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SIMULATION OF TRANSIENT PERFORMANCE MEASURES
FOR STIFF MARKOV CHAINS (*)

by Abdelaziz NASROALLAH

Communicated by P. TOLLA

Abstract. - We consider the simulation of transient performance measures of high reliable fault-
tolerant computer Systems. The most widely used mathematical tools to model the behavior of these
Systems are Markov processes. Here, we deal basically with the simulation ofthe mean time tofailure
(MTTF) and the reliability, R(t), ofthe system at time t Some variance réduction techniques are
used to reduce the simulation time. We will combine two of these techniques: Importance Sampling
and Conditioning Technique. The resulting hybrid algorithm performs significant réduction of
simulation time and gives stables estimations.

Keywords: Reliability, stiff Markovian models, performance measures, variance réduction,
Monte-Carlo simulation.

1. INTRODUCTION

There is a growing interest in evaluating the performances of fault-tolerant
computer Systems, Le. Systems that are able to recover from a non-operational
state after a fault. These Systems are used in many fields such as gênerai
purposes computers or téléphone switching. The high technology involves
high reliability for these Systems. The Markovian models are the most
appropriate tools to study such Systems (cf. Arlat 1987). A conséquence
of high reliability is that the Markov chains at issue are stiff, Le. the
failure and recovery rates have very different orders of magnitude. In many
cases, the stiffness makes analytical resolution almost impossible. So, in
this case, a Monte-Carlo simulation is appealed in order to get estimations.
But, a very long time is necessary for obtaining good estimations from a
standard simulation. There exist many variance réduction techniques which
reduce the simulation time. Some of these techniques are discussed in
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Hammersley (1979) and in Rubinstein (1981). The Importance Sampling
(IS) is an adequate technique in the simulation of Markovian models. It has
been applied, with success, to simulate stationary performances Markovian
models, and it is well presented in Nasroallah (1991) and in Glynn et al
(1989).

In this paper, we focus on the simulation of transient performance measures
of high reliable Systems. We basically deal with the estimation of MTTF
and the reliability of the System at time t, R(t), by simulating a discrete
Markov process. There is also some variance réduction techniques which
are adapted to simulation of transient performances. For example Forced
Transitions (FT) and Conditioning Technique (CT) are often used to reduce
the effect of the parameter £, and consequently reduce the simulation time
(cf. Lewis et al 1984 and Nasroallah 1991).

The main aim of this work is to combine IS and CT in order to reduce the
time complexity of the simulation caused by stiffness and parameter t. The
resulting hybrid procedure, noted IS + CT, leads to significant réduction of
simulation time and perforais stable estimations.

The paper is organized as follows: in Section 2 we give a description of
the Markovian model used. The MTTF and R(t) expressions are studied
in Section 3. Section 4 is concerned with the approximation adopted for the
confidence intervals used in simulation. Some simulation results are given in
the Section 5. We close this paper by giving a brief conclusion in Section 6
and some références.

2. MARKOVIAN MODEL

Let X — {Xt\t > 0} be an irreducible continuous time Markov chain
(CTMC) with finite state space E. We assume that E can be represented as
E = O U F where O and F are the operational and unoperational state space
respectively. The process X is used to study the behavior of a fault-tolerant
computer system. Since the System is assumed to be highly reliable, then
X is a stiff CTMC. Let Q = (qij)ijçïï be the generator of X and assume
that all the components of the system are operational at time 0. We dénote
this initial state so-

lt is easy to see that all the hypothesis assumed here are reasonable and
realistic. Since the Markovian process X is irreducible and E is finite, then X
is a regenerative process and each state can be considered as a régénération
point of X. Let TA dénote the first return time of X to the subset A of E,
after leaving the state SQ.
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It is mentioned in Hordijk et al (1976) that it is more convenient to
simulate a discrete process as approximation to the continuous one. In
our case, we simulate the embedded discrete time Markov chain (DTMC)
Z — {Zn\ n E N} as approximation to X. The process Z is characterized by
its transition matrix P = (py)àj€E where:

Pij = 1{i&}i h 3 e E

Qii

where 1^ is the indicator of the set A and q%i = — Ylj^i Qij-
Some other discretization methods are discussed in Hordijk et al (1976).

3. TRANSIENT PERFORMANCE MEASURES

A transient performance measure of a System is a measure which dépends
on the initial state of the System or on the time t. In this paper, we'll focus
on MTTF and R(t). The first measure dépends on the initial state of the
system, the second dépends on the time t.

3.1. Mean time to failure: MTTF

The mean time to failure MTTF is defined by MTTF = E[rp], where
E[.] dénotes the expectation operator. This measure can be expressed as a ratio
of expectations. The following two propositions point out two représentations
of MTTF: an approximated and an exact one.

3.1,1. PROPOSITION

Let a = P r [rp < r^ o j | XQ = SQ], ifthe Markovian model X is stijf, then
the probability distribution of the random variable ar? can be approximated
by an exponential one with parameter 1/E[T{S O}].

In the following, we give a sketch of the proof of this proposition, for
more details and relevant ideas (cf. Nasroallah 1991 and Keilson 1979).

Proof Assume that Xo = so and let Ti,T2,--- be the times between
the successive returns to so- Let N be the index of the first cycle (interval
between successive returns to so) when X hits F. Remark that, given N,
the times Ti, T2, • • •, T/v_i are independent identically distributed (i.i.d) and
are independent of TJ\T. Now,

vol. 34, n° 4, 2000



388 A. NASROALLAH

where Pr[N — n] = (1 — a)n~1a for n > 1. Hence

+ OO

+oo

1 - ( l -

where ^(5) is the characteristic function of a cycle that does not hit F and
<f>(s) is the characteristic function of a cycle that hits F.

Replacing s by as, we find after some calculations

E [="*"'] = TZJfW) + 0 ( a ) l

this shows that arp is approximately exponentially distributed when a is
small (Le, the model is stiff). D

By the above proposition, it is easy to see that

MTTF ~

where B — {rp < T[5o}}- The following proposition gives an exact ratio
expression of MTTF.

3.1.2. PROPOSITION

minfri?-TU \)
MTTF = ^ f ' } S o i \

E[1B]
Proof. Tp can be written as

TF = TF1B + ( r N } + (rp - r{so}))lB<,

where Bc — {rp > T{So}}- This équation is equivalent to

rp = min {TT,T{SO}) + (rp - r N } ) l s . .

This implies that

= E[min(rF,r{,o})] + E[(TT - r N } ) l B « ] . (1)
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But we have

E [ f a - *•{-„})!*'] = E[ (TÏ - r{so})lB. | Bc]Pr[Bc]
] . (2)

Now by the strong Markov property we have

[ ] (3)

The équations (1, 2) and (3) make up the proof. •

Remarks:
• Since MTTF can be représentée by a ratio of expectations, then its

simulation by IS algorithm is similar to the simulation of the stationary
performance measures (cf. Nasroallah 1991 and Nasroallah 1997).

• In Nasroallah (1991), are given some simulation results of MTTF for
a stiff Markovian model with 14 states. Two algorithms are confronted:
a standard Monte-Carlo simulation and a newly proposed algorithm
called T-Dist (an algorithm based on a distance technique). The T-
Dist algorithm is better because of stable estimations and important
improvement factor (greater than 200). For more details cf. Nasroallah
(1991),

Now we focus on the simulation of the reliability of stiff Markovian models.
We'll deal basically with the high reliable Markovian models.

3.2. Reliability at time t: R(t)

Let [0, t] be an interval of time. The reliability of a System at time t, R(t),
is the probability that this System is operational during the whole observation
period [0,t]. Thus, R(i) is a transient performance measure depending on
time t. It can be written in the form R(t) ~ Pr[rp > t]. On simulating
such measures, one must take account of the stiffness and the effect of the
parameter t. This time t must be compared to the holding time of sample
states. In gênerai, for stiff models, the probability that the holding time in
the initial state is large, is near one. So for moderate time t, a standard
simulation stays a very long time in the initial state and consequently, we
can't get acceptable estimations after a reasonable period of simulation time.
For transient performances, as in the stationary case, there is some variance
réduction techniques that allow réduction in simulation time like FT and CT.
The FT method is applied to the holding time in so. Its philosophy is to
force the next component failure to occur before time t; Le. the transition of

vol. 34, n° 4, 2000



390 A. NASRO ALLAH

Z is forced by sampling the holding time in so from a new distribution that
favors leaving the state so (çf Lewis et al. 1984). The second procedure CT
consists on conditioning on the holding time of 5o-

In the following, we will combine IS and CT in order to reduce the
complexity of the simulation time caused by stiffness and by the parameter
t. The IS method is well presented in Nasroallah (1991). The following
lemma is the main resuit for CT.

3.2.1. LEMMA

Let u and v be two random variables such that the first and second order
moments exist, then we have

var(E[u | v]) < var(it)

where var(.) dénotes the variance operator.

Proof. Cf. Saporta (1990).
Now, to apply the CT to R(t), we need some préliminaires: let Sj* be the

holding time in the (k + l ) t h visited state by Z. It is known that S& has
an exponential probability distribution with parameter — <&&. Let (T
be the séquence defined by

T o - 0 and T3 =^Sk j > 1.
k=0

Tj is the j t h transition time of the process Z. The number of transitions
before t is

N(t) = max{n G N;Tn < t}.

So N(t) + 1 is the number of visited states before t. For a finite sample of
states (ZQ>ZI,- - • ,Zn), where n is a fixed positive integer, we define the
quantities 7n , /3TC and no(n) by

k=0
n

n

Recherche opérationnelle/Opérations Research
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where ^n is the holding time in ZQ, /3n the holding time out of ZQ and
no (ra) the number of visits to Zo during n transitions of the process Z. Let
r(t) be a stopping time defined by

it's the time when Z hits F or the transition time of Z hits t. We dénote

Now if r(t) — n then

R{t) = Pr[T„+i <t] = Pr[7n + pn < t] = E [l{7n+i3n<t}] (4)

[ [ ) ] ] . (5)

From the previous lemma, we have

[E[l{7n< t_^} | {3n,nö(n)]]) <

It is clear that there is an advantage to simulate expression (5) than
expression (4). Since, for stiff models, the holding time in the initial state
5o is typically large, then conditioning on this time pushs Z to leave SQ.
This allows to obtain good estimations for relatively small values of t. So
the Monte-Carlo simulation based on this approach will give acceptable
estimation of R(t) for moderate number of transitions of Z.

Remarks:

(i) We have assumed that Pr[Zo — so] = 1, but one can select a référence
state by a given initial probability distribution on E. In this case, the
définitions of MTTF and R(t) must be adjusted.

(ii) It is obvious that the algorithm IS + CT can't give answer for any
value of the parameter t.

(Ui) The algorithm IS+CT can be applied to simulate other performance
measures such as the Availability Mean Interval in [0,t] (AMI(t)).

In the following section, we present the approximation on which the
détermination of the confidence intervals used in the simulation is based.
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4. CONFIDENCE INTERVALS

Since the measure of interest is written in the form r — E[/(Z)], where
ƒ is a real valued function and Z is the DTMC defined before, then by
the regenerative property of the process Z, r can be written as a ratio of
expectations r = E[ui]/E[vi] (cf. Nasroallah (1991), pp. 97-99), where ui
and v\ are two random variables depending on ƒ and on a regenerative cycle
of Z. We are given a séquence of i.i.d. random vectors {(ui,Vi) : 1 < i < m}.
Suppose we focus on a 100(1 — 7) percent confidence interval for r, where
0 < 7 < 1. Let the sample means be

1 m 1
ü(m) = — ;• Ui and v(m) = —

m f^ —

and the sample variance be

5ii (m) =

; i )

m f—f m
— \

m ~~

sn{m) = yZ(u* ~ ü(m))(vi - v(m))y
971—1 z~-y

1=1

1 m

and S22{rn) = ^(vi - v(m))2.
771—1 *-^

1=1

Now let Wi = Ui — rvi, 1 < i < m and let w(m) — {^/^jYllLi^-
Observe that {wi : i > 1} are i.i.d. and that E[u^] = 0. Let a\ = E[u;?] and
52(m) = Sii(m)-2r5i2(rn)+r2522(w). It may be shown that s2(m) —> a\
as ra —> +00 with probability one. Using this fact, and the continuous
mapping theorem and the central limit theorem applied to wifs, we see
af ter some calculations that, if 0 < ai < +oo, then we get the following
approximate 100(1 — 7) percent interval for r:

ü(m)v(m) - k(rn)s\2{m)
v2(rn) — k(m)s22(rm>

ü(m)v(m) - k(m)sn{m)
~ v2(m) — k(m)s22{'m)

where k(m) = [^"^l - 7/2)]2/m,

D(m) = [ü(m)v(m) — k(m)si2(m)}2

— [v2(m) — k(m)s22('rn)}[ü2 (m) —
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and <& is the distribution fonction for a normal random variable with mean
zero and variance one. The approximations are considered with probability
(1 — 7) for large m.

Remark: Based on the central limit theorem for partial sums with a random
number of terms, one can show that the approximations used in this section
hold when m is replaced by a random integer N(t) for a fixed run length
t in the simulation.

In the following section we present some simulation results for R(t) by
studying two examples.

5. SIMULATION OF R(t)

A birth and death Markov process

Let consider a System with two active redundant components. This System
can be modelled by a birth and death Markov process X with state space
E = {0,1,2}. The generator of X is such that qij — Xi, qji = /Xj for
0 < i < j < 2 and 902 = Q20 = 0. For i = 1,2, Xi and m are failure and
recovery rates respectively. We assume that O = {031} and F = {2}. The
initial state is £0 = 0. We take Ào = 2X\ and m1 = 1; i = 1,2. In the IS
algorithm we take 0.999 as the new probability to favors the rare event, This
value is considered as the best one in Heidelberger et al (1987). The Tables 1,
2 and 3 summarize comparisons between the hybrid algorithm IS + CT and
the standard Monte-Carlo simulation algorithm SMCS. In Table 1, Ai = 10"1

{Le. weak stiffness), t = 1 for the first three columns and t = 10 for the last
three columns. For these values, we have R(l) ~ 0.999 and J?(10) ~ 0.99.
In Table 2, Ai — 10~3 (Le, stiff model), t = 10 for the three first columns
and t = 100 for the last three columns. In this case, R(10) ~ 0.9999 and
i?(100) ĉ  0.999. The Tables 1 and 2 present évolution of half-width of 99%
confidence interval (hwci) with respect to Central Processing Unit (CPU)
time. We remark that there is an improvement factor of IS + CT with respect
to SMCS, and this factor grows with stiffness, Now in Table 3, Ai = 10~5

(Le. very stiff model) and t = 1000, The exact value of the reliability
of the System is JR(IOOO) = 0.9999998 (computed by MACSYMA, cf.
Moser 1970). The Table 3 gives the évolution of the estimation E(1000)
of iï(lOQO) and its hwci with respect to CPU time. We remark that for
a CPU time near 420, the improvement factor in confidence interval (Le.
hwci[SMCS]/hwci[IS + CT]) is approximately 66. A second remark is that
IS + CT gives more stable estimations than SMCS.
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TABLE 1

Evolution ofhwci w.r.t CPU time.

A = HT 1 , t = 1, #(1) ~ 0.999

CPU tirne

10
15
22
30

SMCS
hwci xlO4

7.01
6.00
5.40
3.81

IS + CT
hwci xlO4

6.00
4.90
4.49
3.51

A = HT 1 , t = 10, #(10) ~ 0.99

CPU time

6
10
14
17

SMCS
hwci xlO3

8.60
6.80
5.41
5.00

IS + CT
hwci xlO3

4.01
3.10
2.82
2.40

TABLE 2
Evolution ofhwci w.r.t CPU time.

A = 10"3
} i = 10, #(10) ~ 0.9999

CPU time

10
20
30
40

SMCS
hwci xlO5

1.93
1.72
1.56
1.35

IS + CT
hwci xlO5

0.43
0.31
0.25
0.20

A = 10~3, i = 100, #(100) ^ 0.999

CPU time

10
15
25
30

SMCS
hwci xlO5

12.02
10.00
7.99
7.10

IS + CT
hwci xlO5

1.48
1.20
1.00
0.98

TABLE 3
Evolution ofÊ(i) and its hwcixlO7 w.r.t. CPU time.

SMCS

CPU time

406.1
425.0
486.6
572.0
660.5
732.9

#(1000)

0.99999984
0.99999981
0.99999973
0.99999977
0.99999980
0.99999982

hwci xlO7

4.141
4.314
4.879
4.178
3.652
3.245

IS + CT

CPU time

17.9
26.3
35.1
43.1
51.9

421.6

#(1000)

0.99999981
0.99999981
0.99999981
0.99999981
0.99999981
0.99999981

hwci xlOr

0.317
0.256
0.221
0.199
0.181
0.065

A database System

We illustrate the capabilities of IS + CT algorithm by presenting a
simulation of an interesting example of fault-tolerant database system. The
System has two front-end Systems, two databases, and two processing
subsystems each one of them contains a switch, a memory, and two
processors. A processing subsystem is considered operational if the memory,
the switch, and one of the two processors is functioning. The entire system is
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operational if a database, a front-end, and, at least, one of the two processing
subsystems is operational.

We assume that the repair and failure time distributions of all components
are exponentially distributed with means 1 and 2400 hours, respectively,
except for the processors which have means 1 and 120 hours, respectively.
We further assume that when a processor fails, it contaminâtes (or fails) the
database with probability (1 — c), where c — 0.99 is the coverage probability.
There is a single repairman in the System with highest priority given to
the databases and the front-ends, the next highest priority given to the
memory and the switch éléments, and the lowest priority to the processors.
Components at the same priority level are selected at random for repair. The
simulation results for this example are given in Table 4. We remark that
there is an advantage of IS + CT with respect to SMCS. The average of the
improvement factor is 5. This result is interesting since the Markovian model
studied here is relatively stiff but large (Le. the size of state space is 212).

TABLE 4

Evolution of hwci w.r.t. CPU time.

CPU
time

700
800
900

1050

SMCS

hwci xlO4

2.50
2.41
2.39
2.10

IS + CT
hwci xlO4

0.51
0.49
0.50
0.48

6. CONCLUSION

We have presented the IS + CT algorithm which is a combination of two
existent algorithm IS and CT. This allows to simulate transient performance
measures depending on time such as the reliability of a system at time t.
For a large class of Markovian models, the stiff and large models, IS + CT
reduces the simulation time and gives more stable estimations than the
Standard Monte-Carlo simulation algorithm SMCS.
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