumed to be equal to 1).

nD(x) E
�
(D − x)+

�
, the partial expectation of the random variable D at x.

NI(t) The net inventory at time t.

p The backorder cost, in dollars per item per day.

Q The minimum order quantity. Q = S − s.
q(Q) The point mass associated with the Mass Uniform policy (see (32)).

s The reorder point.

S The order-up-to level.

θ(Q) E
�
D−1(Q)

�
, the expected time to accumulateQ units of demand.

θ′(Q) The derivative of θ(Q) (see (11)).

t Used to index time.

V The Asymptotic distribution of the overshoot (see (3) and Lem. 3).

y0 The value that minimizes G(x) (see (22)).
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Appendix 2: Numerical approximations of θ(x) and θ′(x)

In this appendix we describe our approach to the numerical integrations that
are needed to compute an optimal policy. We also give the polynomial approxi-
mations for θ′(x), θ(x) and η(x) for the gamma-distributed Levy process, which
we developed and used.

Numerical integrations

We need to evaluate the integrals
∫Q

0
G(x) θ′(x) dx ,

∫Q
0
G′(x) θ′(x) dx and∫Q

0
G′′(x) θ′(x) dx . Let D∗(t) = D∗(0, t) be the demand that occurs in t days.

D∗(t) has a gamma distribution with rate parameter 1 and shape parameter t.
Let L be the lead time. The functions f(x) that are of interest can be ex-
pressed in terms of the density fD(L)(x), the complementary distribution function
F̄D(L)(x) = P (D(L) > x), and the partial expectation nD(L)(x) = E[(D(L) −
x)+]. We define the partial second moment by n2

D(t)(x) = E{ 1
2 [(D(L) − x)+]2}.

We use the following identities, which apply to gamma demand distributions:
nD∗(L)(x) = LF̄D∗(L+1)(x)−x F̄D∗(L)(x) and n2

D∗(L)(x) = [(L2+L)/2]·F̄D∗(L+2)(x)−
Lx F̄D∗(L+1)(x) + (x2/2) F̄D∗(L)(x).

We evaluate
∫Q

0
G(x) θ′(x) dx as

∫Q
0
G(x) dx +

∫Q
0
G(x) [θ′(x)− 1] dx. The first

of these two integrals is evaluated in closed form using the identity d
dxn

2
D(x) =

−nD(x). This identity also simplifies the computations required for Zheng’s policy.

Integrals of the form
∫ x

0
f(x) [θ′(x)−1] dx are written as

∫ h−1(x)

0
f(h(y)) [θ′(h(y))−

1]h′(y) dy where

h(y) = e(1−1/y) if y ≤ 1, and h(y) = 1− ln(2− y) if 1 ≤ y ≤ 2. (36)

This is numerically advantageous because both [θ′(h(y)) − 1]h′(y), 0 ≤ y ≤ 2
and the interval of integration are bounded. The integrals of G′(x) and G′′(x)
are managed similarly, using the identities d

dxnD(x) = −F̄D(x) and d
dx F̄D(x) =

−fD(x).

Polynomial approximation for θ′(x)

Accuracy: ±0.1%
Algorithm

y = (1− e−3h−1(x))/3 (see (36))
ν = c[x, 0] + c[x, 1]y + c[x, 2]y2 + c[x, 3]y3

θ′(x) = 1 + ν/h′(y) (see (36))
Data
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x Range c[x, 0] c[x, 1] c[x, 2] c[x, 3]

0 < x ≤ 3.25× 10−6 1 3.138513 8.15216 0

3.25×10−6 < x ≤ 0.00027 1.130977 −3.496022 119.1526 −615.058

0.00027< x ≤ 0.0015 0.653346 9.77922 −0.2834 −272.15

0.0015< x ≤ 0.0073 0.619633 10.5112 −4.024 −273.3

0.0073< x ≤ 0.065 −1.44249 58.05855 −370.532 670.977

0.065< x ≤ 0.237 1.142996 16.91995 −152.0991 283.902

0.237< x ≤ 0.79 5.650726 −41.11935 97.60782 −75.0501

0.79< x ≤ 1.0 3.531086 −20.14113 28.72104 0

1.0< x ≤ 1.13 0.2771337 −0.7399454 −0.097316 0

1.13< x ≤ 1.26 0.348694 −0.95677 −0.114 0

1.26< x ≤ 1.5 0.4634541 −1.346797 0 0

1.5< x ≤ 2.0 −8.801133 55.67633 −87.7363 0

2.0< x ≤ 2.7 1.383476 −4.13484 0 0

2.7< x ≤ 7.0 1.1125 0 −10 0

7.0< x 0 0 0 0

Polynomial approximation for θ(x)

Comment: Note that by Lemma 2, [θ(Q)−Q] → E[V ] = 1/2 as Q → ∞.
Accuracy: ±0.1%
Algorithm

y = ln(x)
If x ≤ 0.00125 then ν=[c[x, 1]−c[x, 3](−y)c[x,0]] / [c[x, 2]−c[x, 4](−y)c[x,0]]
If 0.00125 < x ≤ 7.0 then ν = c[x, 0]+c[x, 1]y+c[x, 2]y2+c[x, 3]y3+c[x, 4]y4

If 7.0 < x then ν = [x+ exp(−2)]/x
θ(x) = x− 1/ln[ν · x/(1 + e2x)]

Data

x Range c[x, 0] c[x, 1] c[x, 2] c[x, 3] c[x, 4]

0 < x ≤ 2× 10−7 −1.2839 6.6085 3.76234 −30.11 −30.11

2× 10−7 < x ≤ 0.00125 0.5292 −5.963 −2.934 −3.157 −1.78

0.00125< x ≤ 0.029 1.45469 0.523461 0.180076 0.0213841 0.00088453

0.029< x ≤ 0.15 1.04877 0.013856 −0.058843 −0.0283627 −0.0030053

0.15< x ≤ 0.62 1.050675 0.024767 −0.038544 −0.014739 0

0.62< x ≤ 3.0 1.04993 0.02395 −0.03346 −0.003828 0.0069

3.0< x ≤ 7.0 1.07574 −0.031276 −0.002662 0.002 0
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Polynomial approximation for η(x)≡
∫ x

0
z· (θ′(z)− 1) dz

Accuracy: ±0.25%
Algorithm
y =ln(x)

If x≤0.0025 then ν=
h
1−c[x, 2] · (c[x, 4]−y)c[x,0]

i
/
h
c[x, 1]−c[x, 3] · (c[x, 4]−y)c[x,0]

i

If 0.0025 < x ≤ 1.4 then ν = c[x, 0] + c[x, 1]y + c[x, 2]y2 + c[x, 3]y3 + c[x, 4]y4

If x ≤ 1.4 then η(x) = ν (1− e−x) / {11.93707[1 − (8x+ 1)e−8x] + (ln(min(x,0))2}
If 1.4 < x then η(x)=c[x, 4] ·

n
1−(c[x, 0] x+c[x, 1])e−c[x,2]x/(x+c[x, 3])2

o

Data

x Range c[x, 0] c[x, 1] c[x, 2] c[x, 3] c[x, 4]

0 < x ≤ 0.0025 0.772 0.9062 0.2774 0.2774 1.85

0.0025 < x ≤ 0.035 −0.0103 −0.16226 0.00445 0.001533

0.035 < x ≤ 0.105 1.7647 1.338 0.42813 0.0415

0.105 < x ≤ 0.36 0.6827 −0.9955 −1.3737 −0.5603 −0.0741536

0.36 < x ≤ 1.4 0.9877 0.057 −0.0774 0.063

1.4 < x −2.02 17.454 0.6573 4.558 1/12

We gratefully acknowledge the helpful comments of the anonymous referees.
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