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STRICT CONVEX REGULARIZATiONS, PROXIMAL POINTS
AND AUGMENTED LAGRANGIANS (*)

by Carlos HUMES Jr. (h 2) and Paulo José DA SILVA E SELVA (3> 4)

Communicated by Pierre TOLLA

Abstract. Proximal Point Methods (PPM) can be traced to the pioneer works of Moreau [16],
Martinet [14, 15] and Rockafellar [19, 20] who used as regularization function the square of the
Euclidean norm. In this work, we study PPM in the context of optimization and we dérive a class
of such methods which contains Rockafellar's resuit. We also present a less stringent criterion to
the acceptance of an approximate solution to the subproblems that arise in the inner loops of PPM.
Moreover, we introducé a new family of augmentée Lagrangian methods for convex constrained
optimization, that generalizes the Pj" class presented in [2].

Keywords: Proximal points methods, augmented Lagrangians, convex programming.

1. INTRODUCTION

In recent years, Proximal Point Methods (PPM) have been receiving
plenty of attention in the literature. These methods can be characterized
roughly along two main lines: Proximal Point Methods with embedded
penalties (typically Bregman distances and ^-divergences [4, 10-12, 24])
and "pure regularization" methods. The classical method in the last approach
is presented in [20]: at each itération, we calculate

f 1

where ƒ : Rn —> (—oo, oo] is the function we want to minimize.
In this article, we prove the convergence of a generalization of the classical

PPM where the square of the Euclidean norm is substituted by a strict convex
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ftmetion with null gradient at the origin. We also show that the subproblems
may be solved with a fixed relative précision.

The remainder of this paper is organized as follows: in Section 2, we
introducé a generalization of the PPM, that we call <^-PPM, and we prove
a convergence theorem. In Section 3, we weaken the assumption of exact
solution to the subproblems arising in the ^-PPM. In Section 4, we dérive
a new family of augmented Lagrangians based on the exact version of
the 0-PPM. Some final comments are presented in Section 5, including a
discussion of the limitations of the approach used here.

2. PROXIMAL POINT METHODS AND STRICTLY CONVEX FUNCTIONS

In this section, we consider the problem of minimizing a convex function,
ƒ(•), in Rn. We assume that:

ASSUMPTION 1: ƒ : Rn —> (—00,00] is convex, proper, lower semi-
continuous (lsc) and bounded from below.

To solve this minimization problem» we introducé a generalized proximal
method based on a regularization function $ : Rn —> (—oo,oo]:

^-Proximal Point Method (0-PPM)

Let {ai}ïçM be a séquence of positive real numbers bounded from above
by a > 0.

1. Start with some x1 E dom ƒ.
2. Calculate

x i+1 = argmin {fi(x) = f(x) + aaftx - x1)},

If xi+1 = x\ stop.

Where <f>(-) obey the following assumption:

ASSUMPTION 2: The function•</>(-) is strictly convex and lsc, ^(0) = 0 and
<f>(-) is differentiable at the origin with V0(O) = 0 C1).

Note that this assumption implies that < (̂-) is inf-compact, Le., the level set

Lx = {x | 4>{x) £ A}

C1) The assumption that <f>(Q) = 0 is not necessary» but it simplifies almost all expressions. In
particular, it implies that </>{-) is non-negative.
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is compact for ail À, since LQ — {x \ <j>(x) £ 0} = {0} (see Sect. 8.7.1
in [18]).

Note that the séquence {a ;*}^ is well defined. In fact, Assumptions 1
and 2 guarantee that ƒ*(•) is inf-compact, hence it attains its minimum.
Furthermore, ƒ$(•) is strictly convex, due to the strict convexity of <£(•),
hence the minimizer is unique.

Another important remark is that the ^-PPM has as fixed points the
minimizers of ƒ(•). This is a trivial conséquence of the assumption that
V^(0) = 0.

We will start the convergence analysis of the <£-PPM by presenting an
auxiliary lemma that characterizes some important properties of </>(-) near
the origin.

LEMMA 1: Let </>(•) be afunction under Assumption 2, thenfor any séquence
{zl)i£M the following statements are equivalent:

(i) 0(^)-O;
(ii) zl->0;

(iii) There is a N > 0 such that for ail i > N, <f>(-) is subdifferentiable at
z\ Moreover, Vz > N, V7' G d^z*), 7'-*0.

(iv) There is a N > 0 such that for ail i > N, <f>(-) is subdifferentiable at
z\ Moreover, Vi > N, V7* E d^z*), <7*,^)-*0.

Proof:

1. (i) => (ii). If 4>(z%)~^§ then {2;2}i€hj is bounded, as <j>(*) is inf-compact.
Let {zl}i€jc be any convergent subsequence of -{V}Î€N* Since cf>(*) is
lsc it follows that

^ ) = 0 = min{$(z)}.

Then z is the argument that minimize ^(-), Le. the origin.
2. (ii) => (m). Since zl-^0 there is an iV > 0 such that for alli > N, zl

is in the interior of dom<̂ > where <f>(*) is subdifferentiable. For i > ]V,
let 7* G d(f>(zl), this séquence is bounded (see Th. 24.7 in [18]) and,
due to the outer semi-continuity (ose) of d<j>(-), all accumulations points
of 7* must be in d<f>(0) = {0}.

3. (iii) => (iv). It suffices to show that {^*}^N is bounded. Since 72—»0
and

vol. 34, n° 3, 2000
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it follows that

Then, jVj-^N must be bounded, otherwise we would have a
contradiction with the inf-compactness of </>(•), which is equivalent
to level coercitivity (see Sect. 3.27 in [21]).

4. (iv) =» (i), (Y,zl) > <f>(zl) - (f)(Q) = 4>{z%) ^ 0, the result follows.
D

Now we can prove the convergence theorem for the </>-PPM.

THEOREM 1: Assume that Assumptions 1 and 2 hold and that the séquence
{x%}i€H is generated by the <p-PPM, If a subsequence {xl}i^jc converges
to a point x, then x is a minimizer of ƒ(•) and the subsequence {xl+1}iç.]ç
converges to x as well.

Proof: Let 5 be an upper bound of { 0 ^ } ^ * In order to avoid technical
difficulties associated with a vanishing subsequence of a% we define:

x% = argmin{/(x) + ot(j){x — £*)}.

Clearly,

The above inequalities and S ^ ai imply that

Hence

ƒ(»*) ^ ƒ (?) + 5</>(̂  - x{) ^ /(a; i+1) + 5(/.(? - xl).

Since, by Assumption 1, ƒ(•) is bounded from below we have:

0 = Urn f{x{) - f(xl+l) > afift - x{) ^ 0.

Then
<t>{xl - xl)->0. (1)

Recherche opérationnelle/Opérations Research
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The définition of x% ensures that there are 7I E df(x%) and 7^ € d<p(x% —x%)
such that

7/ + 5Î?; = 0.

From équation (1) and Lemma 1, it follows that:

x% - xl-*0 and 7} = — S ^ Q

Now, let {xl}içjc be any convergent subsequence of {#*}ieN, #*—»•£#• The
above resuit implies that x%—>JCX and, due to the outer semi-continuity of

0 G df(x).

Now, let us prove that {xî+1}i£)ç converges to x. Indeed

f(xi+1) + ai(f>(xi+1 - xl) < f(x) + at<t>{x - xl) < f(xi+1) + at<t>{x - x%).

Therefore

0 ^ ^(a; i + 1 - ar1") ^ ( ï - i * ) .

As <£(£ - ^ ) -^ / c0 , then (f>(xi+1 - xl)-*K0 and finally, x i + 1 - ^ ç x . G

COROLLARY 1: Under the same assumptions ofTheorem 1, if {x1}^^ has
a limit point, then

ƒ(*')-»££{ƒ(*)}.

Proof: Let {^*}^^ be any convergent subsequence of { r r * } ^ ^ xl—>)cx.
Theorem 1 asserts that x is a minimizer of ƒ(•) and that xl+1~*jçx. Let
rf1 e ô ^ i + 1 - s1') such that 37}+1 G dfix^1), Q Î 7 ; + 1 = -7}+1-

Since xi+l - x'-^/cO it follows that 7^+1->x;0. Therefore,

/(x) < lim ƒ (a^1) g lim f(x) + a* (1
i+\x - xl+ï) = f(x).

1—>OO

As {/ (X Z )}Ï 6 ^J is non-increasing and bounded, it is convergent, and we get
the desired resuit. D

vol. 34, n° 3, 2000
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3. AN INEXACT VERSION OF ^-PPM

In [20], Rockafellar showed that instead of solving exactly the subproblem

Find xi+1 = argminjf(x) + ?~\\x - ^ | | 2 } ,

the PPM converges to a minimizer of ƒ(•) if we find a x1^1 such that for
some 7} £ df(xi+1)

oo

+ a*(xz+1 - x^W < cnai, J > < oo, (A')

at(x*+1 - x*)\\ £ cTiai\\xi+1 - x%
1=1

He used (A') to prove convergence and (B') to guarantee linear convergence
rate.

This resuit was improved by Solodov and Svaiter in [22] (2). Adding a
projection after each proximal step, they proved that it is enough to find
xi+1 such that

for some fixed a is in [0,1). A similar result can be proved for more gênerai
Bregman distances, substituting the projection by another extra-gradient
step [23], They also proved linear convergence rate.

Inspired by the last results, we introducé a similar acceptance criterion.
Under this criterion we prove convergence without the need for an extra-
gradient step, but we do not analyze convergence rate. It must be noted that
the results in [20, 22, 23] deal with the problem of finding zeroes for a
maximal monotone operator and we constrain ourselves to the mimmization
of a convex fonction, where it can be shown that under the criterion of [22]
no extra-gradient step is needed [8].

THEOREM 2: Suppose that Assumptions 1 and 2 hold. Let a G [0,1) and
{ai}i£f*4 be a positive real séquence bounded front above by 3L Let {x1}^^

(2) The reader should keep in mind that the articles [20] and [22], deal with the case <£(•) = \ || • ||2.

Recherche opérationnelle/Opérations Research
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be any séquence generated iteratively such thatfor some 7* G df(xlJt) and

7 j 6 d ^ 1 %

Suppose that one of the following conditions hold:
(i) { t ^ } ^ is bounded front below by some a > 0;

(ii) The séquence Axl = x1^1 — x% is contained in some compact, K, in

the interior of dom <j>;
(iii) There is an e > 0 such that for ail x E Rn and 7^ E d(j>(x)

MIMI = '
then 7x—»0. In particular, any accumulation point of {x%}iç.n is a minimizer

of ƒ(•)•

Proof: In order to prove this result, we shall consider, by contradiction,
a subsequence {7Jr}j€£ such that 7)7^^0.

As 0 < a% < a, we can assume without the loss of generality that
3ö > 05 a»—•x;». The basis for the proof are relations (2) and (3) below:

(an^x^1 - x') + {7} + ̂ . x ' -

where the last inequality is a conséquence of the acceptance criterion (AC).
Therefore

aifrj,**1-**)-*. (2)
On the other» using (AC) once more:

Il7>|| ^ 2ai||7il|. (3)

The first case we consider is associated with â > 0 (automatically guaranteed
if (i) holds). In this case? équation (2) implies that

Applying Lemma 1 and the above relation (3), it follows that 7S

vol. 34, n° 3, 2000
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The next cases are associated with ö = 0. If condition (ii) holds, then
Vi E K, 7^ € d(f>(K) and therefore {^}i£K is bounded. Using équation (3)
it follows that 7*—•JCO.

If condition (iii) holds, by relation (2),

Suppose, by contradiction, that there is a subsequence Kl C /C and a S > 0
such that Vi € /C', a»||7J|| > 5. Then we should have ||x*+1 - a:*||—>K:'0..
But, from Lemma 1, this would imply that a^—>/c'0, a contradiction. Then
we have o^i—»jçO, and from équation (3), 7I—»;ç0.

Hence, in any case we contradict the existence of a subsequence such that
7//>/c0- Therefore 7*—»ö and the outer semi-continuity of df(-) implies
that any accumulation point of this séquence is a minimizer of ƒ (•). D

4. AUGMENTED LAGRANGIANS

In this section, we use the exact version of the < -̂PPM, presented
in Section 2, to dérive a class of augmented Lagrangians for convex
programming. This class is a generalization of the P% class presented in [2].

Through this section we are concerned with the following convex
programming problem:

ƒ(*)
g(x) < o (P)
xex°

where ƒ (•) is a convex function from Rn to R, g(-) is a fonction from Rn to
Rm such that each component function, #(•)» is convex and X° is a convex
set. We also assume that its optimal value is finite. This problem will be
sometimes referred as the primai problem.

There is a concave maximization problem closely related to the primai
problem, it is called the minimax dual problem:

f max F(X) = mixçX° {L{x, A)} (

[s.t. A^O V

where L : Rn x Rm —»- R is the Lagrangian function associated with (P):

Recherche opérationnelle/Opérations Research
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A revision of duality is important as we shall treat augmentée Lagrangian
methods as the solution to the dual problem using proximal points methods
(like in [3, 19, 24]).

4.1. Preliminary résulte

The dual problem and its connection to the primai have been extensively
studied [3, 6, 9, 18, 25] and, for the sake of completeness, we review the
main results used in this section.

A key concept to duality theory is the convex (concave) conjugate of
a fonction:

DÉFINITION 1: Let ƒ : Rn —» [—00,00], the convex conjugate of ƒ(•),
denoted ƒ*(•)> is the convex fonction, ƒ* : Rn f—̂ [—00,00], defined by:

Analogously, the concave conjugate of ƒ(•), denoted ƒ*(•), is the concave
fonction, ƒ* : R11 h-> [—00,00], defined by:

One of the most important results in the theory of conjugate fonctions is the
FencheFs duality theorem [18]. This theorem présents sufficient conditions
to assert that the FencheFs inequality,

inf {ƒ(*) - g(x)} > sup {g.(x*) - ƒ*(**)}, (4)
X x*

holds as an equality (strong duality theorem). In [17], Rockafellar
characterizes the points where ƒ(•) — g(-) achieve its minimum if strong
duality holds.

THEOREM 3: (FencheVs Duality Theorem [18]). Let ƒ(•) be a proper convex
function on Rn, and let g(-) be a proper concave junction on Rn. One has

inf {f(x) - g(x)} = sup {g*(x*) - f(x*)},

if either of the following conditions is satisfied:

1. ri(dom ƒ) f) ri(dom g) ^ 0;

vol. 34, n° 3, 2000
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2. ƒ(•) is lscf g{-) upper semi-continuous (use), and ri(dom g*) n
ri(dorn ƒ*) + 0.

Moreover, Under (1) the supremum is attained at some x*, while under (2)
the infimum is attained at some x; if(l) and (2) both holdt the infimum and
supremum are necessarily finite.

THEOREM 4: (Rockafellar [17] j . Let ƒ (•) (g(-)) be a proper convex (concave)
function on Rn. Suppose FencheVs inequality holds as an equality. Then, x
is a point where ƒ(•) — p(-) achieves its minimum, if and only ifdf(x) and
dg(x) have some f* in common, Moreover, such vectors x* are then precisely
the points where <?*(•) — ƒ*(•) achieves its maximum.

The conjugacy leads to an important relationship between the primai
optimal value and the dual objective fonction. In order to study this, it is
convenient to introducé:

PROPOSITION 1: (Laurent, Sect. 7.2 in [13]). Letv(-) dénote the perturbation
function associated with the optimization problem (P)

v{y)± inf

and let F(-) be objective function of the dual problem (D). Then, for all
X e R+ we have:

F(X) = -v*(-X),

Another important concept to augmented Lagrangians methods is:

DÉFINITION 2: We call a function P : Um —> (—oo, oo] a penalty function
if it is convex, proper and non-decreasing.

And again, conjugacy leads to interesting bridges between primai and
dual problems.

PROPOSITION 2: (Bertsekas, Sect. 5.4.5 in [3]). LetP(-) be a penalty function,
v(') be the perturbation function and F(-) be the dual objective function. If
the relative interiors of the effective domains ofv(-) and P(-) intersect or the
relative interiors of the effective domains of F(-) and P*(-) intersect, then
the following equalities are valid:

Jxd, {ƒ(*) + P(9(x))} = m̂fm {„(„) + P(y)} = sup {F(X) - P*(X)}.

Recherche opérationnelle/Opérations Research
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Since the "monotonicity" property is essential to penalty fonctions, we shall
characterize this property in a convenient way to our présentation.

PROPOSITION 3: Let h(-) be a lower semi-continuousproper convex function.
h(') is non-decreasing if and only if its conjugate h*(-) is such that:

Le., dom h* C R+.

Proof: This is a very simple resuit whose proof we present only because
we could not find any référence to it.

1. Suppose that h(-) is non-decreasing.
Take any y G Rn such that y3< 0. Let x G dom h and let e-7 dénote the

j-th vector of the canonical basis, then

Va ^ 0, h*(y) >(x~ aeJ,y) - h(x - aej)
> (x,y) +a\yj\ - h(x) =>

2. Suppose that h*(-) = +oo out of the positive orthant, then

h(x) = h**(x) - snp{(y,x) - h*(y) - 6(y \ R^)
y

-h*(y)}.

Now, given a > b, for all y > 0 we have

(V,a)-h*(y)>(y,b)-h*(y)
h(a) > h(b).

D

4.2. Relationship between augmented Lagrangians and the

If we apply the </>-PPM to the dual, we get the following itération step:

Xï+1 = argmax{F(A) - a^(A - X')}

= argmax{F(A) - ai<f>(\ - X') - 6(X \ R™)\.
A(^0)

vol. 34, n° 3, 2000
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In view of the above expression, it is reasonable to use Proposition 2 to dérive
a primai step which would help to compute the itération of the proximal
method. The penalty function that is natural to consider is:

Note that P(-,A, a) is the convex conjugate of a function that is proper,
convex and inf-compact, and hence 0 G int dom P(-,A, a) (see [7],
Sect. 1.3.10), therefore we may apply Proposition 2. Moreover, this penalty is
differentiable, since it is the convex conjugate of a strictly convex function
(see [7], Th. 4.1.1).

We conclude that:

mïo {ƒ(x) + P(g(x), A\ <*)} = ymfm {v(y) + P(y, À\ at)}

= sup{F(À)-P*(À,À>2)}.
A>0

Let x be a point where the infimum on the penalized primai problerh attained.
It is clear that f(x) — v(g(x)). Then, if we call ü = g(x), we get the equality:

v{u) + P{û, X\ ai) = mfm {v(y) + P(y, A\ ax)}

= sup{F(A)-P*(A,Ai,a,-)}.
A>0

From Theorem 4 we know that

Based on these ideas we can formulate the foUowing primal-dual method:

Generalized augmentée Lagrangian

1. Initialization: Take any À1 dualfeasible and 5 a positive real number.
2. Itération:

• Chose 0 < a% < a and calculate an optimal solution xl of the
problem:

f min f(x) + P(^(x),A\o!l)
l s.t. xeX°

where

Recherche opérationnelle/Opérations Research
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• Stop ifXi+1 = .A* (3).

Now, we can formulate the main resuit of this section:

THEOREM 5: If the penalized primai problems have optimal solutions, then
the proximal point method applied to the dual problem is equivalent to the
generalized augmenîed Lagrangian method. This implies that every limit point
ofthe generated séquence, {A*}^M, is a solution to the dual problem.

Proof: It is a direct conséquence of the arguments présentée! before the
algorithm and the convergence of the <̂ -PPM (Th. 1). D

The above results lead us to ask if the generated séquence, {A 1 }^N, has
any accumulation point. The next theorem is well known and guarantees the
existence of accumulation points.

THEOREM 6: The level sets of the dual objective function are compact if,
and only if Slater's constraint qualification holds.

Proof: For a proof see [5]. •

The above results correspond to convergence theorems for the dual
problem, but our main objective is to solve the primai. Hence, we need
to show that any accumulation point of the unconstrained minima calculated
in the augmented Lagrangian method, {a;2}^^, is a solution to the original
problem (P).

4.3. Primai séquence

We first present a condition that guarantee the existence of the primai
séquence:

PROPOSITION 4: Suppose that dom^> = Rm. If the solution set of(P) is non-
empty and bounded, then the level sets of the functions ƒ(•) + P{g{-)1 A, a)
are compact for ail X ̂  0 and a > 0. This implies that the primai step in the
generalized augmented Lagrangian is well defined.

Proof: This proof is a generalization of the proof of Proposition 5.7 in [2],
considering hère non-separable functions. It is presented in the appendix. D

(3) In this case A* is a dual solution, as it would be a fixed point of the
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Finally, we show the main convergence theorem for the primai séquence
computed by the generalized augmented Lagrangian:

THEOREM 7: Let {(x\ AZ)};€N be a séquence generaled by the generalized
augmented Lagrangian method. If the primai problem satisfies Slater's
constraint qualification, then

limsupg{x%) < 0,

and f(x%) converges to the optimal value of the primai problem, v{0).
Therefore, any accumulation point of the primai séquence is a solution to
the primai problem.

Proof: The boundedness of the dual séquence and Theorem 1 imply that
A2+1 - A2^0. Hence, V7 ; G d<j>{\i+1 - A2'), 7J->0.

Using the algorithm, we know that:

)y X\ai) & gtf) E d(a^(A'+1 - V) + S(A2+1 | R?)).

This is equivalent to the existence of subgradients 7^ G <9</>(A*+1 — À1) and

JÎ G d6(Xi+l I R!£), such that

g(xi) = ai<yi + <yl (5)

Since Y6 < 0, we have:

limsup0(2:*) ^ lim a^l = 0.

Moreover, the définition of 7^ implies that (7^, A*+1) = 0, and then

Hm <A'+1, j7(aÓ> = Hm ( A ^ 1 ^ ^ ) - 0,

where the last equality follows from the boundedness of {A*},€N

{aj}i€N, and 7 ^ 0 .
Finally, we prove that f(xï)^v(0). The définition of A*+1, implies that xl

is the minimum of the ordinary Lagrangian with Ai+1 as multiplier, hence

1) = /(a;i) + (V+1,f l(x i)>. (6)

Recherche opérationnelle/Opérations Research
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Using Corollary 1 and the strong duality theorem, we conclude that:

t/(0) = lim F(À2+1) = .lim ƒ(&*) + 0 .
i—»oo i—*oo

We end this section by presenting a condition to the boundedness of {#2}ieN-

PROPOSITION 5: Suppose that the primai problem satisfies Slater's constraint
qualification and let {xl}iç^ be a séquence computed by the generalized
augmented Lagrangian method. If the solution set of (P) is non-empty and
boundedy then {x1}^^ is bounded.

Proof: This proof is a generalization of the proof of Proposition 5.10 in [2],
considering hère non-separàble fonctions. It is presented in the appendix. D

5. FINAL REMARKS

The results presented hère can be viewed as twofold: the présentation
of a new class of proximal point methods (including a strong resuit on
imprécise inner loops) and the corresponding introduction of a new class
of augmented Lagrangians.

5.1. The <£-PPM

It should be noted that the classical proximal point method [20] is
equivalent to <̂ >-PPM with the choice <f>{x) = ||#||2.'In this ,case, Féjer
monotonicity of the séquence generated by the algorithm with respect to
minimizers set has been shown in [10, 12]. A trivial exercise is to show
that Féjer monotonicity also holds for <f>[x) — ö(||x||2) where 6 : R —•> R
is differentiable convex function, strictly increasing on R+. This is a direct
conséquence of a chain rule for subdifferentials in [7] (Th. 3.6.1). For these
fonctions, the convergence of the séquence generated by the algorithm is
guaranteed if the solution set is non-empty.

For more gênerai regularization fonctions, Theorem 1 states that if there are
accumulation points, all of them are solutions to the minimization problem,
as usual in Nonlinear Programming algorithms.

An interesting point is that the result of Theorem 1 holds even if we
compute the proximal step inexaetly, with a non-vanishing précision, as
stated in Theorem 2.

5.2. Augmented Lagrangians

The class of augmented Lagrangian methods presented here can be seen
as a generalization of the P% class described in Bertsekas [2]. The main
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différence is that we do not impose coerciveness, Le. we do not consider that
the derivative of the penalty, VyP(y, À, a), must go to infinity as |jt/||—»oo.
This is true as we can use a regularization whose effective domain is not
Rn. Typieally, this allows for penalties that are asymptotically affine or even
affine away from the origin, allowing for a potential bridge between the
penalty functions here presented and exact penalties (4). Examples of the
penalties are presented in Figure 1.

- 2 . - 1 0 1 2 3 4

-1
-2 -1 0

Figure 1. - Type of penalties: (A) the classical penalty, used in the standard augmented
Lagrangian. (B) The penalty P(x, X) = xX + f a;f, derived from <f>(x) = \xA. (C) The
regularization function used is the classical <j>(x) = \x2 only in a interval containing
the origin. Outside this interval the function is considered equal to +oo. This makes
the penalty affine above a threshold point (2, in the example). (D) This penalty was

generated using the regularization <j>{x) = - ln(cos(a;)), Since </>r(x) - tan(a;), the
penalty, will have bounded slope and asymptotically converges to an affine function.

Another strong point in the above results is that the optimality of the
primai accumulation points was easy to obtain, which is not the case when
we consider augmented Lagrangians associated with proximal point methods
based on Bregman distances or (^-divergences. This positive aspect can

(4) See Bertsekas [2], Chapter 4.
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be seen as a conséquence of the fact that the </>-PPM keeps the shape of
the regularization instead of changing it to impose coerciveness near the
boundary of R+.

Another différence between the Pg class and the penalties presented hère
is that separability is not imposed, although it is natural to use separable
penalties due to computational considérations.

A drawback of the augmented Lagrangian methods we introducé, is that
the penalty fonctions are not twice differentiable on Rn, due to the addition
of 6(- | R+) to the regularization term that générâtes such fonctions.

APPENDIX A. EXISTENCE AND BOUNDEDNESS OF THE PRIMAL ITERATES

We present the proof of Propositions 4 and 5, based on the concepts of
recession directions and recession fonctions as presented in [18], Chapters 8
and 9, whose notation we preserve. Initially we introducé the notation:

DÉFINITION 3: For any a > 0 and À ̂  0, we will use the following notation:

where P(-,À,a:) is defined in Section 4.2.

LEMMA 2: Suppose that dom<£ = Rm and that 3x, g(x) ^ 0. Let a > 0
and À ^ 0. Let 1Z C Rn dénote the intersection ofthe sets of all directions of
recession of all the components ofthe constraint function </(•). Then,

, ifheU;
o, ifhgn.

Proof: Given any proper closed convex function, ƒ(•), we have by
définition:

-prx _|_ tfi) _ ƒ (ar)
1 T (7)

for any x G dom ƒ and any h G Un.
Note that, from the définition of the penalty, it is easy to show that

P\,ct(y) ^ 0 for ail y £ 0, A > 0, a; > 0. It follows that p\^{%) ^ 0.
1. h e TZ

From the définition of the penalty we have:

pA)a(0 ^ -a<f>(-\). (8)
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And, since h G 1Z:

g(x + th)<g(x), Vt>0.

Using the last two inequalities and the fact that the penalty is
non-decreasing we conclude that:

- a ^ ( - A ) - PA,a(£) ^ V\,a{* + th) ~ PA,a(*) ^ 0, Vt > 0.

It follows (from 7) that:

2. fcj^Tl.
Without loss of generality we will suppose that h is not a direction
of recession of <?i(-)-

9iO+(h) >6>0,

Let e1 = ( 1 , 0 , . . . , 0 ) * G Rm . Then,

= sup {<#(x + t/i), z) - a;^(z - A)} - p\ta(x)
^0

't sup {{g(x + t/i), A + 7e1) - a0(7e1)} - p\i<x(x)
7>0

= (g(x + th),\) + sup {7^1 (x + t/i) - a0(7e1)} -pA,a(
^0

Dividing both sides by t and taking limits for t—>oo we have:

> + Hm

As gi0+(h) > 6, this can be further simplified to:

ï (g0+(h),\) + lim

As the recession function of a proper convex function is proper, we
only need to prove that the limit above is 00.
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To prove this assertion, given an M > 0, let IM be big enough such that
<f>{^el) < M. It follows that for all t > tM'

sup
7>o

<j6 > ̂  —— 8 - M ^ M .
l * J o

D

PROPOSITION 4: Suppose that dom</> = Rm. /ƒ fAe solution set of (P) is
non-empty and bounded, then the level sets of the functions /(-) + P(*,A,a)
are compact for ail À ̂  0 arcd a > 0. 77z/s implies that the primai step in the
generalized augmented Lagrangian is well defined.

Proof: From the previous lemma and Theorem 9.3 in [18] we have that:

o, ]fhg Tl.

Remembering that the assumption that the solution set is compact implies
that ƒ0"1" (h) > 0 whenever h G 7Z, we get the desired resuit. D

Note that the assumption dom <f> — Rm seems to be essential. It is already
present in [2] (p. 306) in the form of items (f), (g) and (h) in the description of
the Pj class. More recently, in [1], this assumption corresponds to recession
properties of the penalties 0 and to the choice of the parameter a(r).

As an example, consider the problem

ƒ min x
\ s.t. -2x ^ 0

and <f>(\) = —y/\ — À2,dom0 = [—1,1]; it is possible to show that

f(x) + P(g(x), 2,1) - - 3 s + (4a;2 + :

which is a function that does not have bounded level sets. This function
goes to — oo for x-^oo, and hence the penalized problem does not have
a solution. In this case, the penalty makes feasibility more important than
optimality. This behavior would be reversed if the objective function was
lx instead of x.

Finally, we present a result that shows that the primai séquence, {
is bounded under standard assumptions.
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PROPOSITION 5: Suppose that the primai problem satisfies Slater's constraint
qualification and let {xl}iç^ be a séquence computed by the generalized
augmented Lagrangian method. If the solution set of (P) is non-empty and
bounded, then {x*}^^ is bounded.

Proof: From Theorem 7 we know that g(xl) is bounded from above.
Therefore, {a;*}i€N ls contained in an intersection of level sets of the all
constraints.

Suppose, by contradiction, that { V } ^ M is unbounded. Since the solution
set of (P) is non-empty and bounded, it follows that if f(xl)-^oo, since,
otherwise, at least one of the accumulation points of TT̂TT would be a common
direction of recession the objective function and the constraints. But this is
a contradiction with ƒ (V)—^(0) e R, proved in Theorem 7. D
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