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SECOND ORDER OPTIMALITY CONDITIONS
FOR DIFFERENTIABLE MULTIOBJECTIVE PROBLEMS (*)

by Giancarlo BIGI (*) and Marco CASTELLANÏ (2)

Communicated by Franco GIANNESSI

Abstract. - A second order optimality condition for multiobjective optimization with a set
constraint is developed; this condition is expressed as the impossibility of nonhomogeneous linear
Systems. When the constraint is given in terms of inequalities and equalities, it can be turned into
a John type multipliers rule, using a nonhomo geneous Motzkin Theorem of the Alternative. Adding
weak second order regularity assumptions, Karush, Kuhn—Tucker type conditions are therefore
deduced.

Keywords: Second order necessary optimality conditions, descent directions, second order
contingent set, Abadie and Guignard type conditions.

1. INTRODUCTION

The study of optimality conditions is one of the main topics of Optimization
Theory. For multiobjective programming, some of the first interesting results
have been developed in the middle seventies [12]; since then, many papers
appeared, dealing with first order necessary optimality conditions both for
differentiable problems [12-14, 16, 20-22, 25, 28] and nondifferentiable
ones [6, 11, 17]. When the problem satisfies suitable convexity assumptions,
these conditions turn out to be also sufficient (see [14, 16, 19, 21] and
the références therein). However, in the gênerai case there may be feasible
points, which satisfy the first order conditions but are not optimal solutions.
In order to drop them, additional optimality conditions, involving second
order derivatives of the given functions, can be developed. A few results in
this direction have been presented in some recent papers [2, 23]. This paper
aims to deepen this type of analysis, providing more gênerai results.
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4 1 2 G. BIGI and M. CASTELLANI

First, we investigate differentiable multiobjective problems, where the
constraint is given in set form. By linearizing tecniques, we obtain necessary
conditions in terms of the impossibility of nonhomogeneous linear Systems,
involving the Jacobians and the Hessians of the objective functions and the
second order contingent set [3, 26] of the feasible région. We stress that
these Systems depend upon the choice of a common descent direction for
the objective functions. Moreover, we show that the gap between first order
conditions for single and multi-obj écrive problems exploited in [25] holds
also for second order conditions.

Then, we apply our results to the case where the feasible région is expressed
by both inequality and equality constraint s. This can be done, exploiting the
connections between the second order contingent set of the feasible région
and the second order derivatives of the constraining functions.

By means of theorems of the alternative, we are therefore able to deduce a
John type multipliers rule, involving both the Jacobians and the Hessians of
the objective and constraining functions. Since the multipliers are not fixed
but they depend upon the chosen descent direction, this rule extends to the
multiobjective case the results of [4].

In the last section, we analyse some conditions, which guarantee the
existence of nonzero multipliers corresponding to the objective functions;
following the approach developed in [10] for scalar problems, we consider
a constraint qualification, which is weaker than those used in [2, 23],
and we show that the Guignard type constraint qualification is useless
without convexity assumptions; on the contrary, we introducé a Guignard
type condition, which involves also the objective functions and needs no
convexity assumptions to achieve the goal.

2. PRELIMINARIES

In this section, we introducé some notations and définitions which are
used throughout the paper. Let R̂  be the ^-dimensional Euclidean space;
R+ := {x eR£ : Xi > 0, i = 1 , . . . ,£} is the positive orthant.

For each set A Ç R ,̂ int A, cl A, and convA dénote the topological
interior, the topological closure and the convex huil of A, respectively.
Given any two vectors x , î /GR^we use the following notation

y - z eint.R+.
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SECOND ORDER OPTIMALITY CONDITIONS 413

In order to obtain multipliers rules, we need the following nonhomogeneous
form of the Motzkin Theorem of the Alternative [15].

LEMMA 2.1: (Nonhomogeneous Motzkin Theorem). Let a,j,bi,Ci G Rn and
aj,/?î,7i G R with j G J ^ 0, i G I~ and i G 1° finite index sets. Then, the
system (in the unknown x G Rn)

OLjX + QLj < 0, j G J

biX + Pi < 0, ie I~
CiX + ji = 0 , i G 1°

(1)

impossible if and only if the system (in the unknowns

[Oj >o, j e Ju {o}, \i >o,

(2)

Z5 possible. Moreover, if the rows of (1) are linearly independent, then all
the solutions of (2) have 0Q > 0.

Proof: Since the impossibility of (1) is equivalent to that of the
homogeneous linear System

djX + QljZ < 0, j G J
Ox - z < 0,
bix + Piz < 0, i G I'
dx + ^iz = 0, z G 7°,

we achieve the resuit by applying Motzkin theorem of the Alternative (see
[15]). D

vol. 34, n° 4, 2000



414 G. BIGI and M. CASTELLANI

Remark 2.1: From Lemma 2.1 we deduce that the impossibility of (1)
implies the possibility of the System

11, ̂ {C% = °

(3)

Ui > o, j e J, A» >o, ï e J .

Let ip = ( y ? i , . . . , ^ ) : Rn —• R be a twice differentiable function,
J := { I j . . . ,^} be the index set3 which identifies the components of tp9 and
let x G Rn be given. We set:

J(x) := { j G J : <pj(£) = 0 } .

By means of these notations, we introducé the following définitions:

• the set of the descent directions for y? at x is

D<(tp,x) := { d e r : V<pj(x)d < 0, Vj G J(x)};

• the s1^ o/ ?̂ e attainable directions for y? at x is

D=((p7x) := { d e R n : V<pj(x)d = 0, Vj G J(z)}.

For each given direction rf G Rn, we set

J(x,d) := {j G J{x) : Vipj(x)d = 0}.

Therefore

• the set of the second order strict descent directions for ip at x in the
direction d G Rn is

.x.d) := {weRn : 0, \fj G

3 For the sake of simplicity, we use the same notation as in Lemma 2.1.
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SECOND ORDER OPTIMALITY CONDITIONS 415

• the set of the second order descent directions for ip at x in the direction
d G Rn is

D<(tp,x,d) := {w G Rn : V<pj(x)w + V2<pj(x)(d}d) < 0, Vj G J(x,d)}\

the se* o/ the second order attainable directions for cp at x in the
direction d G Rn is

Dl(<p,x,d) := { ^ e f : Vtpj(x)w + V2<pj(x)(d,d) = 0, Vj G J(x,d)}.

Let ƒ = ( / i , . . . , /^) : Rn —> R̂  be a twice differentiable function,
«ƒ:= {1, . . . ,£} and I Ç R n . Consider the following multiobjective problem

minilltR« /(x) subject to x G X (4)

where minint ^ marks vector minimum with respect to the cone int R+ :
x G X is said to be a local vector minimum point of (4) iff there exists a
neighbourhood N of x, such that no x G X n iV satisfies f(x) < i n t ^̂  ƒ (x).
It is a widespread tradition to call these minima weak vector Pareto ones;
the term "weak", which is here mathematically misleading, comes from the
following situation: the solutions of (4) are also solutions of the problem
where vector minima are considered with respect to the larger cone R+ \ {0};
this last problem is actually a different one from (4), since it has a different
"ordering" cone. For a more detailed discussion, see [7].

For the sake of simplicity, we will write D<(f,x) instead of D<(f —
f(x),x) and analogously for the other sets.

DÉFINITION 2.1: Let I C f , The second order contingent set of X at
x E c\X in the direction d e Rn is:

T2{X,x,d):^{weMn : 3{wn} -> w7

3{tn} jOs. t . X + tnd +2-lt2
nWn G X } .

The second order contingent set represents an extension of the Bouligand
tangent cone T(X,x) and it preserves many properties of such a cone: for
instance, it is closed and it is isotone, Le. if X\ Ç X2 and x G clJYi then

Moreover, we observe that

vol. 34, n° 4, 2000



4 1 6 G. BIGÎ and M. CASTELLANI

It is easy to show that

d $ T{X,x) => T2(X,x,d) = 0. (5)

For morè pfopertiés of this type of approximation, see [3] and référencés
thereîn.

3. NECESSARY OPTIMALITY CONDITIONS WITH A SET CONSTRAINT

By linearizing techniques with second order accuracy, we achieve the
following resuit.

THEOREM 3.1: If x G X is a local vector minimum point of (4), then for
each descent direction d G D<(f,x) the System

Vf3(x)w + V2fj(x)(d,d) < 0, je J(x,d) (6)

has no solution w G T2(-X",:?jd).

Proof: Ab absurdo, let d G D<(f,x) be given and w G T2(X,x} d) be a
solution to (6). By the définition of second order contingent set, there exist
{tn} i 0 and {wn} —> w such that

Xn :=x + tnd + 2~1t2
nwn e X, Vn G N.

Since f3 is twice differentiable, we have

fj{*n) - fj(x) = tn[Vfj(x)(d + 2-HnWn)

+ 2~ltnV
2f3 {x)(d + 2-1tnwn>d + 2-Hnwn) + tnen]

where en —> 0 as n —> oo. Let us consider the following two cases.

• If j 0 J(x,d)9 we have

j <0 5

and therefore for ail n large enough we have

fjM < fj(x).

• If j G J(xyd), since

lim Vfj(x)wn + V2fj{x){d + 2~hnWnyd +
n—>oo

V2fj(x)(d,d)<0,

Recherche opérationnelle/Opérations Research



SECOND ORDER OPTIMALITY CONDITIONS 417

for ail n large enough we have

V2 ƒ/(â)(d + 2^ltnwn,d + 2"ltnwn) + en] < 0.

Therefore, 3 n G N, such that

f(xn) <intn*+ f(x), Vn >n,

which contradicts the assumption. D
We note that, when £ = 1, Theorem 3.1 collapses to the second order

necessary optimality condition given in [18] (see also [26]). In particular,
choosing d — 0, we deduce the following resuit.

COROLLARY 3.1 : If x € X is a local vector minimum point of (4), then
the System

v/ i(x)^<o î j e J, (7)

has no solution w G T(X,x).
As observed in [25], the inconsistency of (7) does not hold when we

replace the set T(X^x) with the set clconvT(X,x), The same happens also
with the second order contingent set as the following example shows.

Example 3.1: Consider the multiobjective problem (4) with

f(xi,x2) := (~x\ -x2 ,x2 -x\),

and the feasible région given by

X := {xeR2 : x\ <x\ < 4arf}.

Easy calculations show that x = (0,0) is a vector minimum point. Moreover,
given the direction d — (1,0) G D<(f, %)> the second order contingent set is

T2(X,x,d) - {^Gi l 2 : 2 < \w2\ < 4}.

System (6) becomes \w2\ < 2. Thus, it has no solution w G T2(Xyx^d) as
Theorem 3.1 claims, but it has a solution w G cl conv T2 (X7 x\ d) since

2(X,x,d) = {^GR2 : \w2\ < 4}.

vol. 34, n° 4, 2000



4 1 8 G. BIGI and M. CASTELLANI

In order to obtain the impossibility of System (6) with w G
clconvT2(X, x, d), we can assume the following form of generalized
convexity for problem (4).

DÉFINITION 3.1: Given a set X Ç Rn, a function ƒ : X —> Re is said
to be subconvexlike on X ifffor any x\,X2 G X, any t G]0,l[ and any
À >int|R^ 0, there exists x% G X, such that

A + t / (* i ) + (1 - t)f(x2) - f(x3) >iatRl+ 0.

THEOREM 3.2: Suppose that ƒ is subconvexlike onX.Ifx^Xisa local
vector minimum point of (4), thenfor each descent direction d G £><(/,^)
System (6) has no solution w E cl convT2(X}x,d).

Proof: Ab absurdo, suppose there exist d G D< (ƒ, x) and w G
cl conv T2(X} x, d) such that (6) holds. From (5) it follows that d G T(Xy x).
By Theorem 3.1 in [24], there exists a nonzero 9 G R^ such that x is a local
minimum point of the scalar problem

minip(x) := Y^öj fj(x) subject to x G X.

By Corollary 3.1 in [18], we have

Vip{x)d > 0, Vd G T(X,x), (8)

and, if Vip(x)d = 0, also

w + V2<p(x)(d,d) > 0, Vw; G clconvT2(X,xyd). (9)

Choosing d — d, (8) implies that 0j = 0 for ail j £ J(^,d); then w
contradicts (9). D

4. JOHN TYPE NECESSARY OPTEMALITY CONDITIONS

In this section we consider the feasible set X defined by inequality
and equality constraints. Let g — (gi,..., gp) : Rn —> Rp and
h — (hii...,hq) : Rn —> Rq be twice differentiable fonctions and let
I' :— { 1 , . . . ,p} and 1° := { 1 , . . . , g} be the corresponding index sets.
From now onwards, we suppose that the feasible région of problem (4) is
given by

X := Xg n Xh

Recherche opérationnelle/Opérations Research



SECOND ORDER OPTIMALITY CONDITIONS 419

where
Xg:={xeRn : gi(x)<0, i G / " } ,

Xh:={xeRn : hi(x) = 0, i G I0}.

Following the notations given in Section 2, let us introducé:
• the set of descent directions at x for problem (4), namely

D{x) := D<(f,x) n D<(g,x) H D=(h,x);

• the weû& second order linearizing set ofX at x in the direction ciGRn,
namely

• the second order linearizing set ofX at âf in the direction d G Rn, namely

In order to achieve second order necessary optimality conditions for
problem (4), we state the following resuit which connects the second order
linearizing sets of X and the second order contingent set of X.

LEMMA 4.1 : Let x e X and d G D< (g7x)D D= {h, x) be a given direction.
Then

T2(Xyx}d) ÇL|(î ,d). (10)

If {^hi(x)}iejo are linearly independent, then

L2
<(x,d)ÇT2(X,x,d). (11)

Proof: Given w G T2(X,x, d), there exist {tn} j 0 and {wn} —> w,
such that

xn =x + tnd + 2-1tlwn e X, VneN.

Since <?j and ht are twice differentiable, we have

0 > 9i(xn) = 9i(x) + tnVgi(x){d + 2-ltnwn)

+ 2-1tlV2gi(x)(d + 2-1tnwn,d + 2-1tnwn) + t2
nen, Vz G/" (12)

0 = hi(xn) = hi(x) + tnVhi(x)(d + 2-1tnwn)

+ 2-1t2
nV

2hi(x)(d + 2-1tnwn,d + 2-1tnwn) + t2
nen, V i e f . (13)

vol. 34, n° 4, 2000



4 2 0 G. BIGI and M. CASTELLANI

Therefore, for each i G 7~(x,d), dividing (12) by 2 ~ 1 ^ , we have

and considering the limit as n —• oo» we get w G D\{g,x,d). For each
i G 7°, dividing (13) by tn and considering the limit we get Vhi(x)d = 0.
Now, we can divide by 2~*tn to obtain

0 = \?hi(x)wn + V hi(w)(d + 2™ tnwn>d + 2~ tnwn) + 2en\

considering the limit as n —> oo, we get w G JD1(/I,5f, d). Thus, (10) follows.
Let us prove the second part. Theorem 3.5 in [27] implies that

Z)?_(/&,x, d) — ^(XfuXjd); therefore, for each w G £<(x, d), there exist
{^} I 0 and {^n} —* w such that

It will be enough to show that xn G Xg for ail n large enough.
• For each i £ 7(âf), the continuity of gi implies that g%{xn) < 0.
• For each i G I(x) \ 7~(öf,d) we have

9i(zn) = tn[^9i(x)(d + 2 ~ 1 ^ ^ n ) + en] < 0.

• For each i G I~ (x, d) we have

lim VoifxWn + V2Qi(x)(d + 2~1t».ty», d + 2~1t«iUn.1)

and thus

Therefore, (11) is satisfied. D

Now, it is immédiate to deduce the following second-order optimality
condition.

THEOREM 4.1: Suppose that {Vhi(x)}i^jo are linearly independent If
x G X is a local vector minimum point of(4), thenfor each descent direction
d G D(x) the System (in the unknown w G Rn)

Vfj(x)w + V2f3{x){d, d) < 0, je J(x, d),
Vgi(x)w + V2gl(x)(dJ d) < 0, i G I~(x, d), (14)
Vhi\x)w + V2hi(x)(d,d) = 0, i G 7°

z*s impossible.

Recherche opérationnelle/Opérations Research



SECOND ORDER OPTIMALITY CONDITIONS 421

Proof: It follows immediately from Theorem 3.1 and Lemma 4.1. D
Applying Lemma 2.1, we can deduce the following John type multipliers

fuie from Theorem 4.1.

THEOREM 4.2: IfxeXisa local vector minimum point of (4), thenfor
each descent direction d G D(x) there exist 6 G R+, À G R+, and /i G Rq

not all zero such that

(i) £ W 0 ï 0 + E X^9i(x) + £ /uVki(î) = 0;

(ii) ( J2°jV2f3(x) + ̂ 2 AiV2
W(x) + E &V2hi(x) (d,d) > 0;

J

(iii) Xigi(x) = 0, for each i G I ;
CivJ 9jVfj(x)d = 0, for each j G J, and XiVgl{x)d — O,for éach i G ƒ".

Proof: If {V^(^)} z e /O are linearly dépendent, let us choose 0j — Â? = 0
and fa not all zero such that

Conditions (i), (iii), and (iv) are trivially satisfied; if (ii) does not hold, it is
enough to change /^ with — \x%, Otherwise, the theorem follows immediately
from Lemma 2.1 applied to System (14), just setting 9j — \% — 0 for ail
j £ J(x, d) and i £ I~(x} d). D

It is worth noting that Theorem 4.1 and Theorem 4.2 embracé also the first
order optimality conditions (see, for instance [9]), which can be obtainéd
just considering the particular direction d = 0.

5. NECESSARY OPTIMALITY CONDITION WITH CONSTRAINT
QUALIFICATIONS

The multipliers rule in Theorem 4.2 does not guarantee that at least one
multiplier corresponding to the objective functions is nonzero; obviously,
when they are all zero, the objective functions dö not play any rôle in thé
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optimality condition. To overcome this drawback, some further assumptions
on the problem have to be introduced.

DÉFINITION 5.1: Given a feasible point x G R7\
• the Abadie second order constraint qualification (ASOCQ) holds at x

in the direction d G Rn iff

• the Guignard second order constraint qualification (GSOCQ) holds at
x in the direction d G Rn iff

L\ (X, d) Ç cl conv T2 (X, x, d).

Observe that (ASOCQ) and (GSOCQ) collapse to the well known Abadie
constraint qualification and Guignard constraint qualification, choosing d — 0.
Obviously, if (ASOCQ) holds, then also (GSOCQ) is satisfied; the
converse does nöt hold as well known for d = 0. The foliowing resuit
can be trivially deduced from Theorem 3.1.

THEOREM 5.1: Suppose that (ASOCQ) holds aï x G X in the descent
direction d G D(x). ïfxisa local vector minimum point of (4), then the
System (in the unknown w G Rnj

Vf3(x)w + V2f3(x)(d,d) < 0, je J(3f,d),
V9l(x)w + V2#(x)(d,d) < 0, i G I-(âf,d), (15)
Vhi(x)w + V2Ài(x)(d,d) - 0, iel°

is impossible.
A similar resuit was presented in [23] and improved in [2] where the

Authors do not require the assumption of weak convex inclusion as it has
been done in [23]. In our resuit we further relax the constraint qualification
considered in Theorem 3.3 of [2]. In f act, in that theorem it is required that
(ASOCQ) holds in every descent direction. The following example shows
a case in which Theorem 5.1 can be applied even if (ASOCQ) holds only
in some descent directions.

Example 5.1: Consider the multiobjective problem with

= (xi,x2,X3 -x\ -

Recherche opérationnelle/Opérations Research



SECOND ORDER OPTIMALITY CONDITIONS 423

It is easy to show that x — (0,0,0) is a vector minimum point. The set
of the descent directions is

D(x) = {d G U3 : d\ < 0, d2 < 0, d3 = 0}.

Calculations show that, for such directions d, we have

3, if d\d2 < 0,
{w G R3 : wz> 0}, if d\d2 = 0,

and

T (X7x,d) | | ^ G R 3 : ^ = o, tü3 > 0}, ifdi' = 0withî = l ,2 .

Thus (AÈOCQ) holds only in the descent directions d with d\d2 < 0 and so
Theorem 3.1 in [2] cannot be applied; indeed, for the other nonzero descent
directions d System (15) admits the solution w = ( - 1 , —1,0).

Now, we can deduce the following Karush, Kuhn-Tucker type multipliers
rule from Theorem 5.1.

THEOREM 5.2: Suppose that (ASOCQ) holds at x e X in the descent
direction d G D(x). Ifxisa local vector minimum point of (4), then there
exist 6 G R+, A G R+, and fj, eRq with 9^0 such that (i-iv) of Theorem 4.2
hold.

Proof: It follows immediately from Lemma 2.1 applied to System (15) just
setting 9j = 0 and À2 = 0 for ail j £ J(x, d) and i £ /"(âf, d). D

This resuit improves the second order necessary optimality conditions
presented in some papers [2, 23]. Moreover, choosing d = 0 as descent
direction, we obtain the resuit presented in [22]. By means of Theorem 3.2
we deduce immediately the following resuit.

THEOREM 5.3: Suppose that (GSOCQ) holds at x e X in the descent
direction d G D(x) and that ƒ is subconvexlike on X. If"x is a local vector
minimum point of (4)y then there exist 9 G Rfj_, À G R̂ _, and JJL G Uq with
0 / 0 such that (i-iv) of Theorem 4.2 hold.

Proof: It follows immediately from Lemma 2.1 and Theorem 3.2. D
In the previous theorems, the constraint qualifications imply that the

(vector) multiplier 9 is nonzero; now, we want to investigate conditions
which ensure that such a vector has many (possibly ail) positive components.

vol. 34, n° 4, 2000



4 2 4 G. BIGI and M. CASTELLANI

For this reason, we introducé the set of the second order descent directions
at x for problem (4) with respect to d E Rn, namely

Observe that D2(xy0) = D(x).

DÉFINITION 5.2: Given afeasible point x E X, the Guignard second order
regularity condition (GSORC) holds at x in the direction d E Rn iff

i

D2(x,d) Ç p|clconvT2(Xs,z,d),
5 = 1

where

Xs:={xeX : fj{x) - fj(x) < 0, Vj G J \ {s}} U {x}.

Now, we are able to prove the following result

THEOREM 5.4: Suppose that (GSORC) holds at x e X in the descent
direction d G D(x). Ifx is a local vector minimum point of (4), thenfor each
s E J(Xj d) the linear system (in the unknown w E Un)

(

V2f3{x){d,d) < 0, je
V2gl{x)(d,d) <0} ie

is impossible.

Proof: Ab absurdo, suppose that w solves the system for some s E J(x, d).
Thus, (GSORC) implies that w E c\convT2(Xs,x} d). From the définition
of local vector minimum point, it follows immediately that x is also a local
minimum point of the scalar problem

min fs(x) subject to x E Xs.

By Corollary 3.1 in [18], we get the contradiction V f$ (x) w +
V2fs(x)(d,d)>0. •

Theorem 5.4 leads to the following Karush, Kuhn-Tucker type multipliers
rule.
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SECOND ORDER OPTIMALITY CONDITIONS 425

THEOREM 5.5: Suppose that (GSORC) holds at ~x G X in the descent
direction d E D(x). Ifxisa local vector minimum point of (4), then there
exist ô € R̂ +> A G U\, and \x G Uq with 6j > 0 for all j E J(x, d) such
that (i — iv) of Theorem 4,2 hold.

Proof: It follows immediately applying Lemma 2.1 to each linear System of
Theorem 5.4 (setting 9j = 0 and Xi = 0 for ail j ^ J(x, d) and i £ I~(x, d))
and summing up the resulting multipliers. D

Throughout the whole paper, the impossibility of linear Systems has been
turned into multipliers rules using Lemma 2.1. Equivalently, following the
image space approach tecniques (see [7] and the références therein), this can
be done by séparation arguments; the multipliers will be just the gradients of
separating hyperplanes. Thus, it is be possible to analyse regularity conditions
exploiting the tools developed in [5].

6. CONCLUDING REMARKS

We studied second-order necessary optimality conditions for multiob-
jective problems where the ordering cône is the interior of the positive
orthant It is clear that the conditions we developed are necessary also for
the multiobjective problem where the ordering cône is the positive orthant.
Is it possible to obtain necessary conditions for this problem that are not
necessary for the one we studied? Other interesting question deals with the
gênerai case, where the ordering is given by any convex cone with nonempty
interior. In fact, the peculiar structure of the positive orthant allows to use
the single components of the objective fonction in order to identify the
descent directions; in the gênerai case, they seem not to be suitable for this
aim. So, how is it possible to extend the results of this paper to the case
of any ordering cone?
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