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THE VARIANCE LOCATION PROBLEM ON A NETWORK
WITH CONTINUOUSLY DISTRIBUTED DEMAND (*)

by Ma CRUZ LÓPEZ DE LOS MOZOS (*) and JUAN A. MESA (2)

Communicated by Brian BOFFEY

Abstract. - Most location problems on networks consider discrete nodal demand. However, for
many problems, demands are better represented by continuons functions along the edges, in addition
to nodal demands. Several papers consider the optimal location problem of one or more facilities
when demands are continuously distributed along the network, and the objective function dealt with
is the médian one. Nevertheless, in location of public services it is désirable to use an equity criterion.
One of the latter is variance of distance distribution which has been studied only for discrete nodal
demands. In this paper the variance problem has been generalized to the case where one allows the
demand to avise discretely on the nodes as well as continuously along the edges. Properties and
behaviour of the objective function are studied. Likewise we present an exact algorithmfor solving
this problem in a network, which reduces the complexity of the exhaustive procedure.

1. INTRODUCTION

Most location problems on networks developed since the work of
Hakimi [8, 9] assume discrete nodal demand, in which customer demands
originate solely at the vertices of the network. However, as pointed out by
several authors [3, 5, 15] in many real applications demands do not occur
only at the vertices, but also along the edges. Restriction of demands to the
vertices quite often is not a satisfactory approximation (see [5, 15]).

Some real world applications corresponding to this situation are the
location of emergency or public services, or utility repair stations along
a motorway. In these cases, demands are better represented by continuous
functions along the edges in addition to nodal demands. As quoted in [3],
the resulting problem of approximating internodal demands by a number of
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artificial nodes can be intractable. More recent contributions have attempted
to accommodate this feature (see [3-5, 15, 18]).

In all formulations concerned with continuous edge demand the objective
is the minimisation of the weighted sum of distances from the facility to all
points of the network, this being the médian function. Such problems are
called continuous médian problems by Labbé [15].

Several results concerning the continuous médian problem can be found
in [5, 15, 18], The concavity of the objective function along ariy edge
contained in a cycle when the demand density is uniform is proved in [18].
In [5] the continuous médian function is characterised in terms of the
location of the service facility, and a linear algorithm is developed to solve
the problem on tree networks. This algorithm is simplified in [15].

Other extensions of the problem involving continuous demands on edges
are oriented to find the 2-median of a tree network [3], or solve the p-median
problem on a chain graph [4].

The criterion used in the above formulations for the sélection of optimal
locations is one of various that may be employed to obtain efficiency.
However, in many settings, most notably the public sector, this criterion
is insufficient to generate acceptable décisions. More recently, increasing
attention has been paid to equity aspects of location. This gives rise to
several new location problems, in which an equity criterion is used based on
the dispersion of the distance distribution from the facility to all users.

The introduction of equity measures into location theory was first discussed
in [10], where two of them were described: the variance of distance travelled
by all customers to the facility and the Lorenz curve. Maimon [17] proposed
an O(n) time algorithm to minimise the variance measure on a tree network
whose demand occurs only at the n vertices. Kincaid and Maimon [13, 14]
studied variance minimisation problems in triangular and in 3-cactus graphs,
and Hansen and Zheng [11] have presented an O(mnlogn) time algorithm
for the variance problem in gênerai networks.

The demand used in the model considered in the aforementioned problems
is restricted to nodal locations. However, following the initial reasoning, in
many applications, an equity criterion may be needed to be considered as
the variance in a continuous demand context along the edges.

In this paper we attempt to combine the variance measure with an arbitrary
spatial distribution of customers over the entire network. To this end, a density
function will be associated with each edge which will represent the level of
the demand at each point: and we will study the problem of finding a point in
the network which minimises the variance function which will be called the
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continuous variance problem. We present an exact algorithm for solving this
problem (as well as the continuous médian one) which is less complex than
the exhaustive procedure. This algorithm is based on a décomposition of the
problem within several subproblems where the objective is minimised, and
the global optimum is chosen from the subproblem solutions. This procedure
was used by Hooker [12] in a model where the demand is discrete, and
where the objective function is convex in each subproblem. However, the
présence of continuous edge demands introduces important différences with
respect to the discrete case, since the objective function has no reason to be
convex, as happens when dealing with médian and variance problems.

The algorithm which we propose décomposes each edge of the network
into closed segments (called "primary régions") in which the demand will be
classified. In each primary région the continuous variance function will be
expressed in terms of the contribution of each type of demand, in order to
solve the subproblem restricted to such a région. We propose a method which
calculâtes recursively the expression of the objective function along the edge,
such that in each subproblem the data of the previous subproblem are used.
In this way the effort to obtain the function to be minimised will be reduced.

The present paper is organised as follows. We begin Section 2 by
introducing some définitions and notation, and by formulating the problem.
In Section 3 we investigate the behaviour and properties of the continuous
variance function. In Section 4 we détermine the relationships between
primary régions which will be needed in the following section, where we
present the algorithm for solving both the continuous variance problem and
the continuous médian problem. Finally, in Section 6 some computational
expérience is provided.

2. PROBLEM FORMULATION

Let N(V, E) be a genera! finite, connected and undirected network with
vertex set V — {vi,...,vn} and edge set E, with \E\ = m. Consider
the edges to be rectifiable, and let l^ be the positive length of each edge
Cjk = [vj, vjc] E £". A point x £ N may lie anywhere along an edge, and the
distance d(x,y) between two points x,y e N is determined by the length
of the shortest path from x to y.

For any two points x\,x<i G tjk, let [x\, #2] dénote the subset of points of
edge ejk between x 1,̂ 2 inclusive, and let (^1,^2) dénote the corresponding
open set. Half-open sets are defined similarly.

vol. 34, n° 2, 2000
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Choosing an arbitrary vertex VJ of edge ejk as the initial point, any variable
point x G ejk dénotes both the point x G [vj,vk] as well as the length of
the subedge [vj,rc]. Thus x = 0 means x coincides with VJ. In this way we
assume a well-defined orientation in each edge.

Some positive weights wu Pjk are associated with each vertex Vi and each
edge ejk, respectively (pe when the edge is denoted by e). For a subset of
vertices Vf C V and a subset of edges Ef C E we define

wv(V')=Y,wu and « ; „ ( £ ' ) = $ > « •

We dénote these by wv and wE when V1 — V and E' = E, respectively.
Without loss of generality we may assume that the total weight of the
network is

w(N) = wv+wE=l.

To allow the demand to be distributed throughout the network we define,
for each edge ejk, a gênerai density function for demand fjk(y) (fe when
the edge is denoted by e). This function fjk(y) is a continuous non-negative
function in y G [0, L J and has no impulses, such that the cumulative density

function Fjk(x) = / fjk(y)dy is a continuous function in re E [0,/^],

with F3k(0) = 0 and° Fjk(ljk) = 1.

Associated with each distribution of demand are the central moments

fljk (2) fljk

jk = / yfjk(y)dy, nik - ƒ y fjk(y)dy.

For each x G [0,/^], ^jk{x) and ̂ jl(x) represent the fonctions

px px
Vjk(z)= yfjk(y)dy, i**l{x)= I y2fjk(y)dy.

Jo Jo
The continuous médian function for any x G N is given by

pjk / d(x,y)fjk(y)dy.
VitV ejk=[vjtvk]eE

The variation equity criterion is measured by the variance of the distance
travelled by all users of the facility with respect to the mean travel distance.
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Consequently, we define the continuous variance function for any x E N by

k / [dix, y) - zm{x)f fjk(y) dy.
Jo

A point x*v E iV is called a continuous 1-variance point if

2i/(a£) < «1/(0;), \/x E JV.

PROPOSITION 1: For each x e N, zu(x) satisfies

,y)2 fjk(y) dy~zm(x)2

3. THE CONTINUOUS VARIANCE IN A PRIMARY REGION

In this section we provide a characterisation of zu{x) when x moves
continuously within a closed subedge in which the distance function d(vi,x)
is linear for all vertices of N. In the first place, we remark that, given
ejk — [vjjVt], for each z E N the function d(z,y) is continuous, piecewise
linear and concave in y G [0,/^], therefore the fonctions zm(x) and zv{x)
are continuous in x E ejk-

Each facility located at x E [vj>Vk] induces a classification of nodal
demand in which each vertex vi is classified according to whether it is
supplied by x via vertex VJ or via vertex Vk- However, such a classification
changes in certain points of edge. These points, called edge bottleneck points
were first introduced by Garfinkel et al. [7], and will play an important rôle
hère.

An interior point xt of edge [VJ, v^] is said to be an edge bottleneck point
with respect to vertex v% if the travel distance d(vt,xt) via vertex v3 is
the same as via vertex v^ (see Church and Garfinkel [6]). In such a case
we have d(vt,Vj) + d(vj,xt) = d(vt,vk) + d{vk,xt). If xt means d(vj,xt),
we therefore have

» _ {u vk) + Ijk -
Xf — —
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160 Ma CRUZ LÓPEZ DE LOS MOZOS and J.A. MES A

For simplicity's sake, we will say bottleneck point instead of edge bottleneck
point. Let BE be the set of bottleneck points of AT. Since each vertex defines
at most one bottleneck point on each edge, the cardinal of BE is at most mn.

To study the properties of continuous variance function in each edge,
we centre our interest on the portion of edge, or subedge, in which all
distance functions are linear and monotone. This notipn was introduced by
Hooker [12] (who calls it "treelike segment"), and is the closed subedge
delimited by two adjacent points of V U BE. Henceforth such a segment will
be called a primary région (see Berman [2] and Chiu [5]).

Within each primary région we will develop an algebraic expression for
zv{x) by considering the contribution of each type of demand to the objective
function. To this end we select an arbitrary edge eo — [u,v], whose length
is lUV9 and consider u as the initial point of the edge such that each x G eo
means x — d{u,x) and therefore luv — x = d(x,v).

The partition {Vu(x), Vv(x)} of V induced by each x G [u, v] is given by

Vu(x) = {v% G V /d(vi,u) + x < d{vi,v) + luv - x}

and Vv(x) — V\VU(x). Consequently, the partition {Eu{x),Ev(x),
E[u,v](x)ieo} °f E is defined as follows

Eu(x) = {ejk = [vj,vk] E E\{e0} / Vj,vk E Vu(x)}

Ev{x) = {ejk = [vj,vk] e E\{e0} / vJ}vk G Vv(x)}
E[utv](x) = ie3k = [vj.Vk] ^ E\{e0} I VJ G Vu(x) and vk G Vv(x)}.

Since the facility x is located in eo = [u,v]9 this partition classifies the
edge demands of the set E\{eo} into three types: an edge belongs to Eu{x)
(to Ev(x)) if its two vertices belong to Vu(x) (to Vv(x))9 and an edge
belongs to E^u^{x) if one vertex belongs to Vu{x) and the other vertex
belongs to Vv(x).

Let x\ < . . . < xk be the bottleneck points of edge eo = [u,v], and let
xo = 0, xk+i = luv, (that is, ^o is equal to u and xk+i is equal to v).

PROPOSITION 2: [11] For j = 1 , . . . , k + 1, let Sj = (XJ-I,XJ] be the half-
open set associated with the primary région [xj-\, Xj], and let SQ = [XQ, XO].
Then, for each j — l , . . . , fc + 1, the partition {Vu(x),Vv(x)} of V is
unchanged when x varies in Sj.

Aecording to this proposition, when'a; G Sj the sets Vu(x), Vv(x) will be
denoted by Vu(Sj) and Vv(Sj), respectively. Therefore, when x G Sj neither
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Eu{x), Ev(x) nor E[u^(x) are changed, and similarly we may extend the
above notation to these sets, which will be denoted by Eu(Sj), Ev{S3)y and
E[u,v\(sj)> respectively.

DÉFINITION 3: Let Sj be a half-open set ofedge eo = [it, v], ( 1 < j < k + Ij.
For each edge e^t = [vh>vt] £ E we define the following functions in SJ:

Deht(
x) =Pht / d(x,y)fht(y)dy, Vx E S3

D(
e
2)Jx)=Pht [htd(x,y)2fht(y)dy, Vx € Sj

D6ht (x) and DCht (x) can be interpreted as the contribution of edge e^t to the
continuous médian function zm(x) and to its square.

The expressions of these functions change according to the set of partition
of E in which e^t Hes. When e^t = eo, the functions will be denoted by
Deo(x) and DeQ(x), respectively.

PROPOSITION 4: For each j = 1 , . . . , k + 1, when x varies in the primary
région [xj-i^Xj]f the continuous variance function zu{x) can be expressed
as follows:

ehteEv(Sj) e^eE^^Sj)

+ D™ (x) - zm(x; Sj)2, VX G fo-i, XJ]

where Vx G [XJ-\,XJ]

zm(x;Sj) = ^2 Wid(vi,x)+ Y2 Wid(vi,x) + ^ Deht{x)
v^V^Sj) v^VviSj) e^eE^Sj}

Proof: The Proposition holds for x G Sj from Proposition 2 and properties
of both partitions of V and E. For x G [XJ-I,XJ] the result is obtained by
continuity. D

vol. 34, n° 2, 2000



162 Ma CRUZ LÓPEZ DE LOS MOZOS and J.A. MES A

In the following, we will develop each term of zv{x\ Sj) in order to obtain
an algebraic expression for the continuous variance function over the j-th
primary région.

• Nodal demands

This contribution is identified by the first two terms in zv{%\ Sj), whieh
define the function z* (x; Sj), and by the first two terms in Zm(x; Sj),
which define the function zv(x]S3).

Developing both fonctions, and applying d(vi,x) — d(vi,u) + x
if vi G Vu(Sj), and d{v%,x) = d(vi,v) + luv - x if v% G Vv(Sj)9

we may write:

zv(x;Sj) = a3 +gjx

zv {x\ Sj) = bj + 2CJ x + wvx
2

where the corresponding coefficients are given by

gj=wv(Vu(SJ))-wv(Vv(SJ))

Wi[d(viyv) + luv]
2

)

c3 = zv(u,Vu(S3)) - zv(u,Vv(Sj)) - luvWv(Vv(S3))

with zv(u,Vu(Sj)) = ^2 ™id{vi,u) and zv(v,Vv(S3))

• Edge demands

For any given edge e^t = [vh^t] of E, we obtain four expressions
of Deht(x) and D™t(x)9 depending on whether the demand considered
occurs on eht G Eu(Sj), on eht e EV(S3), on eht G E[UjV](Sj) or on
Cht — eo = [u,v]. In all cases we suppose that Vh is the initial point
of edge eht such that

Vz/ e eht d(vh,y) = y, and d(vt} y) = lht - y- (1)

eht = [vh,vt] € Eu(Sj)

In this case, \fy G ehu d(y,x) = d(j/,u) + a;. Let ^ t G [%,vt]
be the bottleneck point of edge e^ relative to vertex u. Then
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£ht = (d(u,vt) + Iht - d(u,Vh))/2, Çht being independent of the
location of x E Sj (Fig. la).

For each x E Sj the distance function d(y,x) is piecewise linear and
concave when y varies in [vh^vt] and can be expressed as follows

• + d(vh,u) +
• + d(vt,u) + i

if 0 < y < Çht

if iht <y < ht-

£ht

(b)

Figure 1.

Using these relationships and the définitions and properties associated
with density function fht(y) in Définition 3, leads to

(u, eht)Deht (x) = phtx

where HD(u,eht) = d(vt,u) + lht - ^
The same procedure applied to D™t(x) gives

D{*lt{x) =Pht%2 +2phtHh,(u,eht)x+phtRu(uyeht)

where

, eht) = 2jjLht{£ht) - fjiht + lht + d{vu u) -

- d(vh,u)2Fht(£ht) + (lht + d(vt,u))2

x (1 - Fhtitht)) + 4(d(üA, u) + Çht)Hht(tht)

- 2(lht ^

Now we have a symmetrical situation in which Vy E e^t, d{y,x)
— d(y, v) + luv — % and the bottleneck point in e^t relative to vertex v

vol. 34, n° 2, 2000
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is given by £ht = (d(v,vt) + kt ~ d{v,vh))/2 (Fig. lb). Therefore, the
distance fonction d(y,x) yields

dix rüi •— \

\iuv - x + d{vy vt) + kt - y, if îht <y < ^t

and similar reasoning to the former case provides

v,ekt)

~ Vht

Dm
{x)=Vh

where the coefficients

LD{v,ehi) =

Lu(v,eht) z

Jv{v,eht) -

eht = [VhM

- d(vt,v)

- 2(Zfct

tx
2-2p f c tLv(r ; ,

are given by

+ Iht + luv - 2£

t) - liht + kt +
') + luv)

2Fht(^

+ d(vh,v) + luv

+ luv + d(vt,v))

In this case a point £/^(x) G e^ is associated with each x G 5j . Such
a point assumes the rôle of the "bottleneck point" relative to x, that is
d(£ht(x),Vh) + d{vh)x) = d(£ht(x),vt) + d(vt,x) (see Fig. 2).

According to the orientation of edge e^t from vertex Vh to vertex
vt considered in (1), we obtain £,ht(%) ~ {d{vt,x) + Iht - d(vh7x))/2.
Since vh G Vu(Sj) and vt E K(5j) we have d{vh,x) — d(vh>u) + ^
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and d(vt,x) = d(vt,v) + luv — x which implies &*(x) = (d(vt,v)
+ luv + Iht — d(vh,u) — 2x)f2, It is easy to see that the function
€ht(%) is decreasing and varies in [0, Ẑ t] when x G [xj-i,Xj].

This dependence on x induces non-linearity in Deht(x). In effect,
applying

if ° - y -
if

leads to

Deht(x) = pht[x(2Fht(tht(x)) - 1) + d(vhiu)Fht(Çht(x))

+ (d(vt, v) + lht + luv)(l - Fht(Çht{x)))

The variation of £ht(x) with respect to x gives rise to a continuous
change of demands on edge e^t from "n-demands" to "^-demands",
and contributes to indétermination of curvature of zm (x) within a primary
région (see Chiu [5]). In a similar manner,

DeLfr) = Pht [x2 + Fht(tht(x))(d(vh,u)2 + 2xd(vh,u))

+ (1 - Fht(£ht(x)))((d(vtyv) + lht + luv)2

lht + luv + 2x) - 2{jLht(d{vt, v) + lht + Zwu - x) + / iM J.

The orientation considered in this edge implies that, for y G eo,

Therefore

'.»)=I«-»I=^:Ï; s l

(x-y)fo(y)dy+ I (y - x)fo(y) dy\j
= po[2xFo(x) - x + //o - 2fjLo(x)].

Since d(x,y)2 — (x — y)2, it follows that

= po ƒ O 2 ~ 2xy + y2)fo(y) dy = p0 [^
2 - 2x^0 + A*o J

vol. 34, n° 2, 2000
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Using the expressions obtained in Proposition 4 for both fonctions in each
case, yields

zm(x; Sj) = a3 +g3x+ (wB(Eu(Sj)) - wE{Ev{S3)))x

U) eht"> + X Pht Lv (U) e/i*)
ehteEv(Sj)

Dehi(x)+po [2xF0(x) - x + fxo - 2M(x)] (2)
)

u(Sj)) + wE(Ev(Sj)) +po)x2 + 2cj x

phtHu(u,eht)

E

(3)

We now analyse the behaviour of fonction zv{x) in a primary région. The
continuous médian zm(x) is convex over any edge [u,v] in a tree network
(see Chiu [5]), however, the same does not occur with the fonction zu{x).
In effect, the fonction zu(x) is neither concave nor convex over any edge
of a tree network, as can be observed in the counterexample presented in
Figures 3-5. This behaviour can be extended to a gênerai network, and
therefore:

COROLLARY 5: The continuous variance function zu(x) is neither concave
nor convex over any primary région of a network.

As stated earlier, in order to illustrate these results we present a tree
network shown in Figure 3. In this example demand is assumed to be
uniformly distributed along the edges, and so only the length and weight of
each edge are shown. Node weights are written next to each node with small
numbers, edge weights with round brackets, and the lengths are indicated

Recherche opérationnelle/Opérations Research
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Figure 4.

above each edge. Figure 4 shows the continuous variance function along
edges [^1,^3], [1/2,^3], [^3,^4], and [^4,^5], in this order. Figure 5 shows
the corresponding second derivatives.

4. RELATIONSHIPS BETWEEN PRIMARY REGIONS

From the aforementioned results it follows that for solving the continuous
variance problem on a network it is necessary to find an efficient way to
find all local minima, that is, it is required to solve the restricted problem
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Figure 5.

mm{zu(x]Sj), x E [XJ-I^XJ]} over each primary région (note that nm
restricted problems must be solved at most). The search for the minimum
of such problems involves a procedure to find the zéros of d{zv{x\ Sj))/dx,
(and a similar procedure must be applied to solve the continuous médian
problem). This procedure is exhaustive in nature, and dépends very much
on the edge density functions dealt with.

When only uniform density functions are considered, both functions (zu(-)
and zm{')) a r e polynomials over any primary région (of degree 4 and 2,
respectively), and the search for the local minimum takes constant time.
However, the identification of functions zv{x\ Sj) or zm(x; Sj) over the j-th
primary région requires exanüning all vertices and all edges in order to
détermine the corresponding partitions of V and E for obtaining all terms
of expressions (2) and (3). Supposing that the shortest distance matrix is
calculated already (in a preprocessing phase), the exhaustive procedure with
uniform density functions pro vides the minimum in 0(mn(n + ra)) time.

The only algorithm that tackles the continuous médian problem is
heuristic [5]. In the following we present an exact procedure for solving
the continuous variance problem (as well as the continuous médian problem,
as explained in the introduction). Even in the worst case, the complexity
of this algorithm will be lower than that of the exhaustive procedure, and
computational results will show that it runs in 0(m(m + n)) time for the
test networks used.
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Now we will develop some recursive relationships between a primary
région and its predecessor. To this end we introducé some définitions and
properties associated with the concept of bottleneck point.

DÉFINITION 6: Let x\ < ... < Xk be the bottleneck points ofedge eo = [u, v]
and let XQ = 0, X&+1 — U - ^or j — 0 . . . , k + 1, B(XJ) dénotes the set of
vertices relative to point XJ, and is given by

B(xj) — {vt G V/ d(vt,u) + Xj = d(vt,v) + luv — % } •

Clearly B{XJ) C Vu(Sj). The following proposition is introduced by Hansen
and Zheng [11], and its proof can be found in [16].

PROPOSITION 7: The following statements hold:

(i) B(xi) H B(xj) = 0, Wij = 0 , . . . , k + 1, i / j .

(iii) Vu(Sj) - K(^_i)\B(%_i), and ^„(5,-) = K(^_i ) U B ^ - i ) ,

As a conséquence, Vu(5j_i) D K('S'j) and K(5j_i) C K(-S'j),

DÉFINITION 8: For j = 0 , . . . , k + 1, define the following subsets ofedges:

B(1)(EU(S3)) - {e/lt - [t,fcii*] G EM) I

either ^ G B(xj),vt £ B(XJ),

or vA ^ B(xj),vt G S (^ )}

B(2\EU(S3)) = {eht - K , ^ ] G ̂ „(Sj) / vh,vt G

;[liil7](5j)) - {eht = [vhM G EluM(Sj) /

either ^ G B(xj),vt £ B(XJ),

or ^ £ B(xj),vt G 5(%)}

Set

For g = 1,2 the set Biq)(Eu(Sj)) contains those edges of Eu(Sj) such
that either one of the end vertices (if q — 1) or both (if q = .2), belong to
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B(xj). Similarly the edges of B{1)(E[u^v](S3)) are edges of E[llyV](Sj) with
an unique end vertex in B(XJ). Therefore B q (Eu(Sj)) C Eu(Sj), q — 1,2,
B(Eu(Sj)) Ç Eu(Sj) and Bw (E^Sj)) C EM(Sj).

PROPOSITION 9: For j = 1 , . . . , k + 1,

Eu(Sj) = EuiSj-JWEuiSj-i)). (4)

PROPOSITION 10: For j = 1,... , k + 1,

Ev{Sj) = EviSj-i) U S™(£[„,„](5,-_i)) U B^iEuiSj^)). (5)

PROPOSITION 11: For j = 1 , . . . , k + 1,

) U B ( 1 )(^(5,-_i)) . (6)

PROPOSITION 12: Let j , q G { 1 , . . . , k +1} be such that j ^ q. The following
statements hold:

1. B(Eu(Sj)) n B(Eu(Sq)) = 0.
2. i?(1)(£[„,,](S,)) n Bw(E[uM(Sg)) = 0.

As a conséquence of this Proposition, we have the bound

fc+i

Furthermore, for q ̂  j the intersection B{Etl{S3)) n 5 (^[U)î;](*S'g)) can
be non-empty, since for g > j the sets B 1 (Eu(Sj)) and S 1 (E[UmV](Sq))
are not necessarily disjointed. Thus, we can obtain the upper bound

fc+i
(\B{1)(E[uM(S3))\ + IB^C^))!) < 2m.

fe+i
On the other hand, although [J-E[U,U]('S7-) Ç E, the sets E[UiV](Sj),

J= I
j = 1 , . . . , k + 1 have no cause to be disjointed. Therefore, the quantity
fc+i
y ^ \E[UiV](Sj)\ can not be bounded by m. However, from (6) each set
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) is the union of two disjointed sets, and therefore we can write

fc+i fc+i
£ \EM(Sj)\ = £ \EM{Sj-i)\B

(1\EM(Sj-1)y
3=1 j=l

fe+1

3=1

In order to estimate the value of this sum in computational terms, the
following définition is introduced.

DÉFINITION 13: With each edge [u, v] of N is associated a quantity T(U, v),
whose value is given by

k

T(U,V) - ]PTJ(U,V)

3=0

whereforj = 0,...,fc, T3(U,V) - \E[uA{S3)\B
ir){E[uM{S3))\.

This définition yields

fc+l k

The sets {E[U^(S3)\B
(1)(E^v](Sj))} j = 0 , . . , , fe are not disjointed in

gênerai which supposes that, in the worst case, r{u,v) G O(nm). However,
it is interesting to explore the average value of r(u, v). In the computational
expérience it will be seen that for not excessively large values of m, (as
happens, for example, in planar networks, where m < 3n — 6) the values
of T(U,V) are quite moderate. In fact we will obtain that T(U,V) G O(m)
for the tested networks.

5. ALGORITHM AND COMPLEXITY

Before solving the restricted problem min{zu(x;Sj), x E [xj-i,xj]}
over the j-th primary région, we need to compute all terms of zm{x\Sj)
and zu(x] Sj), given in expressions (2) and (3). Now it will be shown that,
except for the terms corresponding to the demand of edges E^u^(Sj), the
remaining can be recursively obtained from the former primary région.

vol. 34, n° 2, 2000



172 Ma CRUZ LÓPEZ DE LOS MOZOS and JA. MESA

Nodal demands

The nodal contribution is obtained through coefficients o/, gjy bj and CJ.

They can be computed as follows:

aj = aj-i -f zv{v,B{x3-i)) - zv(u,B(xj^x)) - luvwv(B(xj-i)) (7)

9j = gj-i -2wv(B(xj-i)) (8)

bj = bj-i + ] P u>i[d{vi,v) -f ̂ u]2 - Y2 mdivi.u)2 (9)

Ĵ  (10)
Edge demands

Using (4) and (5) with the terms of (2) and (3) relative to edge contribution,
we find that when such demand is referred to edges belonging to Eu(Sj)
or to Ev(Sj) we can write

S^i))) (11)

(12)

where Q^ dénotes HD, Hu or i?^. Similarly, when e t̂ € Ev{Sj),

]T PhtQ(.)(v,eht)

PhtQ{-)(v7eht) (13)

where again Q( % dénotes LD, i ^ or J^. However, these relations cannot
be used when demand arises on any edge e^ 6 J5[WjV](5j). This demand
is obtained by means of fonctions D6ht(x) and D^ht(x), that are ̂ t (x)
dependent fonctions» Both fonctions change when x changes from one
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primary région to another. Therefore, their calculation requires the checking
of all edges of each set E[UjV](Sj).

THEOREM 14: For each eo = [u, v] G E and x G [u, v], the number of edges
and vertices ofN that must be examined to obtain zm(x) and zu(x) by means
of the procedure described by (7) to (13) is not greater than n + 2m + r(u} v).

Proof: When x G [xj-\,Xj\ is zu(x) = zv{x\ Sj) and zm(x) — Zm(x; Sj),
Suppose we know all necessary information to calculate zu{x\Sj-\) and
zm(x; Sj-i). To obtain both functions over Sj requires computations of the
terms corresponding to:

• nodal contribution. From relationships (7) to (10), their calculation
requires examining all vertices in B(xj-i).

• Edge contribution. From relationships (11) to (13), for demand on
edges in Eu(Sj) or Ev(Sj) one has to check the sets B(Eu(Sj-i)),
B1 (EfaiV](Sj-i)) and B2 (Eu(Sj-i)). For demand on edges in
E[u,v](Sj) it is necessary to check the set B a (Eu(Sj~i)) together with
Tj_i(ifcjv) edges of E,

Since B q (Eu(Sj—i)) C B(Eu(Sj-\)), q — 1,2, the number of vertices and
edges that must be examined to obtain zv{x\ Sj) and zm(x] Sj) is given by

IBfo-i)! + \Bw(EM(Sj-i))\ + IBC^CVi))! + Tj-i(u,v).

Therefore, to obtain zu(x) and zm(x) along edge [u^v] it is sufïicient to
extend the former quantity to all primary régions on [u,v]. Hence, the total
number of éléments examined takes the following value

fc+i fc+i

fe+i
Tj_i(u,v) < n

where Proposition 7, définition of r(u, v) and conséquences of Proposition 12
have been used. •

Now we present the algorithm for finding the continuous variance point (or
the continuous médian point, as already pointed out). First, some preliminary
calculations need to be executed:

(i) compute the shortest distance matrix (D(u}v)),
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(ii) for each edge [n, v], put the bottleneck points xi,..., x& in increasing
order, and compute B(XJ), j = 0 , . . . , k + 1.

In planar networks these opérations can be done in O(mnlogn) time, using
Dijkstra's algorithm n times, and that of Heapsort m times to rank the
bottleneck points (see [1]). This complexity increases when the network is
nonplanar and very dense, since the distance matrix is computed in Ö(n3)
time.

In the following we describe the pseudocode of the algorithm to solve the
continuous variance problem. The algorithm finds the local optimum in each
edge, and chooses the best solution as the global optimum. To obtain the
minimum in each edge the continuous variance function must be characterised
in all primary régions of the edge, and this process is recursively executed
by means of the relationships developed in the last section.

5.1. Main algorithm
Step 0,

Let Z be a suitably large number; x* «— 0; [u*,u*] <— 0.

Step L

For eo — [u,v] £ E do

Let xo < - . . < Xf~ be the bottleneck points.

Zuv <— M (a large number); x* <— 0.

Compute Vu(So), K,(S0), EU(SO), EV(SO), E[UiV](S0).
while j < k + 1 do
Compute K ( 5 j ) , Vv(Sj), Eu(Sj), E^S,), E^Sj), and B ( 1 )(E [ u ! . ](S J)),

Bq(Eu(Sj)) (q = 1,2) by using (4), (5), (6).
Compute zu(x\Sj) (zmÇxiSj)) by using (7) to (13).
Find the optimum x*. of min{zv(x;Sj), x £ [XJ_i, x3]}.
lf zv(xlj;Sj) < Zuv, then Zuv <— ^ ( ^ . J S J ) ; %Ziuv) *— xtj-
end while

If Zuv < Z, then Z <— Zuv; x$ +— K{uvy [«*,v*] <— Kal-
end for

Step 2.

Stop. The incumbent Z, x*, [it*,u*] is the solution.

5.2. Complexity

We dénote the complexity of the preprocessing phase by ö(a(n,m))
(where a(n, m) can be mnlogn or n3, according to the type of network). In
order to analyse the complexity of the main procedure, we define

(w,v) : [u>v] G E}.
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On the assumption that all density functions are uniform, the main
computational effort is given by Step 1, where the global minimum in
each edge [u, v] is calculated. From Theorem 14 this process requires a time
of O(m + n + r(u/u)). Since Step 1 is executed with m edges, the main
algorithm can be performed in O(m(m + n + rN)). Therefore, the overall
time to solve the problem is O(a(n, m)+m(m + n + TN)). However, in order
to compare this algorithm with the exhaustive procedure, we will centre our
interest on the complexity of the main procedure, since the computational
effort in the preprocessing phase is the same for both algorithms.

Although the complexity of the main algorithm dépends on rN (whose
value is associated with each network), in the computational expérience we
will see that for all networks tested, the values of TN were markedly less
than the corresponding worst case values.

We remark that including the worst case for rN (in which rN £ O(nm)),
the algorithm runs in less time than the exhaustive procedure. In effect, this
f act can be deduced from the following.

PROPOSITION 15: Even in the worst case, the number ofvertices and edges
visited by the exhaustive procedure is greater than in the main algorithm.

Proof: The number of vertices and edges visited by the exhaustive
procedure is mn(n + m), and from Theorem 14, the number of visits
executed by the main algorithm is not greater than

However, this number is bounded by m(n + 2m + nm), since r(u, v) < nm
for all [it, v] e E. Therefore, it will be sufficient to prove that 2m + n + mn
< n(n + m). In effect, this relationship holds because in a network without

n(n - 1)
loops, m < .

6. COMPUTATIONAL EXPERIENCE

In this section some computational results are presented to analyse the order
of rN and so to analyse the complexity of the algorithm. Although we have
seen that the complexity of the main algorithm is O(m(m + n + rN)), with
rN E O(nm) in the worst case, it is quite likely that the computational time
would be substantially reduced for most problems. This fact happens with
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networks of moderate density, as can be observed in the results displayed
in all tables of this section.

These tables show the behaviour of the main algorithm over a set of
networks. In most types of network we have considered not excessively
large values of m. It will be seen that for all networks observed, the values
of rN were quite moderate; in fact we have found that rN e O(m) in all
cases examined, and therefore the complexity of the algorithm will remain
reduced to O(m(m + n)) time.

With the aim of showing the performance of rN, we introducé a parameter
aNJ with 0 < aN < n, and we study whether rN < aNm occurs.

We have analysed randomly generated networks, with a variable number,
n, of vertices, and for each input n we have considered a variable number, m,
of edges. The method used to générale each network started with a randomly
obtained generator tree whose number of edges was increased up to the
desired quantity m. The résultant networks are not planar in gênerai, since
the edges have been randomly placed. Weights and lengths were generated
uniformly in [1,20] and [1,50], respectively.

For each type of iV(n, m) network, 100 instances were tested. The values
of aN range from an initial to a final value, with a fixed incrément (which is
0.5 in the first table, and 1 in the remaining tables). Tables 1, 2 and 3 show
the results obtained. In each table, each element represents the number of
times (or percentage) that rN < aNm occurred.

TABLE 1

n = 25

m

30

40

50

60

70

80

90

100

0.5

65

1

100

1

1.5

32

2

84

6

2.5

100

44

2

3

80

33

4

3.5

95

81

37

15

3

1

4

100

97

81

61

48

41

4.5

100

97

90

92

76

5

100

99

98

89

5.5

100

100

100
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TABLE 2

177

n = 50

m

60

80

100

120

140

1

78

2

100

27

3

66

2

4

100

37

19

5

89

55

6

100

99

26

7

100

81

8

100

9 10 11

TABLE 3

n = 80

m

100

140

170

200

230

1

5

1

2

44

34

3

100

87

4

100

29

5

72

6

100

12

7

67

18

8

100

72

9

98

10

100

11

In all tables shown it can be observed that initially small values of aN

are sufficient to trap all the instances, and these values increase when m
increases. Ho we ver, even with a very dense network, (as happens in Tab. 1,
for n — 25 and m — 100), every single case is trapped with aN = 5.5.
This means that rN < aNm = 550, since aNm is an upper bound of rN.
Likewise, a similar situation occurs in Tables 2 and 3: the upper bound of
all types JV(-50,140) and iV(80,230) is obtained for aN = 8 and aN = 10,
respectively. It is highly probable that such values can be reduced when
planar networks are considered.

We remark that the bound aNm was never reached, that is, the last
"aN -value" of each row provided a strict upper bound for 100 instances
tested (for example, in the type iV.(50,120), the greatest value of rN was
742, and in iV(80,230), such a value was 2109). Regarding these data, we
can infer that the running time of rN was O(m) in all networks tested in
these computational experiments.
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From these results we can expect that, when the underlying network
is of moderate density, the value of rN is bounded by a small value of
aN, and therefore the computational effort of the main algorithm would be
appreciably lower. When the network is very dense we cannot know the size
of this upper bound. However, we have already seen that, in such a case,
the number of visits made by the main algorithm is smaller than the visits
executed by the exhaustive procedure.

In conclusion, we have shown in this paper how to reduce the effort to
solve the continuous variance problem in a network by applying a recursive
procedure to compute the objective function along each edge. In order to
analyse the complexity we have considered uniform density functions, since
the minimum in each subproblem is obtained in constant time, and this has
no influence on the computational order. However, several questions remain
to be studied, as we comment in the following. When arbitrary density
functions are considered, a numerical procedure will be needed to compute
the minimum in each primary région, the difficulty of which will depend on
the type of density function involved. It would be interesting to know what
density function provides the worst complexity. Another question deals with
discretization of the problem by means of a number of artificial nodes, and
comparison of the complexity of the résultant problem with the continuous
case, together with determining the level of approximation of both solutions.
As far as the authors are aware there is no theoretical analysis of the
aggregation issue for continuous edge demand problems.

APPENDIX A

Proof of Proposition 1: Developing the first component of zv{x) relative
to nodal contribution we obtain

wld(vl,x)2 + wvzm(x)2 -2zm(x)

A similar procedure applied to the component of zu{x) relative to edge

contribution yields

rijk

Pjk / d{y,xf fjk(y) dy + wEzm(x)2

v^ fljk

-2zm(x) \ pjk / d(y,x)fjk(y)dy
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where Fjk(ljk) — 1 has been used. The Proposition holds by summing both
expressions and using the fact that w(N) = 1. D

Proof of Proposition 9: By the above relations, we have Eu(Sj)
C Eu(Sj-i). First, suppose that eht G Eu(Sj). If it were true that
eht = [vh, vt] G B(Eu(Sj-i)) then at least one of the end vertices (or both)
would belong to B(XJ~I). Let Vh be such a vertex. From Proposition 7 it
follows that Vh £ Vu(Sj), which contradicts the fact that [v/7,Vf] G En(Sj).
This proves that EU(S3) Ç Eu(Sj-i)\B(Eu(Sj-i)).

Reciprocally if eht G EU(SJ-I)\B(EU(SJ-I)) then vh,vt G K,(Sj-i)
and VhiVt fÉ B(xj-i) (since B(Eu(Sj-i)) is the set of edges of Eu(Sj~i)
such that at least one vertex belongs to B(XJ-\)). Then, from Proposition 7
it follows that Vh,vt G V^(5j) and therefore eht ^ Eu(Sj), which proves
the converse inclusion. Both inclusions complete the proof. D

Proof of Proposition 10: Since Vv(Sj^i) C Vn(Sj), we have Ev(Sj-i)
CEv(Sj). Consider eht G S(a)(£7u(5j-.i)). Then vh,vt G S(x j - i ) ,
and therefore Vft,ut G V^,(5j) which implies eht G Ev(Sj). If e^
G JB ( 1 )(£;[„ J V](5J-I)) , then an unique vertex of edge eht belongs to JB(XJ__I).

Suppose this vertex is v^, then i;/, G K(5/ ) . But, as 2?(ö/_i) C Fw(5j_i)
and e^ G J?[UjV](5;_i) then Vh G T^(5j_i) which implies vt G ̂ (5,-) , and
therefore eht G Ev(Sj). This reasoning proves

On the other hand suppose e^ G Ev(Sj). Then ^ , v t G T^(iS;)UJ5(xj_i). If
u/i,^ G Vv(Sj-i)orvhjvt G B(xj_i), the resuit is trivial. If v/i G Vv(Sj-i),
vt G S(xj_i), then vt G K ( ^ j - i ) which implies e^ G J5[U Ï UJ(SJ_I). Since
t;̂  ÇÉ B(xj-i) (otherwise we return to the former case) it follows that
eht G B (E[u^v](Sj-i)). This proves the desired inclusion and concludes
the proof. D

Proof of Proposition 11: This relationship will be proved by using the
same procedure as in Proposition 10. First, suppose e^t G E^U^(S3).
Then vh G VU(SJ-I)\B(XJ-I), vt G Vv(Sj-i) U B{x3-\). The assumption
vt G Vv{Sj \) implies efet G jB[tljV](S7-i)\B

(1>(JB[UjV](5;-_i)) (otherwise
from (5) it follows that eht G Ev(Sj), which is a contradiction). If
ft G B(xj-i), e ht G Eu(Sj-i) must hold from Proposition 7. Furthermore,
eht G J3(1 (Eu(Sj-i)) since v^ ^ B ( X J _ I ) . This reasoning proves the
relationship

E[uM(S3) Ç (E[uM(Sj^1)\B
ll\EluM(Sj^
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Conversely if eht E E[u^(Sj-i)\B (£jM ^(Sj_i)) then vh E Vu(Sj-i),
vt € Vv(Sj-i) and Vh,iH £ B(x3-.\)._ In effect, the supposition vt

E B(xj-i) implies vt E Vu(Sj-.\), which is a contradiction. Furthermore
Vh $ B(x3-\) holds from the assumption eht £ B{1)(E^v^(Sj-i)) together
with vt ^ B(xj-i). Therefore eht € ^[«^(^ i ) since, from Proposition 7,
^/i £ Kt('^j)» ^t £ ^u('Sj')- ^ similar reasoning proves that e/ït G JS[U,v](Sj)
is also obtained when eht £ B1 (En(Sj-i)), and this complètes the proof. G

Proof of Proposition 12: Suppose that x3 < xq. First we show that the
Proposition holds for any two consécutive half-open sets Sj, Sj+i. The
gênerai case (q > j -f 1) will be obtained by repeating this process.

If q — j -j- l5 the first relationship follows directly from (4) and from the
fact that B(Eu(Sj+i)) Ç Eu(Sj+i). Similarly the second expression is a
conséquence of (6) and the fact that B 1}(E\u v](Sj+i)) Ç E[u ^(Sj+i).

D

Glossary

Zy(x) Continuous variance function.
zm(x) Continuous médian function.
Xj'<j j = 0 , . . . j k H- 1 Bottleneck points of the edge [u, v],
[XJ-\,x3] j - th . primary région.
Sj = (xj_i,Xj] jf-th. half open set.
{ K ( Sj: ), K ( Sj )} Partition of V associated to S3.
{Eu(S3),Ev(Sj), EfaiV](Sj),[u, v}} Partition of E associated to S3.
B(XJ) Set of vertices whose bottleneck point

is XJ .

B{1) (Eu(Sj)) E d 8 e s o f Eu(Sj) with an unique end

vertex in B(x3).

B{2) (Eu(Sj)) Edges of EU(S3) with the two end
vertex in B(x3).

B(EU(S3)) ThzsetB{1\Eu(S,))UB{2)(Eu(S3)).
B{1)(E[uM(S3)) Edges of E[uM(S3) with an unique

end vertex in B(x3).
T3(u, v) The cardinal of the set

E[uM(S3)\B
(1)(E[uM(S3)).

T(UJ V) The sum of TJ(U, V) along the edge
[u.v].

rN The maximum of r(u, v) values
over iV.
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