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THE LORENZ TRANSFORM APPROACH
TO THE OPTIMAL REPAIR-COST LIMIT

REPLACEMENT POLICY WITH IMPERFECT REPAIR
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Abstract. In this paper, we consider a repair-cost limit replacement
problem with imperfect repair and develop a graphical method to de-
termine the optimal repair-cost limit which minimizes the expected cost
per unit time in the steady-state, using the Lorenz transform of the un-
derlying repair-cost distribution function. The method proposed can
be applied to an estimation problem of the optimal repair-cost limit
from empirical repair-cost data. Numerical examples are devoted to
examine asymptotic properties of the non-parametric estimator for the
optimal repair-cost limit.
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1. Introduction

The repair-cost limit replacement policies can provide how to design the
recovery mechanism of a system using two maintenance options; repair and re-
placement, in terms of cost minimization. That is, if the repair cost of a failed
unit is greater than the replacement cost, one should replace a failed unit, other-
wise one should repair it. First this problem was considered by Drinkwater and
Hastings [6] and Hastings [9] for army vehicles. Especially, Hastings [9] proposed
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three methods of optimizing the repair-cost limit replacement policies by simu-
lation, hill-climbing and dynamic programming. Since the seminal contributions
above, a number of authors dealt with a variety of repair-cost limit replacement
problems. For instance, Nakagawa and Osaki [16], Kaio and Osaki [10] and
Nguyen and Murthy [17] reformulated the Hastings’ original problem from the
viewpoint of renewal reward argument and discussed both continuous and dis-
crete models. Also, Nguyen and Murthy [18] took account of the imperfection
of repair and analyzed the repair-limit replacement model with imperfect repair.
Love et al. [14] examined the similar problem for vehicle replacement using postal
Canada data which was constructed by dividing the life of the vehicle into discrete
ages. Park [19] considered a simple but interesting cost limit replacement policy
under minimal repair. Love and Guo [15] extended the repair-limit analysis by
incorporating a changing force of mortality as the unit ages in the framework of a
Markov or semi-Markov decision process.

As Love and Guo [15] pointed out implicitly, it is often assumed that the repair-
cost distribution function is arbitrary but known. Of course, this seems to be
rather restrictive in many practical situations. In other words, practitioners have
to determine the repair-cost limit under incomplete information on the repair-cost
distribution in most cases. Dohi et al. [4, 5] proposed non-parametric estimators
of the optimal repair-time limit and repair-cost limit from the empirical repair
time and cost data, respectively. More precisely, they applied the total time on
test (TTT) statistics to those estimation problems in accordance with the graphical
idea by Bergman [1] and Bergman and Klefsjö [2]. If the optimal repair-time or
cost limit has to be estimated from the sample data with unknown repair-time
or cost distribution, their method will be useful in practice, since one needs not
specify the repair-time or cost distribution in advance.

However, it should be noted that the repair-cost limit replacement problem in
Dohi et al. [5] was very interesting but somewhat different from existing ones.
More specifically, their main objective was to derive the optimal repair-cost limit
to retire the repair action, i.e. if the repair is not completed within a cost limit,
the failed unit is scrapped and then a new spare is ordered. Such a policy seems
to be plausible in some practical situations, but should be distinguished from the
original repair-cost limit problem. In this paper, we consider a repair-cost limit
replacement problem with imperfect repair in the framework of renewal reward
processes and propose a statistical estimation method based on the Lorenz curve.
Notice that the basic idea in this paper is similar to the graphical one used in
Dohi et al. [5] but the statistical device employed here is different from the TTT
statistics. The Lorenz curve was first introduced by Lorenz [13] into economics to
describe income distributions. Since the Lorenz curve is essentially equivalent to
the Pareto curve used in the quality control, it will be one of the most important
statistics in every social sciences.

The more general and tractable definition of the Lorenz curve was made by
Gastwirth [7]. Goldie [8] proved the strong consistency of the empirical Lorenz
curve and discovered its several convergence properties. Chandra and
Singpurwalla [3] and Klefsjö [11] investigated the relationship between the TTT
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statistics and the Lorenz statistics, and derived a few aging and partial ordering
properties. Recently, the further results on two statistics were examined by Pham
and Turkkan [21] and Perez–Ocon et al. [20]. It is shown that the estimator of the
optimal repair-cost limit derived in this paper has also several powerful properties
proved in earlier contributions above.

The paper is organized as follows. In Section 2, we describe the repair-cost
limit replacement problem with imperfect repair under consideration. In Section 3
we develop a graphical method to calculate the optimal repair-cost limit which
minimizes the expected cost per unit time in the steady-state. Then, it is seen
that the Lorenz curve plays an important role to derive the optimal solution on the
graph. In Section 4, the statistical estimation problem is discussed. We show that
the estimator of the optimal repair-cost limit has a strong consistency, and examine
its convergence properties. Numerical examples are presented for illustration of
the graphical method throughout the paper.

2. Model description

Notation

The repair cost V for each unit is a non-negative i.i.d. random variable and
unknown. The decision maker has a subjective probability distribution function
Pr{V ≤ v} = H(v) on the repair cost, with density h(v)(> 0) and finite mean
mm (> 0). We suppose that the distribution function H(v) ∈ [0, 1] is arbitrary,
continuous and strictly increasing in v ∈ [0,∞) , and has an inverse function, i.e.
H−1(·). Further, we define:

v0 ∈ [0,∞): repair cost limit;
ml(> 0): mean time to failure for a new unit;
ms(> 0): mean time to failure for a repaired unit;
ma(> 0): mean repair time (for units repaired);
kf (> 0): penalty cost per unit time when the system is in down state;
c(> 0): cost associated with the ordering of a new unit;
L(> 0): lead time for delivery of a new unit.

Model description

Consider a single-unit repairable system, where each spare is provided only by
an order after a lead time L and each failed unit is repairable. The original unit
begins operating at time 0. When the unit has failed, the decision maker wishes
to determine whether he or she should repair it or order a new spare. If the
decision maker estimates that the repair is completed within a prespecified cost
limit v0 ∈ [0,∞), then the repair is started immediately at the failure time. In this
case, the mean time to complete the repair is ma. Since the repair is imperfect,
the unit fails again for a finite time span. Then, the mean failure time when the
repair is completed is ms.
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Figure 1. Configuration of repair-cost limit replacement prob-
lem with imperfect repair.

On the other hand, if the decision maker estimates that the repair cost exceeds
the cost limit v0, then the failed unit is scrapped immediately and a new spare unit
is ordered. After the lead time L, a new unit is delivered. Further, the new unit
also fails for a finite time span and then the mean failure time is ml. Without any
loss of generality, it is assumed that the time required for replacement is negligible.
Under these model assumptions, we define the interval from the failure point of
time to the following failure time as one cycle. Figure 1 depicts the configuration
of the model under consideration.

We make the following additional assumptions:

(A-1) ma +ms > L+ml.
(A-2) kfma < kfL+ c.

The assumption (A-1) implies that the mean time length of one cycle when the
repair cost does not arrive at the repair-cost limit is greater than that when the
cost is beyond it with probability one. In the assumption (A-2), it is meant that
the mean shortage cost to finish the repair when the repair is executed is smaller
than the mean shortage cost plus the ordering cost in another case. It is noticed
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that these assumptions motivate the underlying problem to determine the optimal
repair-cost limit.

Analysis

Let us formulate the expected cost during one cycle. If the decision maker
judges that a new spare unit should be ordered, then the ordering cost for one
cycle is cH(v0), where H(·) = 1−H(·). In this case, the expected shortage cost
for one cycle is kfLH(v0). On the other hand, if he or she selects the repair option,
the expected repair cost for one cycle is

∫ v0

0
vdH(v) and the expected shortage cost

for one cycle is kfmaH(v0). Thus the total expected cost during one cycle is

EC(v0) =
∫ v0

0

vdH(v) + (kfma − c− kfL)H(v0) + c+ kfL. (1)

Also, the mean time length of one cycle is

ET (v0) = (ma +ms − L−ml)H(v0) + L+ml. (2)

It may be appropriate to adopt an expected cost per unit time in the steady-state
over an infinite planning horizon, as a criterion of optimality. The expected cost
per unit time in the steady-state is, from the renewal reward argument,

C(v0) = lim
t→∞

E[the total cost on (0, t]]
t

= EC(v0)/ET (v0). (3)

The problem is to derive the optimal repair-cost limit v0
∗ such as

C(v∗0) = min
0≤v0<∞

C(v0). (4)

Then, we have the following result on the optimal repair-cost limit.

Theorem 2.1. Define the numerator of the derivative of equation (3) with respect
to v0, divided by h(v0), as q0(v0), i.e.

q0(v0) ≡ (kfma − c− kfL+ v0)ET (v0)− (ma +ms − L−ml)EC(v0). (5)

Suppose that both assumptions (A-1) and (A-2) hold. Then there exists a unique
optimal repair-cost limit v∗0 (0 < v∗0 <∞) satisfying q0(v∗0) = 0 and the minimum
expected cost is

C(v∗0) =
kfma − c− kfL+ v∗0
ma +ms − L−ml

· (6)

Proof. Differentiating C(v0) with respect to v0 and setting it equal to zero implies
q0(v0) = 0. This leads to dq0(v0)/dv0 = ET (v0) > 0 and the fact that the function
C(v0) is strictly convex in v0. Since limv0→∞ q(v0) → ∞ and q(0) < 0 under
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(A-1) and (A-2), there exists a unique optimal repair-cost limit v∗0 (0 < v∗0 < ∞)
satisfying q0(v∗0) = 0. The proof is completed. �

From Theorem 2.1, one sees that the optimal repair-cost limit can be calculated
easily, by solving the nonlinear equation q0(v0) = 0, if the repair-cost distribu-
tion is completely known. In the following section, the minimization problem in
equation (4) is transformed to a simple graphical one on the Lorenz curve.

3. Graphical method

In stead of differentiating C(v0) with respect to v0 directly, we here employ
an interesting graphical method. Define the Lorenz transform of the repair-cost
distribution p ≡ H(v) by

φ(p) =
1
mm

∫ p

0

H−1(v)dv, 0 ≤ p ≤ 1. (7)

Then the curve L = (p, φ(p)) ∈ [0, 1] × [0, 1] is called the Lorenz curve (see
Gastwirth [7] and Goldie [8]). It should be noted that the curve L is absolutely
continuous from the continuity of H(v). From a few simple algebraic manipula-
tions, we have the following useful result:

Theorem 3.1. Suppose that the assumption (A-1) holds. The minimization prob-
lem in equation (4) is equivalent to

min
0≤p≤1

: M(p, φ(p)) ≡ φ(p) + ξ

p+ η
, (8)

where

ξ =
1
mm

{
c+ kfL−

(L+ml)(kfma − c− kfL)
ma +ms − L−ml

}
(9)

and

η =
L+ml

ma +ms − L−ml
· (10)

The proof is omitted for brevity. From Theorem 3.1, the optimal repair-cost
limit is determined by p∗ = H(v∗0) which minimizes the slope from the point
B = (−η,−ξ) ∈ (−∞, 0) × (−∞, 0) to the curve L in the plane (x, y) ∈ (−∞, 1)
×(−∞, 1) under the assumption (A-2).

More precisely, we prove the uniqueness of the optimal repair-cost limit.

Theorem 3.2. Suppose that both assumptions (A-1) and (A-2) hold. Then there
exists a unique optimal solution p∗ = H(v∗0) (0 < v∗0 <∞) minimizing M(p, φ(p)),
where p∗ is given by the x-coordinate at the point of contact for the curve L and
the straightline from the point B.
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Proof. From (A-1) and (A-2), it can be seen that ξ > 0 and η > 0. Differentiating
M(p, φ(p)) with respect to p and setting it equal to zero implies

q(p) ≡ (dφ(p)/dp)(p + η)− (φ(p) + ξ), (11)

where dφ(p)/dp = H−1(p)/mm. Further, we have

dq(p)/dp = d2φ(p)/dp2(p+ η) > 0 (12)

and the function M(p, φ(p)) is strictly convex in p, since d2φ(p)/dp2 =
1/{mmh(H−1(p))} > 0. From q(0) = −ξ < 0 and q(1) → ∞, the proof is
completed. �

The result above is a dual theorem and is essentially same as Theorem 2.1. The
interesting point of Theorem 3.2 is to determine the optimal solution on the graph
instead of solving the nonlinear equation.

Example 3.3. We give an example for the graphical method proposed above.
Suppose that the repair-cost distribution H(v) is known and obeys the Weibull
distribution;

H(v) = exp
{
−
(v
θ

)β}
(13)

with the shape parameter β = 4.0 and the scale parameter θ = 0.9. The other
model parameters are c = 0.4000 ($), L = 0.3500 (day), kf = 0.3500 ($/day) ma

= 0.5500 (day), ms = 1.2000 (day), ml = 0.4500 (day) and mm = 0.8862 ($).
The determination of the optimal repair-cost limit is presented in Figure 2. In
this case, we have B = (−0.8421,−0.9032) and the optimal point with minimum
slope from B is (p∗, φ(p∗)) = (0.4630, 0.2574). Thus, the optimal repair-cost limit
is v∗0 = H−1(0.4630) = 0.7885.

The basic idea for the graphical method proposed in this section can be ap-
plied to an estimation problem of the optimal repair-cost limit when the empirical
repair-cost data are available. In the following section, the statistical optimization
technique is developed for the empirical counterparts of the Lorenz curve.

4. Statistical estimation method

Based on the graphical idea in Section 3, we propose a non-parametric method
to estimate the optimal repair-cost limit. Suppose that the optimal repair-cost
limit has to be estimated from an ordered complete sample 0 = x0 ≤ x1 ≤ x2

≤ · · · ≤ xn of repair cost data from an absolutely continuous repair-cost distribu-
tion H, which is unknown. The estimator of H(v) = p is the empirical distribution
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Figure 2. Determination of optimal repair-cost limit on the
Lorenz curve.

given by

Hin(x) =

{
i/n for xi ≤ x < xi+1, i = 0, 1, 2, · · · , n− 1

1 for xn ≤ x, i = n.
(14)

Then the Lorenz statistics (see Goldie [8]) is defined as

φin ≡
[np]∑
k=1

xk/
n∑
k=1

xk, φ0n = 0, i = 1, 2, 3, · · · , n, (15)

where [a] is the greatest integer in a. Plotting the point (i/n, φin), i = 0, 1, 2, · · · , n,
and connecting them by line segments, we obtain the empirical Lorenz curve
Ln ∈ [0, 1]× [0, 1].
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As an empirical counterpart of Theorem 3.1, we obtain a non-parametric esti-
mator of the optimal repair-cost limit in the following theorem:

Theorem 4.1. (i) The optimal repair-cost limit can be estimated by v̂∗0n = xi∗ ,
where {

i∗ | min
0≤i≤n

φin + ξ

i/n+ η

}
· (16)

(ii) The estimator v̂∗0n = xi∗ in equation (16) is strongly consistent, i.e. v̂∗0n =
xi∗ → v∗0 as n→∞.

The result in (i) is trivial. The proof of (ii) is based on the asymptotic property
φin → φ(p) as n→∞, which is due to Goldie [8].

Example 4.2. The repair-cost data are made by the random number following
the Weibull distribution with shape parameter β = 4.0 and scale parameter θ =
0.9. The other model parameters are same as Example 3.3 except that mm =
0.8076 ($). The empirical Lorenz curve based on the 30 sample data is shown
in Figure 3. Since B = (−0.8421,−0.9911), the optimal point with minimum
slope from B becomes (i∗/n, φi∗n) = (14/30, φ14,30) = (0.5000, 0.3061). Thus, the
estimate of the optimal repair-cost limit is v̂∗0n = 0.7618 ($).

If the estimator v̂∗0n = xi∗ is obtained, it is easy to calculate the estimate of the
minimum expected cost. That is, from equation (6),

C(v̂∗0n) =
kfma − c− kfL+ v̂∗0n
ma +ms − L−ml

, (17)

which may be strongly consistent.
Of our next interest is the convergence speed of the estimators v̂∗0n and TC(v̂∗0n).

We examine numerically the strong consistency of the estimator derived in
Theorem 4.1.

Example 4.3. Suppose that the repair-cost distribution and model parameters
are similar to those in Example 4.2. Then the real optimal repair-cost limit and
the minimum expected cost become v∗0 = 0.7885 ($) and C(v∗0) = 0.4826 ($),
respectively. On the other hand, the asymptotic behaviours of estimates for the
optimal repair-cost limit and its associated minimum expected cost are depicted
in Figures 4 and 5, respectively. From these figures, we observe that the estimates
converge to the corresponding real values around where the number of data is
30. In other words, without specifying the repair-cost distribution, the proposed
non-parametric method may function to estimate the optimal repair-cost limit
precisely.

Finally, utilizing the results above, we determine the asymptotic valid confidence
interval for the optimal repair-cost limit approximately. Recall that determining
asymptotically valid confidence intervals for the probability distribution function is
based on the normal approximation to the binomial distribution, when there are no
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Figure 3. Estimation of optimal repair-cost limit on the empir-
ical Lorenz curve.

ties in the data set. Notice that the empirical distribution defined in equation (14)
can be regarded as the binomial random variable having mean E[Hin(x)] = H(x)
and variance Var[Hin(x)] = H(x)H(x)/n. Furthermore, when the sample size n
is large and H(x) is not too close to 0 or 1, the binomial distribution may have a
shape that is closely approximated by a normal distribution, and can be used to
find interval estimates for H(x). It should be noted that these interval estimates
are most accurate, in terms of coverage, around the median of the distribution,
since the normal approximation to the binomial distribution works best when the
probability of success is about 0.5, where the binomial distribution is symmetric.

Replacing H(v) by Hin(v) in the variance formula, an asymptotically valid
100(1− α)% confidence interval for the repair-cost distribition is approximately

HL
in < H(v) < HU

in, (18)
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where zα/2 is the 1 − α/2 fractile of the standard normal distribution, and the
lower and upper bounds are

HL
in = Hin(v) − zα/2

√
Hin(v)H in(v)

n
(19)

and

HU
in = Hin(v) + zα/2

√
Hin(v)Hin(v)

n
, (20)

respectively. This confidence interval is appropriate when there are tied observa-
tions, although it becomes more approximate as the number of ties increases (see
Lee [12]). The following theorem is the direct application of the asymptotically
valid 100(1− α)% confidence interval for the repair-cost distribition.

Theorem 4.4. (i) The lower and upper bounds of the Lorenz transform are ap-
proximately given by

φLin < φ(H−1(v)) < φUin, (21)

where

φLin =
[nHLin]∑
k=1

xk/
n∑
k=1

xk (22)

and

φUin =
[nHUin]∑
k=1

xk/
n∑
k=1

xk, (23)

respectively.

(ii) The asymptotically valid 100(1−α)% confidence interval for the optimal repair-
cost limit is approximately given by

vL0n < v̂∗0n < vU0n, (24)

where vU0n = xj∗ and vL0n = xk∗ satisfy{
j∗ | min

0≤j≤n

φLjn + ξ

HL
jn + η

}
and

{
k∗ | min

0≤k≤n

φUkn + ξ

HU
kn + η

}
, (25)

respectively.
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Figure 6. Upper and lower bounds of the empirical Lorenz curve.

Example 4.5. Under the same parameters as Example 4.3 except for mm =
0.9866, we determine the asymptotic valid confidence interval for the optimal
repair-cost limit. Figure 6 shows the upper and lower bounds of the empirical
Lorenz curve. From this figure, we obtain vL0n and vU0n which minimize the tangent
slopes from the point B to the curves φUin and φLin, respectively. In Figures 7 and 8
show the behaviours of the asymptotically valid 95% confidence intervals of the
optimal repair-cost limit and its associated minimum expected cost, respectively.
These figures tell us that the estimation when the number of data is more than 30
is stable, and that the observation result in Example 4.3 can be also valid taking
account of the asymptotically confidence interval.

5. Conclusion

This paper has considered an interesting repair-cost limit replacement prob-
lem with imperfect repair and developed a graphical method to determine the
optimal repair-cost limit which minimizes the expected cost per unit time in the
steady-state, using the Lorenz transform of the underlying repair-cost distribution
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function. We have examined some properties of the strongly consistent estima-
tor and the asymptotically valid 100(1− α)% confidence interval for the optimal
repair-cost limit and the associated minimum expected cost throughout numerical
examples.

The main contribution of this paper is to show that the Lorenz statistics as well
as TTT statistics is a useful device to estimate the optimal maintenance schedule.
This simple but interesting idea should be applied to solve other kinds of stochastic
maintenance optimization problems in future.

The present research was supported by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Sports, Science and Culture of Japan under Grant No. 09780411
and No. 09680426.
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