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SCHEDULING UET TREES WITH COMMUNICATION DELAYS
ON TWO PROCESSORS (*)

by Frédéric GUINAND (*) and Denis TRYSTMAN (2)

Communicated by Philippe CHRÉTIENNE

Abstract. - In this paper, we present a new linear time algorithm for scheduling UECT (Unit
Execution and Communication Time) trees on two identical processors. The chosen criterion is the
makespan. The used strategy is based on clustering of tasks. We show that this algorithm builds
optimal schedules. Some extensions are discussed for non UECT tasks.
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1. INTRODUCTION

A parallel application is commonly modeled by a precedence task graph
G — (T,C). The computational parts of the application are represented
by a set of tasks (T, the vertices of G) exchanging data. These data
transfers entail precedence relations between involved tasks, and correspond
to Communications (C, the arcs of G). G is the graphical représentation of
-< the partial order over T. In this context, T» -< Tj means T* précèdes Tj.
This is generally the case when data computed by T% are required by Tj.

We consider a restriction of the Papadimitriou and Yannakakis model
[PY90], without duplication and with a fixed number of processors. This
mainly corresponds to the model of parallel distributed-memory machines
used by Rayward-Smith [RS87]. Within this model, a processor is expected
to compute no more than one task at a time, and each task requires only
one processor in order to be executed. Both exécution and communication
times are supposed to be unitary. This is called the UECT assumption. About
the communications:
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1 3 2 F. GUINAND and D. TRYSTMAN

• The communication delays between tasks executed on the same processor
are negligible and therefore not taken into account. This assumption is
also known as the locality assumption,

• The ability of a processor to perform both computations and
communications simultaneously is called the overlap assumption. For
the remaining part of the paper we suppose that the overlap of the
communications by computations is possible.

In this work we are mainly interested in the scheduling of UECT trees under
the previously defined set of hypotheses. The goal of this work is to minimize
the date of the end of the exécution, the makespan denoted Cmax . While this
problem was proved NP-Complete when the number of processors is not fixed
[LVV93], much works have been done with a fixed number of processors
[GT93, Law93, Pic93, Vel93]. When this number is fixed (m), Varvarigou
et al. pro vide a pseudo-polynomial time algorithm (O(n2(m~1))) which
produces optimal schedules for the problem. They also propose a linear-time
algorithm which produces optimal schedules on a two-processor system and
near-optimal schedules on a fixed number of processors [VRKL96].

In the following sections, previous algorithms are analysed, and a new one
solving the same problem is described. This new algorithm builds optimal
schedules for two-processor machines. Finally, we discuss some extensions
for non-UET intrees.

2. PREVIOUS WORK

Every algorithm that solves the problem aims at avoiding idle time due
to communication delays, exploiting the overlap assumption. They differ
mainly in their stratégies. Some are based on a list strategy [Law93, Vel93],
while the others are based on a clustering strategy [GT93, Pic93],

2.1. List-scheduling algorithms

2.1.1. Lawler's algorithm

Lawler's algorithm is based on the remark that, due to the présence of
communication delays, any task has at most one successor executed in the
following time slot. In this way, a task with several children has a favored
child when just one of them is assigned a date earlier than the dates assigned
to the other children. For an intree, this idea remains unchanged except that
the children are the parents, and the successors are the predecessors. The
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principle is simple. Every task is associated to an integer value computed
as follows:

• h{T) = 1 if T is a leaf,
• h(T) = max{l + max(/i(j)), 2 + max2(/i(j))} if T is not a leaf

where (T,j) is an arc, and where max2 dénotes the second largest value of
h(j) among all parents of T. 1 + max(fr(j)) corresponds to the date of the
completion of the last executed parent of T. Due to the locality assumption,
this date could be the starting date of T if and only if no other parent of
T ends simultaneously with j . If another parent ends simultaneously with
j , max(/i(j)) = max2(/i(j)), and one unit of time is added because of
the impossible overlapping. The favored parent of a task T corresponds to
the task with the largest integer. If several tasks have the same integer,
the favored parent will be arbitrarily chosen. The labeled tree of the next
Figure 1 illustrâtes the favored parent of each task.

During the next step, the algorithm builds another tree called the shortest
delay-free tree. On one hand, every task marked favored in the original tree
has its favored parent and its brothers as predecessors in the shortest delay-
free tree. On the other hand, every task not marked has only its favored
parent as its predecessor.

The last step consists in applying any level-by-level algorithm (for
instance Hu's well-known algorithm [Hu61]) with respect to the precedence
constraints.

T4

simple node

favorite child T5

T9

T i

T6

'is

T4

'is

T2

n
T 8

idle time delay-free tree

Figure 1. - An optimal schedule obtained by Lawler.

For a fixed number of machines m, the produced schedules do not exceed
an optimal solution by more than m/2 time units [GRT97]. The optimality
could be obtained for a good choice of the favorite child. An optimal choice
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is given by the algorithm based on dynamic programming and described
in [VRKL96].

2.1.2. Veldhorst's algorithm

Within Veldhorst's algorithm a list of the tasks is built according to their
distance to the root [Vel93]. The définition of the distance is slightly different
from the common one which considers only the number of arcs between the
task and the root. The algorithm assigns a scheddist-label (the distance) to
each task. For each task T, the scheddist-label is computed according to the
earliest processing time of T (ept(T)):

• ept(T) = 0 if T is a leaf,
• ept(T) = 1 + ept(Tf) if any predecessor w of T vérifies

ept(w) < ept{Tf),
• ept(T) — 2 + ept(Tf) if T has at least two predecessors, w\ and W2,

such that any other predecessor w vérifies ept(w) < ept(wi) — ept(u>2)-

Figure 2a represents an example of a tree labeled with ept-values. Next, the
scheddist-labels are computed from the ept-values:

• scheddist(T) = 0 if T is the root;
• scheddist(T) = 1 + scheddist(Tf) if T is the predecessor of T' with

the largest ept-value (among the predecessors of Tf). If two tasks have
the maximum ept value, only one can be assigned 1 + scheddist(Tf)
as the scheddist-label;

• scheddist(T) = 2 + scheddist{T) for the remaining predecessors of T'.

Figure 2b part of the same figure represents an example of a tree labeled
with the scheddist-labels.

An ordered list beginning with the root is created. The predecessors of a
task in this list are its predecessor with the minimum scheddist-value and
its brothers. They are positioned in the front of the list (see Fig. 2c). The
tasks are finally scheduled according to their availability in the list. But, if
W, a direct predecessor of T, is scheduled exactly one unit of time before
T, then both tasks are assigned the same processor. A complete scheduling
is represented in Figure 2d.
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a) earliest processing time labelling b) scheddist-labelling

T6

T2

T8

T7

T5

T n

c) List création
d) scheduling

Figure 2. - The different steps of Veldhorst's algorithm leading to an optimal schedule.

This algorithm and the previous one are both based on a level-by-level
strategy, and they have some common steps. For instance, the labeling in
each case leads to the équivalence between the notion of favorite child and
the predecessor with the lowest scheddist-label.

2.2. Clustering algorithms

2.2.1. Principle

These stratégies explicitly gather tasks into clusters. A cluster is simply
defined as a set of tasks. A task belongs to one and only one cluster, and
a cluster contains at least one task. All the tasks belonging to the same
cluster are executed on the same processor. These stratégies are well-suited
to scheduling trees. Indeed, subtrees constitute evident clusters. The main
problem résides in their choice.

2.2.2. Picouleau's algorithm

This algorithm builds clusters according to the number of nodes of each
subtree belonging to the same level. Subtrees are said to be of the same
level if they are rooted in nodes of the same level. For an intree having
n different subtrees, the author numbers the subtrees from S\ to Sn. The
number of nodes of Sj is greater than or equal to the number of nodes of
Sk (denoted respectively by N(Sj) and N(Sk)) if and only if j < k (see
Fig. 3). Consider now the following inequality:
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1 1

10

N(Sx) >
i=2

=>• recursive search of optimal

scheduling for subtree Si.
SI ^ \ _ / ^ ^ S3

Figure 3. - Labeling step of Picouleau's algorithm.

If (1) is verified, the algorithm performs the following steps:
• détermination of k such that S& is the first subtree for which:

i=l i=k+l

• allocation of the k - 1 first subtrees and part of the kth subtree to one
processor. The tasks belonging to the kth subtree are scheduled before
the tasks belonging to the k — 1 first allocated subtrees. The remaining
tasks of the kth subtree as well as the other non allocated ones are
scheduled on the second processor (Fig. 4).

N(Sn)

S13

SU

1

Ù 1 2

S

Sn

o(2)
Ö12

6

Ri

Figure 4. - An optimal schedule for the largest subtree (Si),

If (1) is not verified (example case), the algorithmes applied recursively:
• détermination of an optimal schedule of S\ on two processors,
• release of idle times in order to add the remaining subtrees.

Idle times are released by replacing all the tasks (suppose n) allocated to the
less loaded processor, with the n — 1 tasks scheduled on the other processor.
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These moves are performed until the total number of idle times available
on the less loaded processor is at least equal to the number of tasks of the
remaining subtrees (Figs. 5 and 6).

Number of existing idle times: 2

Number of required idle times: N(SÏ) + N(Ss) = 5

1 3 5 6
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s£> 5 1 1
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5 1 2
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-ff

•
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s{? H l
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Figure 5. - Idle times création process.

1 3

513 s2

7

Ss

9

R

Figure 6. - Scheduiing of the remaining part of the tree.

3. A NEW SCHEDULING ALGORITHM

3.1. Notations

The distance dij is the number of arcs between Tj and Tj. If R dénotes
the root, k — dm + 1 is the level of Tj. n represents the total number of
tasks of the tree, and Pi and P% the processors. In the following, the root
is supposed to be executed on P\,

3.2. Principle of the algorithm

From the exécution model hypothesis, a communication between two
tasks executed on different processors is much more expensive than the
same communication between tasks executed on the same processor. The
goal of our clustering strategy is to avoid interprocessor communication.
In the most degenerated cases, the best clustering would be to gather all
the tasks in one cluster such that all interprocessor communications would
be avoided. However, a load-balancing criterion is involved in the value
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of the makespan. The core of the probîem is to find the best trade-off
between the minimization of the communications and the minimization of
the différence in load between the processors. The algorithm focuses on
the allocation of clusters to processor P2, The clusters are subtrees. The
clusters are determined according to a load-balancing criterion. However,
unless all tasks are executed on the same processor, some communications
must occur. To minimize the impact of these delays on the makespan, the
algorithm allocates tasks in such a way that the involved communications
can be overlapped by computations.

33 . Description

In the first step the tasks are labeled with their weight (as in Picouleau's
algorithm). Each node is examined once. Then, a level-by-level analysis is
performed in order to choose which subtrees (also called clusters) will be
allocated to F2- Finally, subtrees are scheduled on processors.

3.3.1. Labeling

The labeling step is straigthforward and needs O(n) opérations. The label
of Ti corresponds to the number of tasks, including itself, contained within
the subtree rooted in T«. The whole set of tasks of this subtree is denoted
C luster (Ti). The level of a cluster is equal to the level of its root (level
of Cluster(Ti) = lï).

3.3.2. Cluster détermination

The choice of the clusters allocated to P2 constitutes the second stage
of the algorithm. Once a cluster is allocated, all its tasks are marked. In
order to perform these choices, we compute the maximum number of tasks
that could be allocated to P2 without creating any idle time on Pi. This
number is updated after a cluster allocation, or when only one task is left
not marked at the current level. ït is represented by R in the algorithm, and
for the remainder of the paper.

3.3.3. The central role of R

The core of the algorithm CD is the setting up and updating of R.
R represents an invariant: the maximum number of tasks that could be
allocated to P2 without creating any idle time on Pi. In the beginning, without
any prior knowledge concerning the structure of the tree, we suppose a perfect
load balancing of the tasks (near f). However, from the structure of any tree,
while one processor exécutes the root, the other cannot exécute any task. So,
the root has to be removed from the set of tasks we want to share between the
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currentLevel <— 2

WHILE (R > 0) DO

L = {T | T ë currentLevel sorted in decreasing order by weight}

IF (|L| > 1) THEN

Let Ti the first task 6 L such that iveight(Ti) < R

IF (such a T% exists) THEN

Cluster (Ti) is allocated to P2

Cluster (Tt) is marked
R <- R -weight (Ti)
T% is removed from L

ELSE /* each T € L vérifies weight(T) > R */

currentLevel <— currentLevel -f 1

ENDIF

ELSE

Let T a j o n e the only task of L

R «- min (R, [\(xueight(Talone) - 2)J)
currentLevel <— currentLevel + 1

ENDIF

ENDWHILE

Algorithm CD (Cluster Détermination)

two processors. Moreover, we do not want any idle period to appear on Pi,
so, one task has to be set aside for overlapping the communication from the
last executed task on P2 to Pi. These considérations lead to the initialization
value of R: [It^L J. This value is then updated as soon as a cluster is allocated
to P2, or when all the tasks but one belonging to the current level are marked.
In all cases, the updating of R follows the same mechanism.

3.3.4. Scheduling of the clusters

Clusters are allocated to P2 by algorithm CD. They are scheduled according
to the level of their root. The first executed cluster is the one with the highest
level. The exécution order of clusters with the same level is arbitrary. Thus,
a good and simple scheduling of the clusters on P2 is the reverse order of
their allocation. Tasks within a cluster can be scheduled by any level-by-level
strategy (Hu's algorithm for example [Hu61]). The same level-based strategy
can be used for scheduling the tasks on Pi.

3.4. A complete example

• Number of tasks: 22.
• R = [f \ = IQ.
• Ordered list at level 2: L = {T, 17, 5}.
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Level

2
2
2

3

6
7
8

listL

{T, U, 5}
{T,S}
{T}

« }

{G,H}

Chosen cluster

U
S
none

none

none
none
none
A

R

10 - 6 = 4

'f 1 12 ~ 2 h

min(l,...) = 1
1
1

The contents of L (the list) and R are listed in the table for a step-by-step
exécution of the CD algorithm. At level 6, more than one subtrees remain,
and they all have a weight greater than R. In such a situation, the value of
R is not updated, and as soon as a level containing subtrees with a weight less
than or equal to R is reached, the allocation proceeds (this occurs at level 8).

A B C

B

A

c
M

D

P
i E

! s
F

1

1 G
1 J

! H

I L
i K

1 o
i N

s R
Q

u
T | V

4. THEORETICAL ANALYSIS

4.1. Some preliminary remarks

Remark 1: Any optimal schedule of a UECT intree with idle periods on
P\ 1 can be transformed into another optimal schedule without idle time
on it by moving the communicating task {T\ précèdes T3) from P2 to Pi
(illustrated in Fig. 7).

1 As said previously this processor exécutes the root.
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Pi

Pi

Tx

Figure 7. - Idle times can be removed onto P\.

Remark 2: The algorithm provides schedules with no communication from
Pi to P2.

Indeed, all the clusters allocated to P% are subtrees.

Remark 3: The only optimal schedule for a UECT chain, whatever the
number of processors, is obtained by allocating the whole chain to one
processor.

Remark 4: Given any optimal schedule of a UECT intree of n tasks on two
processors, the less loaded processor (P2) cannot compute more than ^
Moreover, if P\ is always busy, the load of P2 cannot be greater than \J

4.2. Optimality

From Remarks 1 and 2, the set of schedules corresponds to the shape of
Figure 8 is a dominant set.

Figure 8. - A dominant set of schedules.

Throughout the algorithm, R is an upper bound for the number of unmarked
tasks with level greater than level i that can be scheduled on P2. From
Remark 4, this property is true before the first stage. Three cases can occur
at each stage of the CD algorithm:

• |L| > 1 and there exists a subtree such that weight(Ti) < R. In this
case, the tasks of Ti are scheduled on P2 and are marked. Thus the
invariant is satisfied.

• \L\ > 1 and all the subtree of level i are such that weight(Ti) > R.
The root of Ti must be scheduled on P\. If not, there could be a
communication from Pi to P2. Thus, every unmarked task with level i
remains unmarked (and then will be scheduled on Pi).

• \L\ — 1. The unmarked task with level i remains unmarked, so, from
remark 4 the new value of R follows.
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We prove now that the algorithm ends, Le. R decreases to 0. In the case
\L\ > 1 and weight(Ti) < R, R decreases strictly. In the two other cases,
currentLevel is increased by one, so, after a finite number of steps, R will
decrease.

In conclusion, the algorithm yields schedules without idle time on Pi, and
allocates the maximum number of tasks to the other processor keeping the
previous property, thus providing optimal schedules.

5. EXTENSIONS

In this section, we propose an extension of this algorithm for intrees with
non-UET exécution times. We dénote P2 | p — 1, c = 1, intree | Cm a x the
problem previously studied. By using the same notation the new problem is
denoted P2 \ p 6 {1,2}, c = 1, intree | Cmax.

This problem without communication delays has already been studied.
Nakajima et al [NLH81] proposed a O(nlog(n)) algorithm to optimally
schedule such trees. Using a tricky analysis (0(n2log(n)) in complexity)
Du and Leung have proposed a generalization of the previous algorithm,
providing optimal schedules for a restricted set {1,3} of exécution times
[DL89]. They also proved the NP-completness of two problems with other
restricted sets [DL88]. These results and others are summarized in the
foliowing table:

Authors

[NLH81]
[DL89]

[DL88]
[DL88]
[Chr89]

Complexity

O(nlog(n))
O(n2 log(n))
OPEN
NP-complete
NP-complete
NP-complete

P2 \tree
P2\tree
Pm\tre
P\tree,
P2\tree
Poo\tre

,Pi
,Pi
s,p,
Pi
,Vi

Notation

e {l,2}|Cmax
G {l,3}|Cmax
G {l,A;}|Cmax

^ {l,A;}|Cmax
€ {kl,l > 0}|Cmax

î î C ï , |Cmax

Considering the previous problem, our algorithm stopped with the
condition R — 0. For the current problem, this condition has to be modified
to: R — 0 or ((R — 1) and (no one-unit task is available in the visited
subtree)). The second modification concerns the initialization value and the
updating of R which becomes: f"-*-^ght(ioot) I.

THEOREM 1: For P2 | p G {1, 2}, c = 1, intree \ Cmax, the modified
previous algorithm provides schedules such that: u < Lüopt + 1 (where o;opt
dénotes the optimal makespan).
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Proof: When at the current visited level only one task is not marked, or
at least two different tasks are not marked (with some subtrees having a
weight lower than or equal to R), then, the situation is the same as in the
UECT case. A différence can occur when at the current visited level all the
subtrees have a weight greater than R, The lightest one is chosen but it is
not always possible to find a set of tasks such that their cumulative weight
equals R. However, this weight is either equal to R or to R-l. •

Example

B B

Schedule provided by DUL

A' \ B

•o Optimal schedule

Figure 9. - An example of a non-UET intree.

Remark: For the problem P2 | V G {1,2,..., fc}, c = 1, intree | Cm a x with
k integer, the same algorithm (with the same modification on the ending
condition) yields schedules such that u < uopt + (fc — 1). The worst case
is obtained for an intree consisting in three tasks, the root (whatever its
weight), with its two predecessors of value k. The computation of the load
gives the value fc - 1 to R.

6. CONCLUSION

We have presented in this paper a linear-time algorithm that yields
optimal schedules for intrees with unit exécution time tasks subject to unit
communication delays on a two-processor System. Lawler, Veldhorst and
Picouleau have also presented optimal linear-time algorithms for the same
problem under the same set of hypotheses. In the two first algorithms, the
goal of the choice of & favorite child and the goal of the scheddist-label are
the same, Le. finding a task to overlap each communication. In our work, we
have the same considération, but without looking explicitly at these tasks.
The process consists in setting aside one task for the overlapping purpose.
The second différence is that while an extension of our algorithm to m
processors with m > 2 is not straightforward, it is simple for the three other
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algorithms. However, is can be easily extended to the case of non UET tasks,
and pro vides good schedules.
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