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COMPARING CLASSIFICATION TREE STRUCTURES:
A SPECIAL CASE OF COMPARING g-ARY RELATIONS II (*)

by LC. LERMAN (l) and F. ROUXEL (l)

Abstract. - Comparing q-ary relations on a set Ö of elementary objects is one of the most
fundamental problems of classification and combinatorial data analysis. In this paper the spécifie
comparison task that involves classification tree structures (binary or not) is considérée in this
context. Two mathematical représentations are proposed. One is defined in terms of a weighted binary
relation; the second uses a 4-ary relation. The most classical approaches to tree comparison are
discussed in the context of a set îheoretic représentation of these relations. Formai and combinatorial
Computing aspects of a construction method for a very gênerai family of association coeficients
between relations are presented. The main purpose of this article is to specify the components of
this construction, based on a permutational procedure, when the structures to be compared are
classification trees.

Keywords: Classification tree, relations, mathematical représentation, random permutational
model.

PRELIMINARIES

This paper is the direct continuation of the one published with the same
title in a preceding issue of this journal (see RAIRO Oper. Res. (1999) 339-
365). The first article gives a gênerai methodology for building association
coefficients between classification trees, interpreted in terms of spécifie
combinatorial relations on an object set Ö, Known association coefficients
for the concerned comparison, are situated with respect to this gênerai
methodology. Otherwise, we have shown in the context of this methodology
the spécifie interest of the valuation given by the mean rank function defined
on the ultrametric preordonnance associated with a classification tree (labelled
and ranked dendrogram) (see Sects. 3.1 and 4 of the previous paper). In this
context we have proposed a new corrélation coefficient p(a, (3) (see 52)).

(*) Received April, 1997.
(*) Irisa - Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France.
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2 5 2 I.C. LERMAN and F. ROUXEL

Instead of the expression (53) let us consider hère a corrected and more
accurate version of p(a , (3):

, ( t t , a =

where

and Ww = Bw - i (p + l)2 ,

where

and

with

o; = a or f3.

As announced at the end of the first paper, we have now, to precisely
establish a new coefficient between two classification trees according to the
described gênerai construction method, but in adopting new mathematical
représentation (coding) of a classification tree. Let us recall (see the end of
Sect. 3.1 of the preceding paper) that this coding consists of representing a
classification tree on an object set O, by a spécifie subset of P x P, where
P désignâtes the set of unordered object pairs from O. One interest of this
paper consists of clearly specifying the components of the combinatorial and
algorithmic aspects for the exact calculation of the mean and variance of
the random raw coefficient (see below). Another substantive point concerns
the simulation of the probability distribution of the random standardized
coefficient that we have denoted by Q^a^P*) (see the end of Sect. 4 of
the preceding paper). The paper concludes by evocating the most gênerai
case of comparing g-ary relations on an object set O, where g is a given
arbitrary integer.

For convenience reasons, I will dénote below by I the first paper.
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COMPARING CLASSIFICATION TREE STRUCTURES 253

1. PERMUTATIONAL APPROACH FOR COMPARING CLASSIFICATION TREES;
THE SECOND COMPARISON METHOD

1.1. Introduction

We adopt here the strict mathematical représentation (coding) of a
classification tree u9 described in the last part of Section 3.1 of I. Let
us recall once again, that we consider the ultrametric preordonnance UV{UJ)

associated with u and which is a spécifie total preorder on the set P
of unordered object pairs (see (15) and above of I). Reconsider here the
notations given by (14) and (24) of I for P and for the set R{ui) defining
the représentation of u/. Namely,

and L{i,j)<L(i',j')} (1)

where L is the level function defined by the u tree.
Recall that we have, without risk of ambiguty, denoted by u) the indicator

function of u) (see (26) of I that we retake here):

for every ((t,j), (»'ƒ)) € P x P.
In these conditions, the raw similarity index associated with the comparison

of two trees a and /3, has the following expression

S'(a,/3) = E {a({i,i}, ({*',ƒ } ) / ( { , j } , { , ƒ } )

I { M } , {*',/}) £JxJ} (3)

where J = {{$, j} | 1 < i', ̂  j < n} is the set of all unordered element
pairs of / = {1,2,. . . , i , . . . ,n}. J codes P.

As previously and according to a genera! symmetry property, «'(a,/?*),
5A(a*,/3) and s^a*,/?*) - where a* and /3* are independent random trees -
are equivalent versions of the same random raw index. Then, let us consider

I ({*,;}, K , / } ) G / x J } , (4)

where - as usual - r is a random permutation in the set Gn all permutations
on /, equally distributed.
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254 I.C. LERMAN and F. ROUXEL

In order to obtain the standardized index

(5)

we have to compute the exact values of E[sf(a,{3*)] and £[(V(a,/?*))2];
where - as usually - E désignâtes the mathematical expectation.

1.2. Mathematical computing of ü7[s'(a*,/3*)]

Equivalently, consider the computing of mathematical expectation of
s'(o!,/3*). For the latter, it is necessary to décompose J x J a s follows:

J x J = A + G + 'H (set sum) (6)

where

G = {({i ,j} , {*,*})} and (7)

In these expressions, distinct symbols indicate distinct éléments of I and we
have the following équations:

rcard(A) = p = n(n -

card (G) = n(n - l)(n - 2) (8)

ĉard (H) = n(n - l)(n - 2)(n - 3)/4.

Therefore, E[s'(a,(3*)] can be written:

z), r(k)})\

(9)

H

because, the sum over A vanishes.

By denoting n^l = n(n — 1) x . . . x (n - x + 1), for an integer x, the
following result can be established (the detailed proof is left to the reader):

THEOREM 1:
[4]

[ ' * p ] l 3 ] G ) G ) ^ ) ( ) ( )
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COMPARING CLASSIFICATION TREE STRUCTURES 255

where iru(G) (resp. 7rw(fT)) is the proportion of G—éléments ({i, j } , {i1 k})
(resp. .ff—element ({i1 j } 5 {&, /})) for which i and j are joined strictly before
i and & (resp. k and I) in the utree^u — aorfj.

We may qualify a G (resp. H) - element, as an "attested" cv G (resp. iJ) -
element; if the latter is counted in the numerator of the above
TT^G) (resp. 7rw(iJ)) proportion. Hence, the problem arises to have a
method for determining the number of attested u G (resp. H) éléments.
These numbers depend strongly on the u tree shape (tv = a or /3). They can
be denoted by n^G) and nw(üf); and then, obviously, we have:

, n f , f .. and
n(n-l)(n-2)

n ( n - l ) ( n - 2 ) ( n - 3 )

Clearly, each subtree of u as (a) (see figure below) does incrément nu(G)
two unities; one for ({*,.?"},{*,&}) and one for ({i,i},{i,fc}). Then twice
the number of such u> subtrees gives nu(G).

On the other hand, each o; subtree of the following forms (b), (c), (d) or
(e) (see figure below) intervenes in counting nw(iï): once for (b) or (c);
but three times for (d) or (e). More explicitly, the contribution of (b) or (c)
to nw(jET) is given by ({^j}, {&,£}) an(l t n e contribution of (d) or (e), by
({hJ}AkJ})A{hk},{jJ}) and ({j\*},{*,/}). Therefore, n^H) is the
total number of subtrees having the forms (b) or (c) with addition of three
times the number of trees having the forms (d) or (e).

(a)

Figure 1.

In Section 3.1 of I we have given a characterization of the tree shape
of a classification tree ÙJ by means of what we have called the indexed
type of u) and that we have denoted by t(uj). Clearly nLJ{G) and nw{H)
depend only on t(u).

However, it seems very complicated to dérive mathematical formula for
nu(G) and nw(JH

r). An appropriate solution for this problem is an algorithmic
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256 I.C. LERMAN and F. ROUXEL

1

Figure 2.

one. The specified algorithm has to enumerate all the OJ subtrees of the above
forms (a), (b), (c) and (d). The same type of problem will arise, in much
more complicated version, in case of computing the variance of s'(o;*, ƒ?*).

1.3. Algorithmic computing of E[s'(a*, f}*)]

Consider a classification u; tree (ÜJ has to be instanciated by a and next by
ƒ3 to perforai the above calculations). To make clear the gênerai principle of
the computing we begin by treating the easiest case of the exact évaluation
of nu(G).

In this case, we have to enumerate how many times the above tree form
(a) (see Fig. 1) can be retrieved in the whole tree UJ. AS an example, the
following figure (Fig. 3) gives some of the fashions for retreiving the tree
form (a) in the following u tree (Fig. 3). As expressed above (see below)
each way of finding (a) in u is counted two unities in nLJ{G),

A direct method for the exact évaluation of n^G) consists of:
(i) generating the set Pz(O) of all subsets with 3 éléments of the object

set O;
(ii) considering for each subset {ar, y,z}, the restriction of the UJ tree on

this subset with 3 éléments;
(iii) adding 2 or 0 to an integer variable NU(G), whether the UJ subtree

on {x,y,z} has more than on Ie vel or not.

Recherche opérationnelle/Opérations Research



COMPARING CLASSIFICATION TREE STRUCTURES 257

Figure 3. - Some ways for finding the tree form (a) in the below w tree.

Figure 4. - Tree u.

Thus, the final value of NU{G) is nw(G). The computational complexity of
this procedure is clearly n(n — l)(n — 2)/6 and then, it order is O(n3). This
method is qualified as enumerative.

The set up method (Rouxel 1997) is a recursive one. The recursion
consists in

(i) positionning the root of the tree form (a) at a given node of the
whole tree u;

vol. 34, n° 3, 2000
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(ii) selecting two descendant branches from the concerned node (there
might exist only two branches of which this node is the origin);

(iii) developing the left and the right sides of the tree (a) on, respectively,
these two branches taken in a certain order; and mterverting the
respective rôles of these two branches for the development.

This development leads to the enumeration of the set of the "attested" uG
éléments. For example, the result of the development in placing the root of
(a) at the node designated by an arrow (see Fig. 4) is

2 x (1 x 3 + 3 x 2) = 18,

the first order taken for the two branches being (left, right).

In case of a completely balanced m-ary tree, the order of the computational
complexity of this procedure is shown to be O(n logm n). Even more, by
preserving some informations at each node of the UJ tree, the complexity
order can decrease until ö(n) (see the above référence for this point and
for all that concern the algorithmic aspects). More completely we have the
following table established in case of a completely balanced m-ary tree with
n leaves (n = mk where k is an integer):

direct version

accelerated
version

(a)

O(nlogm(n))

Ö(n)

(e)

O(nlogm(n))

O(n)

(d)

O(nlogUn))

O(n)

(b)

O(n2logm(n))

O(n*)

(c)

O(nlogm(n))

O(n)

Figure 5. - Table of the computational complexities.

This table gives the computational complexities of the preceding algorithm
for determining how many times a given tree form ((a), (6), (e), (d) or (e))
can be retrieved in the whole u; tree. Level constraints are included in the
tree forms. Thus for (b) the junction between k and l occurs later than that
between % and j . Consequently the algorithmic search is more extensive in
this latter case than for (e) where the whole tree form results from the fusion
of two component forms without any level considérations.

The algorithmic procedure and the above équation (10) have been verified
by generating all the n! permutations for moderate sizes of n (e.g. n = 8).
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1.3.1. Computing of var[s'(a*,/3*)]

We have to evaluate exactly E[(sf(a*,/3*))2]. The direct expression of
this mathematical expectation is given by:

£ WK J}, K, ƒ » «({*",/'}, K", ƒ"})

(12)

*,i},K, ƒ}),({*",ƒ'},{*'",ƒ"}) e (J x J) x (J x J)}.
In order to detect invariance properties, we have to décompose the set
(J x J) x (J x J), over which the sum is, according to the structure of

This structure is defined from répétitions of / éléments in the couple
of couples of unordered element pairs of / . Each structure détermines a
"configuration". As an example consider the following one, where distinct
symbols indicate different éléments of / :

it belongs to H x G (see (51) of I). This configuration defines a class
of H x G which comprises n(n — l)(n — 2)(n — 3)(n — 4)/2 éléments.

Therefore and first, décompose ( J x J - A) x ( J x J - A ) according to
the bipartition of J x J - A into the two classes G and H:

( J x J - A) x ( J x J - A)

= G x G + G x H + H x G + H x H ( s e t s u m )

(14)

and split each of the four classes into subclasses respectively associated
with the different configurations. The detail of all the configurations and
the number of represented éléments for each of them is explicitly given in
Section 3. The table of Figure 6 gives the number of configurations included
in each of the above subsets (see (14)).

set

number of configurations

GxG

34

GxH

25

H xG

25

HxH

26

Figure 6. - Table of the configuration numbers.

Now, let us designate by C, the set of ail configurations. According to the
above table, C comprises 110 éléments; and C can be generated according

vol 34, n° 3, 2000
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to the above décomposition into four classes. If c is an element of C and
C = C(c) the associated subset of ( J x J - A)2; by denoting m(C) the
cardinality of C, we may express the following property:

THEOREM 2:

2 E «(c) M<0, (15)
cec

where 7rw(C) is the proportion of C-elements [({*\i}> {«',ƒ}),
({*'',ƒ'},{*'",ƒ''})] belonging to (P x P) x (P x P) for which the
first and the third pairs ({i, j } and{z", ƒ'}) are joined strictly before the
second and the fourth pairs {i ' ,/}and{éw

5 ƒ"} , in the o; tree, o; = aor/3.
Basically the proof of this property has the same nature as that of

Theorem 1. Ho we ver much more complicated structures intervene for
grouping the terms of the above sum (see Sect. 3).

Consequently, we have to enumerate the set of C-elements for which
the stated condition of the above theorem, holds. For this purpose, we
have to introducé the notion of a c-compatible type of an o; subtree.
The number of leaves of the latter is the number of distinct éléments
which intervene in the c configuration, it is comprised between 3 and
8; 3 in case of [({i, j}> {i>k}), ({i, j } , {i,fc})] type and 8 in case of

[({*> j}> {&> '})> ({P> <z}> (r>s))] lyPQ' In ^ e la t t e r an(l a s previously, distinct
symbol letters indicate distinct éléments of I.

On the other hand, it is required for the compatibility condition that there
exists at least one element of C — C(c) which can be built from the leaves
of the u) subtree and such as the theorem above condition holds.

As an example, consider the following c-configuration which belongs to
H x G:

First, in order to illustrate the calculation of m((7), notice that we have here

m(C) = n(n - l)(n - 2)(n - 3)(n - 4)/2,

since there are ( j x ( ] fashions for instanciating the first

ordered pair of unordered object pairs ({i, j } , {k}l}). With respect to this
instanciation that we dénote by ({ioijo}> {ko-> lo})* there are two possibilities
for placing the components of the first pair in, respectively, the two following

Recherche opérationnelle/Opérations Research
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pairs; namely ({zo, m}, {jo, m}) or ({jo, m}, {z0, m}). And finally, we have
(n — 4) choices for specifying m.

We are going now to illustrate two cases (among others) of compatible
trees. For each of them we will give the number of times where the above
configuration c is instanciated.

The first compatible tree which is defined on the set {x, y, z, u, v}, is the
following (Fig. 7).

It is easy to see that the subset {i, j , m} must be instanciated by {x, y, z}.
On the other hand, the repeated element m, that we can call a pivotai element,
is necessarily x or y. And then we have the two following instanciations of c:

and

(({x, 2}, {u,v}), ({x,y}, {y,z})).

The second compatible tree which is also represented on the set {x, y, z, u, v}9

has the following form (Fig. 8). It gives rise to eight instanciations of the
above c-configuration. To realize that, begin by constituting the right ordered
pair of unordered element pairs ({i, m}, {j, m}), where m indicates the
pivotai element. For this purpose, we have to choose a subset of size three
in the set {x, y} z, u}. Afterwards we have to choose on among two possible
éléments. As an example, consider the 3-subset {x, 2, u}, the pivotai éléments
can be x or z. Therefore, the eight instanciations of the configuration c can

Figure 7.

vol. 34, n° 3, 2000
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be expressed as follows:

(({y, z}, {u, v})} ({x, y}, {x, z}))
{{{x, z}, {u, v})y ({x, y}, {y, z}))

, u}, {z, v}), ({ar, y}y{y, u}))

(({y, u}, {ar, v}), ({y, z}, {z, u})).

x y z u v

Figure 8.

Therefore, for a given configuration c and an CJ tree, the gênerai
enumeration method can be decomposed as follows:

• dérive ail types of c-compatible subtrees;
• for a given type, détermine how many subtrees of this type there are,

in the whole u tree;
• for a subtree of a given type, détermine how many countable éléments

of C(c), it doe give rise.
Let us consider one more example for which the number of éléments of
C(c) associated with a c-compatible u subtree, is rather big.
Relative to the following c-configuration, belonging to H x H:

the following subtree is c-compatible (Fig. 9).

We focus hère on the pairs {i,j} and {iyp} which respectively are
the first components of both ordered pairs of object pairs ({i, j } , {&, /}) and
({i,p}, {#, r}). The subset {z, j ,p} has necessarily an empty intersection with
the subset {u,v,w,t}. Because if not, it would be impossible to constitute
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{k,l} or {g,r} with the conditions {i,j} < {kj} and {i,p} < {q,r},
according to the tree structure. Therefore {i, j,p} is identical to {x,y,z}.
In these conditions, there are six possibilities for forming ({i, j } , {i,p});
namely:

({xJy},{x,z})i ({x,y}> {y,z}), ({xyz}, {x,y}), {{x,z}y {y,z})9 {{y,z},
{x,y}) and ({y,z}9 {x,z}).

Figure 9.

/ 4 \
For each possibility, there are 2 x I = 12 choices for forming

\ /
({fc,Z}, {ç,r}), where necessarily {fc,Z,g,r} = {u,v,w,t}.

Then in all, there are 72 instanciations of the above configuration, from
the above tree.

Now, let us dénote by Tu{c) the set of all u subtrees types compatible with
the c configuration. If tw(c) is a given element of Tu(c), we may designate
by n[ia;(c)] the number of times for which the type £w(c) is instanciated in
the whole UJ tree. For a given instanciation, Z[£w(c)] indicates the number
of distinct replications of the c-configuration, which can be obtained in a
compatible way, from a given tu(c) subtree. In these conditions, the cardinal
- that we dénote by m(u;, C) - which defines the numerator of the ratio
7rw(c), can be put in the following form:

Y, n[tUc)] x l[Uc)}. (16)
tw(c)eTw(c)

vol. 34,. n° 3, 2000
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Hence, we may state the subséquent property:

PROPERTY 1: Relative to a given configuration c, the proportion of c-éléments
compatible with an w-tree can be expressed by

m(u,C)
= M C )

where the different components of this équation are specified above.
Mathematical expression for m(C) can be provided without great difficulty

(see above and Sect. 3). As for the détermination problem of nUJ(G) and
n^(H) (see Sect. 1.2), tractable analytical formula for m(a;,C) depending
on the CÜ tree shape, seems to be very hypothetical to obtain. And that, even
characterization is provided in order to capture formally the u tree shape.
Recall that such a characerization has been proposed in the first part of this
article (see Sect. 3.1 of I).

1.4. Algorithmic Computing of var[s'(o:* ,/?*)]

The problem is reduced to the détermination of the number of occurences
of a given tree structure (ranked but not labelled dendrogram) on few
éléments, that we dénote here by o (see Fig. 9 for an example), in a whole
tree (labelled and ranked dengrogram) denoted by o;.

As for the computing of the mathematical expectation (see Sect. 1.3) a
recursive procedure is retained with two main steps. The former consists of
assigning the root of the small tree o on a given node of the u tree (starting
by its root) and the later step consists in developing the substrees of o along
the respective branches of the whole tree w.

The purpose of this part of the algorithm is to détermine how many times
the form of the o tree is encountered in the u tree, independently of level
conditions. For example, by considering the assignment pictured in Figure 10
we obtain 2 x 4 x 2 x 4 x 2 = 128 occurences of the o tree form. More
formally, we obtain this occurrence number by multiplying the respective
numbers of the leaves of the o tree which underly the nodes where the
leaves of the o tree are positionned.

However, a given assignment of the o tree shape in the o tree has not to
be retained if the level conditions of the o tree are not ordinaly respected in
the cv tree. To fix ideas assume the increasing séquence of the levels of the
o tree numbered by the first integers 1, 2, 3, . . . Thus, the fusion level of
two given leaves defines a version of their ultrametric ordinal proximity.

Recherche opérationnelle/Opérations Research



COMPARING CLASSIFICATION TREE STRUCTURES 265

Strictly, the leaves of the o tree have not to be labelled. However for
clarity reasons we consider a canonical labelling depending on their mutual
ultrametric proximities distributions. More precisely, the first leave labelled
by 1 is that for which the variance of its ordinal ultrametric proximities to
the other leaves is maximal. The other leaves are then labelled increasingly,
according to their ultrametric ordinal proximities to this first leave. The
process is recursively repeated for all subsets of equally distant éléments.

As a matter of fact the o trees are derived from their ordinal ultrametric
matrices. These are generated thanks to a theorem and the associated
algorithm given in (Lerman 1981, Chap. 0, Sect. IV.2). This theorem
characterizes a reduced form of an ultrametric distance matrix which can be
obtained by the described algorithm. The algorithm we propose here, giving
to the ordinal ultrametric matrix its canonical form, is in fact a spécification
of the previous one.

In Section 3 we have specified all the configurations of an ordered pair
[({x,y}, {*',</}), ({*",»"}. {*'",&"'})] belonging to (P x P) x (P x P) of
which each component is by itself an ordered pair of unordered object pairs.
We have also given the respective cardinalities of the different configurations.
These configurations are grouped into four gênerai catégories GxG, GxH,
H x G and H x H expressed in the above table (see Fig. 6).

As above, for a given configuration c,C — C(c) désignâtes the subset of
(P x P) x (P x P) corresponding to c. Let us now dénote by NU(C) an
integer variable representing the number of distinct éléments of C met during
the algorithm process. The final value of Nu(C) is the number nu{C) of
( P x P ) x ( P x P ) éléments having the c configuration and for which the
ordinal conditions of Theorem 2, hold.

Consider now an o tree on e éléments, associated with an ordinal
ultrametric matrix having its canonical form. A priori e is comprised between
3 and 8. However as it will be seen just below, it is possible to avoid the
treatment of the case e = 8. This omission will not have any effect on
the exact calculation of the cardinalities nw(C) and will notably reduce
the computational complexity. Consider also the set of the configurations c
for which exactly e distinct objects intervene. We dénote by ce a current
configuration of this set and by C€ the subset of (P x P) x (P x P) éléments
for which the configuration is ce.

For each assignment of the o tree in the u tree respecting simultaneously
the form and the ordinal level conditions of the o tree, the respective
values of the different variables N^Ce) are incremented. More precisely,
each iVw(Ce) is incremented by the number of instanciations which can
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be obtained from a given assignement of the o tree. Notice that for each
such assignement, the leaves of the o tree are identified in the UJ tree by
objects of O.

As mentionned above we have not to consider directly the contribution
of the o trees with 8 leaves. Indeed this contribution can be deduced by
différence according to the following argument and the subséquent équation
(see (20)).

According to the above notation n^ÇH x jEf) désignâtes the number of
(H x H) éléments for which the stated condition of Theorem 2 holds. We
clearly have

xH)x(Hx H)} = [nu[(H)f (18)

where nu(H) has been defined in Section 5.2.
On the other hand, we have the following décomposition

nOJ[(HxH)]=Y,MC(c)} \ c e V} (19)

by denoting V the set of ail configurations which intervene in (H x H).

1 2 3 4 5 6 7 8 9 10 11

V / \ / V V

Figure 10. Example of grouped solutions for the assignement.
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Otherwise, an o tree with 8 leaves does only contribute with respect to the
set Cg corresponding to the configuration [({i,j}, {&J}> {im,n}, {p, q})]
which includes 8 distinct objects. Therefore

} | c e v - {c8}}- (20)

From the gênerai above considérations we may outline the séquence of the
main stages of the Computing algorithm:

1. génération of all the ultrametric matrices reduced to their canonical
forms on e éléments, 3 < e < 7. These matrices are grouped by
classes according to the number e;

2. association with each matrix an o tree (ranked dendrogram);
3. for a given o tree with e leaves, détermine the instanciations of its

form in the LU tree;
3.L for each potential instanciation, check the ordinal condition levels

of the o tree in the u) tree. If this condition is not satisfied» delete
all the instanciations of this form (see Fig. 10);

3.2. if the preceding condition holds in the u; tree, consider for
each configuration ce the number of its instanciations for one
instanciation of the o tree in the u; tree. By denoting no(ce) this
number, incrément the variable i\^(Ce) (see above) by:

nw(o) x no(ce)

where nu(o) is the instanciation number of the o tree in the
whole o; tree.

We have analyzed (see Rouxel 1997) the computational complexity of this
algorithm by evaluating the number of solutions of what can be considered
as the worst case. For this, the shape of the o tree is that of a likecomb tree
and the u tree is a binary completely balanced tree.

As usually we dénote by e the number of leaves of the o tree and by n that
of the u tree. If k is the number of levels (or the depht) of the u tree, then
n = 2k\ and the j t h level includes exactly 2k~i nodes, 0 < j < k. On the
other hand, the depht of a comblike tree with e leaves, is e — 1. It is shown
(see the above référence) that the number of compatible assignments of the
o tree on the w tree can be approximated by n(log2 n)e~2 . This number
vanishes if k is strictly lower than e — 1.

The following diagram compares the behaviours of the computational
complexities of the above proposed solution with the enumerative one of
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Comparaison des deux méthodes

10 11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 7

Figure 11. - Comparison between the two algorithmic solutions, the horizontal axis represents
the number of objects (+7) and the vertical axis represents the cpu seconds of time.

whieh the gênerai principle is given in Section 1.3. For this latter solution
we have to generate all the sets enumerated in Section 3, except the last
one (Sect. 3.3.5).

Nevertheless, because of the large number of the o trees, the computational
complexity becomes too high when n increases substancially; for example,
for n about 100. Anyway, for our problem of classification trees comparison,
one may limit this comparison to the most interesting parts of these trees
by only retaining the last levels of both trees. This truncation may consist
of deleting the first levels, starting with a significant partition for each
classification tree, with more or less the same number of classes (Lerman
and Ghazzali 1991). This pro vides a major simplification in determining
m(uj}C) (see Eq. (17)) by an algorithmic manner. Roughly speaking, the
number n is replaced by the number of leaves of the retained tree» where
each leave represents an object class.

1.5. Simulations of the probability distributions of £?4(a5/3*)

All the n! permutations have been generated for small n. Thus, as it was
for the équation (10) giving the mathematical expectation of the random
raw index s'(a,/3*), that (15) which gives the 2nd absolute moment of this
random index, has been exactly verified. Différent values of n going from
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8 to more than 30 have been considered. For n not enough small, a set of
random permutations have been generated as independently as possible.

The objective consists in realizing the gênerai shape of the probability
distribution of the new standardized coefficient in comparison with that
denoted Qx(oc7f3), obtained in the previous paper and based on the mean
rank coding of a total preoder.

Figure 12 and Figure 13 give respectively the exact probability distributions
of Q4(a,/3*) and Q\(a,f3*) in case where a and 0 are two comblike trees
on 8 éléments. The vertical hatching density is simply related to the accuracy
of unit scale on the horizontal axis. The distribution of Q^a^fl*) seems
more harmoniously balanced than that of Q\(a,f3*). Now, if one wishes to
approximate the distribution of Q4(a, ƒ?*) by a probability law having an
analytical expression, one may suggest to use an eulerian distribution for

The two following figures concern respectively the same distributions.
Figure 14 is associated with'(^(a,/?*) and Figure 15, with Q\{a\j3*).
Here, a and j3 are two arbitrary tree structures on 30 objects chosen at
random and independently. 10000 independent random permutations are
generated to simulate the respective probability distributions. The same
above remarks hold.

The last two figures concern the case where the a and the j3 structures
correspond to comblike trees on 30 éléments. 10000 independent random
permutations have generated in order to establish the simulation have
generated in order to establish the simulation of the probability distributions
of Q4(a,/?*) and Q^(a,/?*). Here also notice the better harmony of the
distribution of Q^a, ƒ3*) with respect to that of Q\(a, /3*). Moreover, these
distributions and specially that of Qé(ot> ƒ?*) are becoming more alike normal
distribution. One reason for this fact is the specificity of the tree structure.
The second reason is related to the tree size which is not very small here.

2. COMPARING q-ARY RELATIONS AND CONCLÜDING REMARKS

Comparison between g-ary relations is outlined in Lerman (1992). In
order to situate the previous development, let us recall the éléments of this
comparison.

Let ö^ designate the set of séquences of q objects, mutually distinct.
We call such a séquence a g-uple and we indicate it by. (1,2, ...,i9), where
(ii,Z2, —liq) is a g subset of I == {l,2,. . . ,n}: the set of labels which
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coef 1 40320 permutations 2 peignes de 8 obj

Figure 12. - Probability distribution of Q4(a,^*) on all the
40320 permutations where a and /3 are two comblike trees on 8 éléments.

coef 2 40320 permutations 2 peignes de 8 obj

Figure 13. - Probability distribution of Qx(a,0") on all the
40320 permutations where a and fi are two comblike trees on 8 éléments.

codes O. The cardinality of O^ is n(n — l)...(n — q

of two weighted (valued) g-ary relations, denoted

For the comparison

(21)

(22)
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coef 1, 10000 pemutations 30 obj

271

Figure 14. - Probability distribution of Q 4 (a , /T) on 10000 random permutations
where a and fi are two distinct and arbitrary tree structures on 30 objects.

2 eme coef 30 obj 10000 permutations

Figure 15. - Probability distribution of Q\(a,f3*) on 10000 random permutations
where a and 0 are two distinct and arbitrary tree structures on 30 objects.

the raw similarity index takes the following form:

s(M, V) = X^/^i,...*, ^ . . . i , I (*i M, • • •, iq) e I[q]} (23)

where /i(resp. i/) is a numerical or logical (i.e. binary) valuation.
If fi* and ^* are independent random valuations, respectively associated

with \i and i/, under the permutational model, the random indices
s(/i,i/*) , s(/x*i/) and 5(/i*,i/*) have the same distribution law.
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Figure 16. - Probability distribution of Q4(a,j3*) on 10000 random
permutations where a and ft are two comblike trees on 30 objects.

coef 1 deux peignes de 30 éléments 10000 permutations

Figure 17. - Probability distribution of Qx(a,fi*) on 10000 random
permutations where a and (3 are two comblike trees on 30 objects.

The mathematical expectation and the absolute second moment can be
expressed as follows.

E[s(frv*)]=nMjïü (24)

where we have denoted by w$ , n(n - 1) x • • • x (n - q + 1) and where
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jl(resp. P) désignâtes the mean of the ^(resp. v) valuation of Ó^q\

0<r<q c

x I 53 "'i-u vh-û

where cr is a configuration of ((i\, Î2,. • •, iq), (j\,J2, • • • >jq)) fc>r which r
c o m p o n e n t s of (ii,i2, • • • ,iq) a r e r e p e a t e d in (ji,J2, • • • ,jq)- T h e r e a r e

r ! (26)

different configurations cr. C(cr) dénotes the set of ordered pairs of g-uples
((*i ) *2) • • • ) iq)') (ji )32) - • •, jq)) having the same configuration cr. We have

card [C(cr)} - n^1 x (ra - g)I«-rl = ra[2«"r]. (27)

The total number of configurations is given by

0<r<ç

its value for g — 4 is 209. This number is much greater than the necessary
number of configurations (110, see Fig. 6) considered in case of trees
comparison. This, because we have taken into account, in the latter case, the
specificity of the relations to be associated.

In order to calculate the mathematical expectation and variance of s(^, v*)
(see Eqs. (24) and (25)), only enumerative algorithmic method can be
envisaged. The order of its computational complexity is Ö(n2q~l). This
comes from the fact that the calculation of the cardinality associated with
the configuration comprising 2q distinct éléments can be derived from the
cardinalities associated with the other configurations relative to Hq x Hq-Hq

is the set of <?-uples including q distinct éléments. The argument is analogous
to that given in Section 1.4 (see (20)).

The importance of the scale, with respect to which an association
coefficient is established, is not enough emphasized in data analysis literature.
It is now admited and mainly evocated in the binary case (Hubert 1983;
Messatfa 1990), that the numerator of the association coefficient has to be
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centralized. The réduction proposed is often based on the maximum of the
numerator. This may give rise to very diffieult problems of combinatorial
optimization (Lerman 1987; Lerman and Peter 1988; Messatfa 1992). In our
case and relative to our latter mathematical coding, this leads to the intractable
problem of finding the permutation a which maximizes s'(a, /3(cr)) (see (3)).
For statistical reasons and according to likelihood linkage analysis (LLA)
classification method (Lerman 1993), we have adopted réduction by means of
the standard déviation of s'(a,/?*). And, we have shown that the computing
problem becomes tractable by means of a polynomial algorithmic procedure.
Approximating probabilistic distribution of s{fj,>i/*) with enough accuracy
remains a difficult problem.

3. APPENBIX: STRUCTURAL DECOMPOSITION OF (G + H) x (G + H)

We are going hère to make explicit the structural décomposition of
(G + H) x (G + H) (see Sect. 1.4) and then, to justify the content of
the table given in Figure 6. On the other hand, we will give the cardinality
associated with each substructure defining a given configuration c of an
ordered pair of which each component is an ordered pair of unordered object
pairs, such as:

An unordered object pair such as {x}y} will be denoted hère by a word
with two letters xy, of which the first letter x précèdes lexicographically
the second one y.

First recall the gênerai équation (14):

( G + H ) x ( G + H ) = G x G + G x H + H x G - h H x H ( s e t s u m )

and let us designate byWxV one of the four subsets of the right member of
this équation {14 = G or H and V = G or H). Our gênerai décomposition
strategy consists of organizing the structure of V with respect to a given
element of U. If (£, rj) belongs to 14 x V, its configuration c = c(£, rj) is
conditionned by the manner in which the objects appearing in £ are repeated
in r). The cardinality of c is the number of éléments of U x V covered by
the configuration c.

3 . 1 . D é c o m p o s i t i o n o f W x V = G x G

Let £ = (#y, xz) be a given element of G. Consider the set {ar, y, z} of the
three éléments which intervene in the constitution of f. We have to consider
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four gênerai cases according to the number of objects distinct from x, y
or z and which intervene in the construction of 77. This number can be 0,1,2
or 3; and then, the cases will be denoted according to this number. Now, we
are going to give below the different structures of 77 = (xfy*\x''z') and the
associated cardinalities of C — C(c) where c = c(£, 77) (see Sect. 1.4).

3.1.1. Structures of 77 for the case 0

• (xy.xz), card(C) = n{n — l ) (n — 2);
• (xz,xy), card(C) = n(n — l ) (n — 2);
• (xy,yz), card(C) = n(n - l)(ra - 2);
• (yz,xy)} card(C) = n(n — l ) (n — 2);
• (xz,yz), card(C) — n(n — l ) (n — 2);
• (yz^xz), card(C) = n(n — l)(n — 2).

3.1.2. Structures of r\ for the case 1

• (xy^xu), card(C) = n(n — l)(n — 2)(n — 3);
• (xu,xz), card(C) = n(n — l)(n — 2)(n — 3);
• (xu,xy), card(C) = n(n — l)(n — 2)(n — 3);
• (xz,xu)} card(C) = n(n — l)(n — 2)(n — 3);
• (xy^yu), card(C) = n(n — l)(n — 2)(n — 3);
• (x0,2;w), card(C) = n(n — l)(n — 2)(n — 3);
• (yu.xy), card(C) = n(n - l)(n - 2)(n - 3);
• (zu.xz), card(C) = n{n - l)(n - 2)(n - 3);
• (yzyyu), card(C) = n(n - l)(n - 2)(n - 3);
• (yu,xy), card(C) = n(n — l)(n — 2)(n — 3);
• (zu,xz), card(C) = n(n — l)(n — 2)(n — 3);
• (yz7yu), card(C) = n(n - l)(n - 2)(n - 3);
• (yu,yz), card(C) - n(n - l)(n - 2)(n - 3);
• (yz.zu), card(C) = n(n - l)(n - 2)(n - 3);
• (zu.yz), card(C) = n(n - l)(n - 2)(n - 3);
• (xu,yu), card(C) = n(n — l)(n — 2)(n — 3);
• (yu^xu), card(C) = n(n — l)(n — 2)(n — 3);
• (xujzu)i card(C) = n(n — l)(n — 2)(n — 3);
• (zu,xu): card(C) = n(n ~- l)(n — 2)(n — 3);
• (yu,zu), card(C) = n(n - l)(n - 2)(n — 3);
• (zu,yu), card(C) = n(n - l)(n - 2)(n - 3).

3.1.3. Structures of 7] for the case 2

• (xu,xv), card(C) = n(n - l)(n - 2)(n - 3)(n - 4);
• (xu,uv), card(C) = n(n - l)(n - 2)(n - 3)(n - 4);
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• (uv,xv), eard(C) = n(n - ï)(n — 2)(n - 3)(n - 4);
• (yu,yv), card(C) = n(n - l)(n - 2) (ra - 3)(n - 4);
• (yu,uv), card(C) = n(n - l)(ra - 2) (ra - 3)(ra - 4);
• (uv^yu)) card(C) = n(n — l)(ra — 2)(ra — 3)(n — 4);
• (2u,sv), card(O) = n(n - l)(ra - 2) (ra - 3)(ra - 4);
• (zu, rw), card(C) = n(n - l)(ra - 2)(ra - 3) (ra - 4);
• (uv, zu)} card(C) = n(n - l)(n - 2)(n - 3)(n - 4),

3.1.4. Structures of r) for the case 3

• (uv>uw), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5).
Finally, the number of distinct configurations is 34. On the other hand
one may verify that the sum of the cardinaiities, which can be put in the
following form

6n(n - l)(n - 2) + I8n(n - l)(n - 2)(n - 3)

+ 9n(n - l)(n - 2)(n - 3)(n - 4)

+ n(n - l)(n - 2)(n - 3)(n - 4)(n - 5),

is nothing other than [n(n — l)(n — 2)]2 which represents the cardinal of
G x G.

3.2. Décomposition ofWxV = G x ï ï

As for the preceding Section 7.1, £ = (xy}xz) will designate a given
element of G, We also distinguish hère four cases according to the number
of éléments of the set {x^y^z} which intervene in the building of the
element r\ belonging to H. Let us dénote by case % the case for which
(3 — i) éléments of {x,y,z} are repeated in rj.

3.2.1. Structures of ri for the case 0

• (xy,zt), card(C) = n(n - l)(n - 2)(n - 3);
• (zt,xy)} card(C) = n(n - l)(n - 2)(n - 3);
• (xz.yt), card(C) = n(n - l)(n - 2)(n - 3);
• (yt,xz), card(C) = n(n - l)(n - 2)(n - 3);
• [yzyzt), card(C) = n(n - l)(n - 2)(n - 3);
• (zt.yz), card(C) = n(n - l)(n - 2)(n - 3).

3.2.2. Structures of 7] for the case 1

• (xy,tu), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)/2;
• (tu.xy), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)/2;
• (x^,tu), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)/2;
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• (ttt, a?z), card(C) = n(n - l)(ra - 2)(n - 3)(ra - 4)/2;
• (2/2;, *u), card(C) = ra (ra - l)(ra - 2) (ra - 3) (ra - 4)/2;
• (te,j/z), card(C) = n(n - l)(ra - 2)(ra - 3)(ra - 4)/2;
• (xt,yu), card(C) = n(n - l)(ra - 2)'(ra - 3)(n - 4);
• (y%xt), card(C) = n(n ~~ l)(ra - 2) (ra - 3) (ra - 4);
• (xt.zu), card(C) = n(n ~~ l)(ra - 2) (ra - 3) (ra - 4);
• (zw,a;t), card(C) = n(n - l)(n - 2)(n -~ 3)(n - 4);
• \yt,zu), card(C) = n(n - ï)(n - 2)(n - 3)(n - 4);
• (zu.yt), card(C) = n(n - l)(n - 2)(n - 3)(n - 4).

3.23. Structures of rj for the case 2

• (xt, uv), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2;
• (uv,xt), card^C) = n(n - l)(n - 2)(n - 3)(n - 4)(ra - 5)/2;
• (yt, uv), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2;
• (uv.yt), eard(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2;
• izt^uv), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2;
• (uu, ̂ X card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2.

3.2.4. Structures of rj for the case 3

• (tu, vtu), card(C) = n(n - l)(n ~ 2)(n - 3)(n - 4)(n - 5)(n - 6)/4.
One may verify that the sum of the above cardinalities of the 25 catégories

is equal to

n(n - l)(n - 2) x (l/4)n(n - l)(n - 2)(ra - 3) = card(G x ff).

It is obvious that the décomposition of H x G is structurally analogous to
that of G x ff.

3.3. Décomposition of UxV = HxH

Let £ = (x2/5 zt) be a given element ofU = H and let us designate by i£(£)
the set {x,y,z,t} including the four éléments which appear in ^. -D(£) will
indicate the complementary subset of JE?(Ç) and we have card(D(£)) = n — 4.

As previously, the structural décomposition of V = ff will be elaborated
according to the répétitions of #, y, ̂  or t, in the components of the element
rç = (rn'y', zftf) which belongs to V = H. But in this situation the respective
rôles of x and y (resp. z and t) are equivalent. To illustrate this point,
consider the two following éléments of ff x ff :

((xy,zt),(xz,yt)) and
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and notice that they belong to the same configuration. Indeed, in both cases
xfyf (resp. zfif) is formed by taking one element from {x,y} and one
element from {z,t}.

Thus, we have to introducé three sets {x^y}, {z^t} and D(£) of which
the cardinalities are 2, 2 and (ra — 4) and that we respectively label by
1, 2 and 3. Consequently, the characterization of the configuration e of
(f, ?7) = ((xy, zt)i (xfyf, zfif)) doe only depend on the set of labels of which
x', y', z1 and tf are provided. For example, the configuration concerned
by the two above éléments of H x H is, for the r) définition (12,12).
Therefore, a given configuration will be specified by an ordered pair of
two numbers associated with (xfyf,zfi/), The first (resp. second) number
can be 11,12,13,22,23,33. Finally notice that if the same label (1,2 or 3)
appear more than one time in the définition of the configuration of (£,??)»
the concerned objects are necessarily distinct; precisely because r) belongs to
H. As above we are going to distinguish five cases according to the number
of times where the set labeled 3 intervenes for providing r]. Case i is that
for which the set 3 intervenes i times, 0 < i < 4.

3.3.1. Structures of f] for the case 0

• (11,22), eard(C) = n(n - l)(n - 2) (ra - 3)/4;
• (22,11), card(C) = n(n - l)(ra - 2) (ra « 3)/4;
• (12,12), card(C) = n(n - l)(n - 2)(n - 3),

3.3.2. Structures of r] for the case 1

• (11,23), card(C) = n(n - l)(n - 2)(ra - 3)(ra - 4)/2;
• (23,11), card(C) = n(n - l)(ra - 2)(ra - 3)(ra - 4)/2;
• (12,13), caid(C) = ra(ra - l)(ra - 2)(ra - 3)(ra - 4);
• (13,12), card(C) = n(n - l)(ra - 2)(ra - 3)(ra - 4);
• (12,23), card(C) = ra(ra - l)(ra - 2)(ra - 3)(ra - 4);

• (23,12), card(C) = n(ra - l)(ra - 2)(ra - 3)(ra » 4);
• (22,13), card(C) = ra(ra - l)(ra - 2)(ra - 3)(ra - 4)/2;
• (13,22), card((7) = n(n - l)(ra - 2)(ra - 3)(ra - 4)/2.

3.3.3. Structures of rj for the case 2

• (11,33), card(C) = n(n - l)(ra - 2)(ra - 3)(ra - 4)(ra - 5)/8;
• (33,11), card(C) = n(n - l)(ra - 2)(ra - 3)(ra - 4)(ra - 5)/8;
• (13,13), card(C) = n(n - l)(ra - 2)(ra - 3)(ra - 4)(ra - 5)/2;
• (22,33), card(C) = n(n - l)(ra - 2)(ra - 3)(ra - 4)(ra - 5)/8;
• (33,22), card(C) = n(n - l)(n - 2)(ra - 3)(ra - 4)(ra - 5)/8;
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• (23,23), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2;
• (12,33), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2;
• (33,12), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)/2;
• (13,23), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5);
• (23,13), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5).

3.3.4. Structures of f] for the case 3

• (13,33), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)/4;
• (33,13), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)/4;
• (23,33), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)/4;
• (33,23), card(C) = n{n - l)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)/4.

3.3.5. Structures of r} for the case 4

• (33,33), card(C) = n(n - l)(n - 2)(n - 3)(n - 4)(n ~ 5)(n - 6)
(n - 7)/16.

The number of catégories is 26 and one may verify that the sum of the
above cardinalities is equal to

(n(n - l)(n - 3)(n - 4)/4)2 = card(iJ x iT).
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