
RAIRO Operations Research
RAIRO Oper. Res. 35 (2001) 107-115

ON MINIMIZING TOTAL TARDINESS IN A SERIAL
BATCHING PROBLEM

Philippe Baptiste
1

and Antoine Jouglet
1

Communicated by Ph. Chrétienne

Abstract. We study the problem of scheduling jobs on a serial batch-
ing machine to minimize total tardiness. Jobs of the same batch start
and are completed simultaneously and the length of a batch equals the
sum of the processing times of its jobs. When a new batch starts, a
constant setup time s occurs. This problem 1|s-batch|

P
Ti is known

to be NP-Hard in the ordinary sense. In this paper we show that it is
solvable in pseudopolynomial time by dynamic programming.

Keywords: Scheduling, batching, dynamic programming, total tardiness.

Mathematics Subject Classification. 90B35, 90C39, 90C27.

Introduction

In this paper, we study the situation where n jobs {J1, . . . , Jn} have to be
scheduled on a serial batching machine. Each job Ji is described by a processing
time pi and a due date di (all numerical values used in this paper being integer).
All jobs of the same batch start and are completed simultaneously, i.e., at the
starting time (respectively at the completion time) of the batch. On a serial
batching machine, the length of a batch equals the sum of the processing times of
its jobs. The size of the batch, i.e., the number of jobs in the batch is not known
in advance. When a new batch starts, a constant setup time s occurs.

Several other type of batching machines have been studied in the literature. In
particular on parallel batching machine, there are at most b jobs per batch and

Received May, 2000. Accepted November, 2000.

1 CNRS, UMR 6599 HeuDiaSyC, Université de Technologie de Compiègne, Centre de
Recherches de Royallieu, 60205 Compiègne Cedex, France.

c© EDP Sciences 2001

108 PH. BAPTISTE AND A. JOUGLET

Table 1. Overview of the complexity results.

Problem Complexity References

1|s-batch|Lmax O(n2) [13]

1|s-batch|
∑
Ui O(n3) [6]

1|s-batch|
∑
wiUi binary NP-Hard, O(n2

∑
wi) [6]

1|s-batch|
∑
Ci O(n log n) [7]

1|s-batch|
∑
wiCi unary NP-Hard [1]

1|s-batch|
∑
Ti binary NP-Hard [8]

the length of a batch is the largest processing time of its jobs (in more complex
models, a job can require several units of the batching machine at the same time).
We refer to [1,4,5,9,11–13] for extended reviews on pure batch scheduling problems
and on extensions (e.g. scheduling group of jobs with group-dependent setup times,
jobs requiring several machines throughout their execution, etc.). Complexity
results for serial batching problems are summarized in Table 1. When processing
times are equal, all problems, except the weighted total tardiness one, become
polynomial even if jobs have arbitrary release dates [2]. These results leave open
the exact status of the total tardiness problem 1|s-batch|

∑
Ti. Is it unary NP-

Hard or can it be solved in pseudo-polynomial time? We show that it is solvable
in O(n11 max(maxi pi, s)7) by dynamic programming. This algorithm is closely
related to the pseudo-polynomial algorithm of Lawler for the 1||

∑
Ti problem [3,

10].
The remaining sections of the paper are organized as follows. Several dominance

properties are stated in Section 1. The dynamic programming algorithm itself is
described in Section 2. Finally, Section 3 summarizes the main results, gives a few
conclusions, and describes some fruitful areas for further research.

1. Dominance property

From now on, we suppose that jobs are sorted in non-decreasing order of pro-
cessing times, i.e., p1 ≤ p2 ≤ . . . ≤ pn. Given a solution schedule, we note B(i)
the batch that contains the job Ji and for any batch B, we note SB and CB the
starting time and the completion time of the batch. To simplify the presentation,
we assume that due dates are distinct.

Theorem 1.1. There exists an optimal schedule such that, for any jobs Ji, Jj
with di < dj, if Jj is processed strictly before B(n) then Ji is processed before or
in B(n).

Proof. Let S be an optimal schedule on which the completion time of B(n)
is maximal and on which the number of jobs scheduled in batches before B(n)

BATCHING TO MINIMIZE TOTAL TARDINESS 109

is minimal. Assume that there exist two jobs Ji, Jj with di < dj , such that Jj is
processed strictly before B(n) and Ji is processed strictly after B(n).

We first show that di > dn. If this is not the case, so if di ≤ dn, let us exchange
Ji and Jn, i.e., remove Jn from B(n) and add Ji (the batch is completed at
CB(n)− pn + pi) and symmetrically, remove Ji from B(i) and add Jn instead (the
batch starts at SB(i) − pn + pi. It is easy to see that because pi ≤ pn, the batches
of all jobs except Jn are not completed later than before. Moreover, the cost ∆ of
the exchange for Ji and Jn is:

∆ ≤ max(0, CB(i) − dn)−max(0, CB(n) − dn)
+ max(0, CB(n) − pn + pi − di)−max(0, CB(i) − di).

If CB(i) ≥ dn then we have:

∆ ≤ di − dn + max(0, CB(n) − pn + pi − di)−max(0, CB(n) − dn).

Either CB(n) − pn + pi − di ≤ 0, which leads to ∆ ≤ 0 or CB(n) − pn + pi − di ≥ 0
and therefore, ∆ ≤ CB(n) − dn −max(0, CB(n) − dn) ≤ 0. Now consider the case
where CB(i) < dn then

∆ ≤ max(0, CB(n) − pn + pi − di)−max(0, CB(i) − di) ≤ 0.

We have shown that the resulting schedule is still optimal and moreover, the batch
containing Jn is completed later than before; which contradicts our hypothesis.

We can now assume that dn < di < dj . First notice that if dj ≥ CB(n) then
Jj is on-time and it is still on time if it is removed from B(j) and put into B(n)
(batches between B(j) and B(n) are scheduled pj time units earlier). (1) The total
tardiness is not increased, (2) the batch containing Jn is completed at the same
time than before and (3) one less job is scheduled before this batch. This contradict
our initial hypothesis hence, dj < CB(n). Second, we propose to exchange Jn and
Ji. Since pi ≤ pn, batches between B(n) and B(i) are not scheduled later than
before and then, the cost of the exchange can be upper bounded by ∆′.

∆′ = max(0, CB(i) − dn)−max(0, CB(n) − dn)
+ max(0, CB(n) − pn + pi − di)−max(0, CB(i) − di)

= CB(i) − dn − (CB(n) − dn) + max(0, CB(n) − pn + pi − di)− (CB(i) − di)
= max(di − CB(n), pi − pn)
≤ 0.

The total tardiness of the resulting schedule is not worse than before and the
batch containing Jn is completed later than before. Again, this contradict our
initial hypothesis.

110 PH. BAPTISTE AND A. JOUGLET

2. A dynamic programming algorithm

Consider the schedule of Theorem 1.1. We claim that there is an index k such
that (1) jobs Ji executed in batches processed before B(n) are such that di ≤ dk
and (2) jobs executed in batches processed after B(n) are such that di > dk
(cf., Fig. 1). Notice that in the batch B(n), there are jobs with smaller and larger
due dates than k. Job Jk can be chosen as the job that has the largest due
date among jobs in batches processed before B(n) on the schedule of Theorem 1.1
(if there are no such jobs, choose Jk as the job with smallest due date).

Figure 1. Decomposition scheme.

The basic idea of our algorithm is to decompose the scheduling problem into
a left sub-problem with {Ji : (i ≤ n − 1) ∧ (di ≤ dk)} and a right sub-problem
with {Ji : (i ≤ n− 1) ∧ (di > dk)}. There are of course some side constraints:

• the completion time of the last batch of the left sub-problem equals the
starting time of the first batch of the right sub-problem;
• the total processing time of the jobs of the last batch of the left sub-problem

plus the total processing time of the jobs of the first batch of the right sub-
problem plus pn equals the length of the batch B(n).

This decomposition is applied in turn to both sub-problems. To formalize the
dynamic search, we introduce the variables T (m, d−, d+, Cl, P l, Cr, P r) that equals
the minimum tardiness of a schedule of {Ji : (i ≤ m)∧ (d− ≤ di ≤ d+)} such that

• the completion time of the the first (i.e., the left) batch is Cl and at most
P l time units are available in this batch to schedule the jobs;
• the completion time of the the last (i.e., the right) batch is Cr and P r time

units of this batch cannot be used (they are booked for some other jobs).

If no such schedule exists, T (m, d−, d+, Cl, P l, Cr, P r) is set to ∞. Constraints
induced by Cl, P l, Cr, P r are recalled in Figure 2.

BATCHING TO MINIMIZE TOTAL TARDINESS 111

It comes directly from the definition of T (m, d−, d+, Cl, P l, Cr, P r) that the
optimum is met for 

m ← n
d− ← mini di
d+ ← maxi di
Cl ← −s
P l ← 0
Cr ← makespan
P r ← 0

(1)

where makespan is an integer value that is lower than or equal to the sum of the
processing times plus n times the setup time s (in the the worst case, batches are
made of a single job and thus n setups occur). Cl is set to −s to let the first
non-empty batch of the schedule start at time 0: the left batch starts at time −s
and is empty but due to our definition, at least s time units have to ellapse before
starting another batch.

We can assume that Cl + s ≤ Cr − P r and that P l ≥ 0 otherwise we have
T (m, d−, d+, Cl, P l, Cr, P r) =∞. Moreover, if {Ji : (i ≤ m) ∧ (d− ≤ di ≤ d+)} is
empty, then T (m, d−, d+, Cl, P l, Cr, P r) = 0. This condition will be used to stop
the recursion. In the following, we assume it does not hold.

We claim that T (m, d−, d+, Cl, P l, Cr, P r) equals the minimum of L,R, I where

L = max(0, Cl − dm) + T (m− 1, d−, d+, Cl, P l − pm, Cr, P r)
R = max(0, Cr − dm) + T (m− 1, d−, d+, Cl, P l, Cr, P r + pm)

and where I is the minimum of

T (m− 1, d−, dk, Cl, P l, κ, κ− σ − π)
+T (m− 1, dk, d+, κ, κ− σ − π − pm, Cr, P r) + max(0, κ− dm)

Figure 2. Variables definition.

112 PH. BAPTISTE AND A. JOUGLET

under the constraints
Cl + s ≤ σ
σ < κ
κ ≤ Cr − P r − s
0 ≤ π ≤ κ− σ − pm
dk ∈ {di : (i ≤ m) ∧ (d− ≤ di ≤ d+)}·

Let us give a rationale for our claim.

Figure 3. An in-between batch.

• The first case (min(L,R, I) = L) corresponds to situation where Jm is
scheduled in the left batch. The cost of scheduling Jm is exactly
L = max(0, Cl − dm). The remaining jobs can be scheduled everywhere
between the left and the right batch but the number of available time units
in the left batch has to be decreased of pm. Hence we can follow the schedule
that realizes T (m− 1, d−, d+, Cl, P l − pm, Cr, P r).
• The second case (min(L,R, I) = R) corresponds to situation where Jm is

scheduled in the right batch. The cost of scheduling Jm there is exactly
R = max(0, Cr − dm). The remaining jobs can be scheduled everywhere
between the left and the right batch but the number of unavailable time
units in the right batch has to be increased of pm. Hence we can follow the
schedule that realizes T (m− 1, d−, d+, Cl, P l, Cr, P r + pm).
• The third case (min(L,R, I) = I) is more complex. It corresponds to the

situtation where Jm is scheduled in an in-between batch (cf., Fig. 3). This
batch can start at any time σ after the completion of the left batch plus
the set-up time, hence, Cl + s ≤ σ. It is completed at time κ > σ and
at least s time units must ellapse between κ and Cr − P r. We can apply
the dominance rule of Theorem 1.1: There is an index k such that (1) jobs
Ji executed in batches processed before the in-between batch are such that
di ≤ dk and (2) jobs executed in batches processed after the in-between
batch are such that di > dk. Let π denote the total processing time of the
jobs, except Jm, in the in-between batch that have a due-date lower than or
equal to dk (0 ≤ π ≤ κ− σ − pm).

BATCHING TO MINIMIZE TOTAL TARDINESS 113

First, the cost of scheduling Jm there is exactly max(0, κ−dm). Second, jobs
with a due-date smaller than or equal to dk and distinct from m, i.e.{Ji :
(i ≤ m − 1) ∧ (d− ≤ di ≤ dk)}, can be scheduled between left batch and
the in-between batch. In this batch, no more than π units are available
for the above jobs. Hence we can follow the schedule that realizes T (m
−1, d−, dk, Cl, P l, κ, κ− σ − π). Third, jobs with a due-date larger than dk
and distinct fromm, i.e. {Ji : (i ≤ m−1)∧(dk ≤ di ≤ d+)}, can be scheduled
between the in-between batch and the right batch. In this batch, no more
than κ − σ − π − pm units are available for the above jobs. Hence we can
follow the schedule that realizes T (m− 1, dk, d+, κ, κ− σ − π − pm, Cr, P r).

Algorithm 1 Computation of the values T (m, d−, d+, Cl, P l, Cr, P r)

1: H ←
P
i pi + ns

2: for m← 1 to n do
3: for d+ ∈ {d1, · · · , dm} taken in increasing order do
4: for d− ∈ {d1, · · · , dm} and d− ≤ d+ taken in decreasing order do

5: for Cl ←H down to Cl ← 0 do
6: for P l ← 0 to H do
7: for Cr ← 0 to H do
8: for P r ← H down to 0 do
9: if Cl + s > Cr − P r or P l < 0 then

10: T (m,d−, d+, Cl, P l, Cr, P r)←∞
11: else
12: L← max(0, Cl − dm) + T (m− 1, d−, d+, Cl, P l − pm, Cr, P r)
13: R← max(0, Cr − dm) + T (m− 1, d−, d+, Cl, P l, Cr, P r + pm)
14: I ←∞
15: for σ, κ such that Cl + s ≤ σ < κ ≤ Cr − P r − s do
16: for π ← 0 to π ← κ− σ − pm do
17: for dk ∈ {di : (i ≤ m) ∧ (d− ≤ di ≤ d+)} do

18:

I ← min(I, max(0, κ− dm)+

T (m− 1, d−, dk, C
l, P l, κ, κ− σ − π)+

T (m− 1, dk, d
+, κ, κ− σ − π − pm, Cr, P r))

19: end for
20: end for
21: end for
22: T (m,d−, d+, Cl, P l, Cr, P r)← min(L,R, I)
23: end if
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for
30: end for

114 PH. BAPTISTE AND A. JOUGLET

We have a straight dynamic programming algorithm to reach the optimum.
T (m, d−, d+, Cl, P l, Cr, P r) is computed and stored in a multi-dimensional array
for all relevant values of the parameters:
• m belongs to {1, · · · , n};
• d−, d+ are due dates and then belong to {d1, · · · , dn};
• Cl, Cr, P l, P r belong to [0,

∑
i pi + ns].

Hence there are O(n ∗ n2 ∗ (
∑
i pi + ns)4) = O(n7 max(maxi pi, s)4) relevant com-

bination of the parameters. Actually, one additional value “−s” should be taken
into account for Cl. It is used for the computation of the the optimal solution,
cf., equation (1). To simplify the pseudo-code, this special value has been omitted
in Algorithm 1). The algorithm performs several loops on the parameters and for
each relevant combination the values L,R, I are computed. This can be done in
constant time for L and R. To compute I a minimum over O((

∑
i pi + ns)3 ∗ n)

terms (O(
∑

i pi + ns) for σ, κ, π and O(n) for dk) has to be computed. Each
time, this can be done in O(1). This leads to an overall time complexity of
O(n11 max(maxi pi, s)7).

3. Conclusion

In this paper, we have shown that the problem of minimizing the total Tardiness
on a serial batching machine can be solved in pseudo-polynomial time. Therefore,
we have solved one of the last open batching problem. Nevertheless, this algorithm
has a prohibitive complexity in O(n11 max(maxi pi, s)7), which surely might be
improved.

The authors would like to thank Jacques Carlier for his very intuitive comments. Special

thanks to Sigrid Knust for many discussions on batching and scheduling.

References

[1] S. Albers and P. Brucker, The Complexity of One-Machine Batching Problems. Discrete
Appl. Math. 47 (1993) 87-107.

[2] Ph. Baptiste, Batching Identical Jobs, Technical Report, University of Technology of
Compiègne (1999).

[3] P. Brucker, Scheduling Algorithms. Springer Lehrbuch (1995).
[4] P. Brucker, A. Gladky, H. Hoogeveen, M. Kovalyov, C. Potts, T. Tautenhahn and S. van de

Velde, Scheduling a Batching Machine. J. Sched. 1 (1998) 31-54.
[5] P. Brucker and S. Knust, Complexity Results of Scheduling Problems.

URL: www//mathematik.uni-osnabrueck.de/research/OR/class

[6] P. Brucker and M.Y. Kovalyov, Single machine batch scheduling to minimize the weighted
number of late jobs. Math. Methods Oper. Res. 43 (1996) 1-8.

[7] E.G. Coffman, M. Yannakakis, M.J. Magazine and C. Santos, Batch sizing and sequencing
on a single machine. Ann. Oper. Res. 26 (1990) 135-147.

[8] J. Du and J.Y.-T. Leung, Minimizing Total Tardiness on One Machine is NP-Hard. Math.
Oper. Res. 15 (1990) 483-495.

[9] L. Dupont, Ordonnancements sur machines à traitement par batch (fournée). TSI 10
(to appear).

BATCHING TO MINIMIZE TOTAL TARDINESS 115

[10] E.L. Lawler, A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total
Tardiness. Ann. Discrete Math. 1 (1977) 331-342.

[11] C.L. Monma and C.N. Potts, On the Complexity of Scheduling with Batch Setup Times.
Oper. Res. 37 (1989) 798-804.

[12] C.N. Potts and M.Y. Kovalyov. Scheduling with batching: A review. European J. Oper.
Res. 120 (2000) 228-249.

[13] S. Webster and K.R. Baker, Scheduling Groups of Jobs on a Single Machine. Oper. Res. 43
(1995) 692-703.

to access this journal online:
www.edpsciences.org

