RAIRO. RECHERCHE OPERATIONNELLE

TEODROS GETACHEW
MICHAEL KOSTREVA

LAURA LANCASTER

A generalization of dynamic programming for
Pareto optimization in dynamic networks

RAIRO. Recherche opérationnelle, tome 34,n° 1 (2000), p. 27-47
<http://www.numdam.org/item?id=RO_2000__ 34 1_27_0>

© AFCET, 2000, tous droits réservés.

L’acces aux archives de la revue « RAIRO. Recherche opérationnelle »
implique I’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RO_2000__34_1_27_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

RAIRO Operations Research
RAIRO Oper. Res. 34 (2000) 27-47

A GENERALIZATION OF DYNAMIC PROGRAMMING
FOR PARETO OPTIMIZATION IN DYNAMIC NETWORKS*

by Teodros Gerachew ('), Michael Kostreva (') and Laura Lancaster (1)

Communicated by Franco GIANNESSI

Abstract. — The Algorithm in this paper is designed to find the shortest path in a network given
time-dependent cost functions. It has the following features: it is recursive; it takes place bath in
a backward dynamic programming phase and in a forward evaluation phase; it does not need a
time-grid such as in Cook and Halsey and Kostreva and Wiecek’s “Algorithm One”; it requires
only boundedness (above and below) of the cost functions; it reduces to backward multi-objective
dynamic programming if there are constant costs. This algorithm has been successfully applied
to multi-stage decision problems where the costs are a function of the time when the decision is
made. There are examples of further applications to tactical delay in production scheduling and
to production control.

Keywords: Pareto optimization, dynamic network, shortest path, dynamic programming, time-
dependent cost function.

1. INTRODUCTION

Since its formulation by Bellman [1], dynamic programming has proven
to be a useful tool in the solution of multi-stage decision problems.
However, despite its popularity and usefulness in many applications, dynamic
programming, as originally introduced, has many limitations. Over the
last few decades, there have been numerous efforts to expand the use
of dynamic programming by generalizing it or changing it slightly to fit
certain applications.

Brown and Strauch [2] generalized dynamic programming by allowing
the range of decision functions to be a regular multiplicative lattice. In

(**) Received July 1996.
(') Clemson University, Department of Mathematical Sciences, Clemson, South Carolina 29634-
1907, U.S.A.

Recherche opérationnelle/Operations Research, 0399-0559/00/01/$ 7.00
© EDP Sciences 2000



28 T. GETACHEW, M. KOSTREVA and L. LANCASTER

similar work, Henig [13] investigated the Principle of Optimality when the
returns are in a partially ordered set. Verdu and Poor [18] proposed an
abstract Dynamic Programming model that includes, but is not restricted
to, optimization problems. Carraway et al. [4] introduced a way to use
generalized DP with a multicriteria preference function. Basically, they used
a weaker Principle of Optimality than Bellman’s original version.

Daellenbach and DeKluyver [7] were the first to work on Dynamic
Programming with explicit multiple objectives. They introduced a
computational method to find Pareto Optimal paths through a network,
with the restriction that the distance from a given node to the destination
node is unique. Their method is a straightforward extension of the Principle
of Optimality to the multiple objective context. The method they proposed is
emulated in many of the subsequent papers on multiple objective Dynamic
Programming. Shortly thereafter, Corley and Moon [6] presented almost
the same algorithm as Daellenbach and DeKluyver with the only difference
being that the vector-minimization takes place over paths of &k or fewer links
instead of paths with exactly k links.

Cooke and Halsey [5] proposed one of the first algorithms using Dynamic
Programming in a time-dependent context. Their application was a routing
problem with time-dependent transition times between states. Other papers
that do not use dynamic programming to solve time-dependent shortest path
problems, but are of interest here do exist. In a general survey of shortest-path
algorithms, Dreyfus [9] briefly discussed the problem of finding shortest paths
in networks with time-dependent arc lengths. He proposed a modification of
Dijkstra’s [8] famous shortest path algorithm. Philpott [17] attacked a similar
problem using a continuous-time linear programming formulation. Halpern
[12] proposed an algorithm to determine the shortest route in a network with
edge transit times that are time varying and nodes that allow limited waiting.
In work related to Halpern’s paper, Orda and Rom [16] considered the same
problem with several different waiting (“parking”) models and discussed the
computational complexity of their proposed algorithms.

Both Halpern’s and Dreyfus’ algorithms for the solution of the shortest
path problem with time-dependent cost functions are proven to fail by a
counterexample in Getachew [10]. They fail because they are “memoryless”.
In other words, all subpaths are permanently discarded when they are not part
of an optimal subpath, even though the non-optimal subpath could become
part of the optimal path from the origin to the destination. This occurs
because it is possible that waiting longer to reach a certain node may be

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS 29

less costly than reaching it early. Thus, what may seem like a costly subpath
could end up being less costly over all. Cooke and Halsey’s algorithm avoids
this problem because it does not discard these subpaths. Unfortunately, this
also means that a great deal of memory is required, especially when their
algorithm is extended to the multiple objective version.

Kostreva and Wiecek introduced two algorithms that involve both
multi-objective dynamic programming and time-dependent cost functions.
Their “Algorithm One” extended some of the work by Cooke and Halsey
on time-dependent routing to the multi-criteria case. This is a method
using backward dynamic programming and a time-grid. Under some weak
assumptions, this algorithm finds all Pareto paths from every node in the
network to the destination node. Their “Algorithm Two” generalized earlier
work by Kaufman and Smith [14] on finding minimum travel time paths in
networks with time-varying transit times. This method uses forward dynamic
programming to find all Pareto paths from the origin node to every other node
in the network. This algorithm does not use a time-grid, but requires that all
cost functions be monotonically non-decreasing and allows no passing.

The algorithm in this paper is designed to find the shortest path in a
network given time-dependent cost functions. It has the following features:

1. It is recursive.

2. It takes place both in a backward dynamic programming phase and in
a forward evaluation phase.

3. It does not need a time-grid such as in Cooke and Halsey and Kostreva
and Wiecek’s “Algorithm One”.

4. Tt requires only boundedness (above and below) of the cost functions,
as opposed to Kostreva and Wiecek’s “Algorithm Two” which requires
monotonic non-decreasing cost functions.

5. It reduces to backward multi-objective dynamic prograrhming if there
are constant costs.

This algorithm has been successfully applied to multi-stage decision problems
where the costs are a function of the time when the decision is made. For
example, in an occupant’s egress from a burning building, the decision of
which path to take is dependent on the fire, smoke, toxins, etc. which are
functions clearly dependent on time. In Getachew [10] there are examples
of further applications to tactical delay in production scheduling and to
production control.

vol. 34, n° 1, 2000



30 T. GETACHEW, M. KOSTREVA and L. LANCASTER

2. ALGORITHM DEVELOPMENT

Notation, definitions, and terminology

General network

First, we consider a general network containing a set of nodes,
N ={(1,2,...,n)}, and a set of links, L = {(io, 1), (42,%3), (%4,1%5), ...}
C N x N, which indicates connections between nodes. An element (i, 5)
of L is referred to as a directed link from node 7 to node j. A directed
network G is the ordered pair (N, L).

Paths

A path from node ¢ to j is the set of links IT = {(4,41), (i1, %2), (i2,43), ...,
(fk—2,%%k—1), (ik—1,7)}, where the first node of each link is the same as the
terminal node of the preceding link and each node in the path is unique.
The path II is said to have cardinality k. In this paper we shall only be
interested in paths that terminate in a pre-selected node. Let {d} C N, the
destination node, be given. Then P;(G) shall denote the set of paths II with
initial node ¢ and final node d. The set of all paths emanating from nodes
that are distinct from the destination node is denoted by P(G). Note that

PG)= |J R(©G).

1€N\{d}

Path cardinality

In the first phase of the algorithm, it is important to single out paths
satisfying specific cardinality criteria.

Pi(k)(G) = the set of paths in P;(G) of cardinality at most k.
PF(G) = the set of paths in P;(G) of cardinality exactly k.
P(®)(Q) = the set of all paths in P(G) of cardinality at most k where

PO@ = |J PP@.
€N\ {d}

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS 31

P¥(G) = the set of all paths in P(G) of cardinality exactly k where

Pr@) = |J PO
iEN\{d}

Subpaths

The concept of a subpath is fundamental for the first phase of this
algorithm. Let IT' be a subpath of II € P(G) if and only if II' C II and
I e P(G). That is, a subpath, in addition to being a subset of a path, must
itself terminate at node d.

Cost functions

This algorithm requires only that the cost functions be bounded. The cost
functions must be bounded above to satisfy the global requirement of finite
costing, and they must be bounded below as a requirement of the first phase
of the algorithm. Moreover, the costs of subpaths do not have to be separable
from the costs of paths that contain them.

Let F be a set of link- transition cost functions with domain Ry U {0},
called “time”, and range R, bounded above and below, the cost. These link-
transition cost functions are given by the range of the function C : L — F,
where C((¢,7)) = ¢ij(t) € F, t € Ry U {0}. That is, each link can have a
different time-dependent cost function.

Multiobjective cost vectors

Since the algorithm is developed for multiple objectives, we need to
consider vector cost functions. Basically, these are vectors of cost functions
as defined above. The p-dimensional vector cost function is given as the
‘range of the function

¢: L — F? where ¢(3,5)(t) = (c}j.(t), .. ,cfj(t)),

where cgj(t) €eF,qg=1,...,p.

The cost of traversing a path in the network is computed by adding up
the cost vectors on each link of the path. These costs, in turn, depend on
time. We assume that these costs are evaluated at the time of arrival at
the first node of the link (frozen link model). Thus, each link must have
a “cost” function that gives the time to traverse the link. Let cg;-(t) €eF
be the travel time function for the link (¢, 7) given the arrival to node 7 at

vol. 34, n° 1, 2000



32 T. GETACHEW, M. KOSTREVA and L. LANCASTER

time ¢. We do not assume that this travel time function is a part of the cost
vector, although it could be.

Arrival function

A function that gives the time of arrival at each node along a path
clearly depends on the path being traversed and the node of interest. Let

II= {(i7j1)7 (jlajz)’ B (jk‘—Zajk—-l)a (jk—la d)} be a path in sz(G) The
arrival function A : P(G) x N — R4 U {0} is defined recursively on initial
link-nodes as follows:

A(TL,3) = 0.

Suppose A(II, j,) has been defined for » < s and let (js,js+1) be an
element of II.

A(Haj3+l) = A(H,jS) + C}:jsﬂ(A(HajS))-

Path costing functions

As will be shown shortly, the algorithm has two main phases. The
backward dynamic programming phase and the forward integration phase
evaluate costs on the paths in different ways. In the former, the infima of
the link transition cost functions are used, while in the latter the actual costs
to traverse the paths are found.

First we define the path costing function for the path II in the backward
dynamic programming phase, I'g. Let cf(z,7) = i[nfﬁ] cgj (t) where
iclo,

o= Héﬂ;?a){A(H,Z)} and  fB= Hglg(%){A(H,J)}-

This is the infimum of the cost function for every link given the
time ranges possible for all paths. Now, let II € P;(G) where

II = {(i:jl)a (jlajZ)) sy (jk—Z)jk—l), (jk—la d)}
Then Ty : P(@) — (R;)F is defined by

k-2
Lo(IT) = (4, 51) + Co(ik—1,d) + D, 0 (js, Js+1),

s=1

where &(i,7) = (c(l)(i,j), e cg(i,j)). So, Ty evaluates the cost of a path
given that every link is at its infimum as defined by the above cg function.

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS 33

Next we define the path costing function I' for the path II in the forward
integration phase. Let ' : P(G) — (R4 )F be defined by

k—2
D(IT) = (i, 51)(0) + €(gk—1, )AL, jx—1)) + Y &is, ds+1) (AL js))-

s=1

Pareto optirﬁality

The algorithm of this paper finds the set of Pareto optimal solutions to the
multiple objective shortest path problem. The concept of Pareto optimality
for a multiple objective function is now defined:

Let Eﬂfgk)(Po) be the set of paths of k or less links and starting at node
1 that are non-dominated according to the Iy costing function. Let Eff;(Fp)
be the set of all paths starting at node ¢ that are non-dominated according to
the I'g costing function. Let Eﬂ”gk)(P) be the set of paths of k or less links
and starting at node ¢ that are non-dominated according to the I' costing
function. Let Eff;(P) be the set of all paths starting at node ¢ that are
non-dominated according to the I" costing function. Let 1I € P(’“)(G). Then
11 € Eff *)(Py) if and only if the set {IT' : T € P(])(@), To(IT') < To(TT),
To(I') # To(I)} is empty. Similarly, I € Eff ¥)(P) if and only if the set
{Ir . ' e PR)(@), T(I') < T(II), T(I') # I'(I)} is empty. Note that
Eff; (P) = Ef ""V(R) and Eff; (P) = EF ""V(P).

3. THE ALGORITHM

In this section, we develop in detail a new algorithm for solving multi-
objective optimization problems in networks. It is more general than those
described in the introductory section, and for the case of all cost functions
taking constant values, it reduces to multiple objective backward dynamic
programming. An example of its application follows in Section 4.

Iteration I

Given a network, G, with each link having an associated transition cost
vector as defined above, the algorithm begins by partitioning the set of paths.
One set, the forbidden set Sg, is the empty set and the other set, the working
set, is the entire set of paths with all links costed with I'g. Note that the I'g
costing yields a unique network, as each link transition cost function has a

vol. 34, n° 1, 2000



34 T. GETACHEW, M. KOSTREVA and L. LANCASTER

unique infimum. What follows then is an application of backward multiple
objective dynamic programming to this network. For all = € G, 7 # d do:

F§P = VMIN{To(II) : To(M) = & (i, ), where T € P (G)};
(2> = VMIN{To(II) : To(II) = & (i, 7) + f, &UJ(]) €Ft§11')
wherell € P,-( )(G), VjeG}h

FO = VMIN{To(I) : To(IT) = (i, ) + 152, 1570 € 7D
where Il € P{"(G), Vj € G};

F(g'?_l) VMIN{FO(H) Fo(H) = CO(Z _7) + (n 2) é;l—z) c Fé;l—Z)
wherell € Pi(n U(G’), Vj e G}.

The backward dynamic programming stage terminates with the output
set FPY Let Fyy = F"Y, and P(Fy;) = {1l : I € P(G) and
To(II) € Fpi}.

In the forward integration phase, the true cost of each path whose cost
is in the set Fy; is now found by direct evaluation via the costing function
[. Let Vo; = {II : IT € P(Fp;), To(II) < I'(II) and To(II) # I'(TT)} be
the set of paths starting at node 7 whose I'g is not equal to the actual cost
of traversing the path.

If Vp; is empty, then STOP, with P(Fp;) = Effz(-n_l)(P); otherwise let

ug; = D, let uy; = Vpi Uwug;, and let uy = |J ui,. The forbidden set for the
i#d

iteration I; then becomes, S1 = {II : IT € P(G) such that IT is a subpath

of I, I € wy}.

Iteration I,

In general S, = {II : Il € P(G) such that II is a subpath of IT', IT" € u, }.
This forbidden set defines the partition for iteration I, to be the paths in
S, and its complement. The path costing function for the b jteration is
now given as:

FO(H)’ H g ST7

. k -
Iy : P(G) — (Ry)" where I', (IT) = {F(H) otherwise.

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS 35

Let S,; = P;(G) N Sy, and SX, = P¥(G) N S;.
For all 7 € G, ¢ # d the backward dynamic programming phase is applied
to the set of paths that are in the complement of the set Sy;.

F = VMIN{T, (1) : T, (IT) = &(i, d),
where IT € P{(G) and IT ¢ S,.;}.

Paths of length at least two in the complement of S,; can take two
forms: those with all links but the latest resulting from the previous vector-
minimization, F;;, and those with all links except the latest being in a set, Sy;.
Accordingly, vector-minimization over sets of paths of cardinality greater
than one must involve not only paths from the preceding vector-minimization
step, but also paths from the appropriate forbidden sets.

So, for Kk =2ton—1:

F = VMIN({T, () : T () = 0(6,9) + £, £5 70 e F§™Y
where IT € P*(@), T ¢ S,4, Vj € G}
U (T (T1) : Ty () = (3, 4) + To (), £~ € F&Y

where Il' € S5, T € PY(G), L ¢ 8,4, Vj € G}}.

Let Fy; = VMIN{F"™D U {s,,}} where {s,;} = {T,(I) : I € S,;}.
Let P(F;) = {Il : IT € PYG) and T,(II) € F,;} and let the set Vi
be defined by

Vi ={Il: 1l € P(F}y;), ', (IT) # T(I) }.
If V;; is empty, STOP.
P(Fy;) = eff;(P).
Else let
Upt1)i = VriUuri and  wurgn = | Jupy)
i2d

The algorithm above, with its alternating forward and backward phases,
reduces to multiple objective backward dynamic programming in the case of
constant costs. An illustrative example is presented in the next section. This

example features discontinuous objective functions, but also note that it is of
the class solvable by [15]. Thus, the power of the method is demonstrated.

vol. 34, n° 1, 2000



36 T. GETACHEW, M. KOSTREVA and L. LANCASTER

More general problems, beyond those covered by [15], are also solvable
by the new algorithm. Some of these are presented in [10], while some
will appear in other work in preparation. Section 5 contains the theoretical
justification of the algorithm and some other results of a more general nature.

4. AN EXAMPLE

This network has a cost vector with two cost functions. Two of the links
have time-dependent cost vectors, links (3,4) and (5,6). The destination node
is node 6. The problem is to find all the efficient paths from all start nodes
1, 2, 3, 4, and 5 to the destination node, node 6.

©)

(1,2)

@\

“4.3) :

@B.Dift<2
(6,4) otherwise
(LDift<s

an (5.4) otherwise

Figure 1. — A network with time-dependent link-transition cost functions.

Iteration 0

The backward dynamic programming phase finds all non-dominated paths
from every node to the destination node given the costing function I'y.

Féf{ ) Max path-length Start node Path Cost
Fé;) : 1 1 — —
Fé;) 1 2 — —
Fé;) 1 3 — —
. Fé 1 ) 1 4 4-6 4,3)
Fé;) 1 5 5-6 (1,1)
2 2 1 1-4-6 G4 +@183)=007
F(g) 2 2 — —

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS 37

2 — — =
Féa) 2 3 3-4-6 G +@3)=>74
2 2 4 4-6 4,3)
04 . —
4-5-6 1,2) + (L,1) = (2,3)
> _
% 2 5 5-6 (1.1
73 3 1 1-4-6 )
01 1-3-4-6 (1.4) +(7.4) = (8,8)
3 -3 -4 - =
Féz) 3 2 2-3-4-6 (L,1) + (7.4) = 8.5)
£ 3 3 3-4-6 (7,4
03 3-4-5-6 G.D+(23)=(54
3 -5
F§4) . 3 4 4-5-6 2,3)
3 _
Fés) 3 5 5-6 1,1)
R 4 1 1-4-6 )
o1 1-3-4-5-6 (1,4) + (5.4) = (6,8)
1-2-3-4-6 (L,1) + (8,5) = (9,6)
£ 4 2 2-3-4-6 (8.,5)
02 2-3-4-5-6 (1,1) + (5,4) = (6,5)
Fé;) 4 3 3-4-5-6 G4
FH 4 4 4-5-6 2.3)
4 —_—
Fés) 4 5 5-6 (L,1)
Féf) 5 1 1-4-6 7.7
1-3-4-5-6 (6.8)
1-2-3-4-6 9,6)
1 -2-3-4-5-6 (L1)+ (65 =76
Fg;) 5 2 2-3-4-5-6 (6,5)
5 “4_5_
F§3) 5 3 3-4-5-6 5.4
Féi) 5 4 4-5-6 2.3
5 —_—
Fés) 5 5 5-6 a1
This phase terminates with the set Fy; = éf ),

P(Fp))={1-3-4-5-6,1-2-3-4-5—6}
P(Fps) ={2-3-4-5-6}
P(Fo3) = {3—-4-5-6}

P(Fyy) = {4-5—6}

P(Fps) = {5 — 6}.

The true cost of each path in P(Fp;) is now found by direct evaluation
using the I' costing function. :

vol. 34, n° 1, 2000



38

T. GETACHEW, M. KOSTREVA and L. LANCASTER

Efficient path Infimum cost True cost
1-2-3-4-5-6 (6,8) (10,11)
1-2-3-4-5-6 (7,6) (14,12)

2-3-4-5-6 6,5) (10,8)
3-4-5-6 (5:4) (5.4)
4-5-6 2.3) (2,3)
.5-6 (1,1 (1,1)

So, Vp; becomes:

Voir={1-3-4-5-6,1-2-3-4-5-6}
Voe={2-3-4-5-6}

Vos :Q?P(F();))):Eﬁg(P)

Voa = @ = P(Fps) = Eff4(P)

Vos :@:>P(F04):Eﬁ5(P).

Iteration 1

uy={1-3-4-5-6,1-2-3-4-5-6,2—-3—-4-5-6}

So, the avoidance set for this iteration then becomes:

S$51={1-2-3-4-5-6,2-3-4-5-6,3-4—-5—6,

4-5-6,5—-6,1-3—-4-5—-6}
S1={1-2-3-4-5-6,1-3—-4—-5-6}
S12={2-3-4-5-6}
S13={3-4-5-6}

S1a={4-5-6}

S15 = {5 — 6}.
FH{ ) Max path-length Start node Path Cost
(1) 1 1 — —
Fiy
1 I —
FI(Z) 1 2

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS

39

1 - O
F:(.s) 1 3
1 4 —
F1(4) 1 . 4-6 4,3)
(2 2 1 1-4-6 GBAH+@3)=007)
11
2 — -
Ff2) 2 2
7@ 2 3 3-4-6 G+ @43)=074%
13
2 4 4 - 4,
F1(4) 2 6 4,3)
3 3 1 1-4-6 7,7
bR 1-3-4-6 (1,4) + (7,4) = (8,8)
F(3 3 2 2-3-4-6 1,1) + (74) = (8,5)
12 '
3 — p—
FI(S) 3 3 3-4-6 (1.4)
3 4 4
F1(4) 3 4 6 (4,3)
o 4 1 1-4-6 an
11 1-2-3-4-6 (1,1 + (8,5) = (9,6)
P 4 2 2-3-4-6 (8.,5)
12
4 - p—
Fl(B) 4 3 3-4-6 (7.4)
4 4 4 - 4
P 4 6 *3)
FX5) 5 1 1-4-6 (7,7
11 1-2-3-4-6 9,6)
5 —3_4 -
Fl(2) 5 2 2-3-4-6 8,5)
5 —4 -
Fl(a) 5 3 3 6 (7.4)
5 —_
Fl(q) 5 4 4-6 4.3)

This phase terminates with the set Fj; = VMIN {Fl(f’ )y {s1i}}-

Fi1 = VMIN{(7,7),(9,6), (10,11), (14,12)} = {(7,7), (9,6)}
Fiy = VMIN{(8,5), (10,8)} = {(8,5)}
Fi3 = VMIN{(7,4),(5,4)} = {(5,4)}
Fi4 = VMIN{(4,3),(2,3)} = {(2,3)}

Fiy = VMIN{(1,1)} = {(1,1)}

P(Fi1)={1-4-6,1-2-3—4—6}

P(F12)={2-3-4-6}
P(F13) ={3-4-5-6}

P(F4)={4-5-6}
P(Fi5) = {5 - 6}.

vol. 34, n° 1, 2000



40 T. GETACHEW, M. KOSTREVA and L. LANCASTER

The true cost of each path in P(Fy;) is now found by direct evaluation
using the I' costing function. Some of these true costs have already been
found above.

Efficient path Infimum cost True cost
1-4~6 (7,7 .7
1-2-3-4-6 9.6) (12,9)
2-3-4-6 (8.5) 8.5)

So, Vi; becomes:

Vii={1-2-3-4-6}

Vig = & = P(F12) = Eff(P)
Vis =0 = P(F]g) = Eff3(P)
Vig = D = P(Fua) = Eff4(P)
Vi = = P(F14) = EH5(P).

Iteration 2
up ={1-2-3-4-6,1-3-4-5-6,1-2—-3-4-5-6,2—3—-4—-5-6}.

So, the avoidance set for this iteration then becomes:

Sg={1-2-3-4-5-6,2-3-4-5-6,3-4—-5—6,
4-5-6,5-6,1-3-4-5-6,1-2—3—4—86,
2-3-4-6,3—4-6,4—6)

S1={1-2-3-4-5-6,1-3-4-5-6,1-2-3-4-6}
S12={2-3-4-5-6,2-3—-4-6}
S13={3-4-5-6,3—-4-6)}

Sy ={4—-5-6,4—6}

S15 = {5 — 6}.

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS

41

FQ(f( ) Max path-length Start node Path Cost
1 — _
F2(1) 1 1
1 1 —_— —
Ry :
1 1 — _
Y :
2 2 1 1-4-6 G +@3)=077N
21
2 — _
F2(2) 2 2
F(3) 3 1 1-4-6 7.7)
21 1-3-4-6 1.4+ (74 =338
4 —_4-
F1(1) 4 1 1-4-6 (7,7)
5 _4 -
F1(1) 5 1 1-4-6 a7

This phase terminates with the set Fy; = VMIN{FS Y {s2i}}.

Fy = VMIN{(77 7)a (12,9),(14,12), (10, 11)} ={(7,7)}
Fip = {(8,5)}

Fi3 = {(5,4)}
Fia = {(2,3)}
Fiy = {(1: 1)}

P(Fn)={1-4-6}
P(F12)2{2—3—-4—6}
P(Fi3) ={3-4-5—-6}
P(F4) ={4-5-6}

P(F15) = {5 — 6}.

vol. 34, n° 1, 2000

Efficient path Infimum cost True cost
1-4-6 1,7y 7,7)
Vo1 = & = P(F») = Eff1(P)

Voo = @ = P(Fy) = Effy(P)
Vo3 =0 = P(F23) = Effg(P)
Vog = 0= P(F24) = Eff4(P)
Vos = @ = P(Fy4) = Eff5(P).




42 T. GETACHEW, M. KOSTREVA and L. LANCASTER

The algorithm terminates and the following are the non-dominated paths:

Eff1(P) ={1-4 -6}, Effy(P)={2-3 -4 -6},
Effs3(P) ={3-4—-5—-6}, Eff4(P)={4-5-6},
Eff5(P) = {5 — 6}.

Remark: Path 4 — 5 — 6 would have prevented the path 1 — 4 — 6 from being
manifest (since it dominated the subpath 4 — 6 of 1 — 4 — 6) had it not been
avoided in the backward phases of Iterations 2 and 3.

S. THEORETICAL RESULTS

This section contains the mathematical justification for the algorithm
presented in Section 3. All of the results presented here may also have
relevance to the foundations of the theory of other related optimization
methods and may aid in the derivation of new algorithms.

Note: The notation “<#” will stand for “does not exceed, vector-wise, but
is distinct from”. For example, the following notation for vectors C and D:
C < D and C # D could be replaced by C <# D.

THrOREM 1: The algorithm terminates after a finite number of iterations.

Proof: With each iteration, the sets u, strictly increase. This consideration,
and the fact that the number of paths in P(G) is finite, yields the desired
result. O

The notation required will now be introduced.
Let P(G;) = P(G)\S,, P(G)) = P(G’) N P(G), P"(G’) = P(G))n
k

PH(@), and P(@)) = P(G}) n PP(G).

Let II € Pi(G)). Then II € Eff(P(G))) if and only if the set
{Il' : II' € Pi(GL), I'»(I') <# I[';(I)} is empty.

Tueorem 2: P(F"™V) = Ef(P(GL)).

Proof: (by induction on k, the cardinality of the path).

Let £ = 1. Then,

F{Y =VMIN{D, (1) : Ty (I0) = G (i, d),
where Il € PM(G) and I ¢ S}
Hence, one obtains P(Fr(l1 )) = Eff(Pi(l)(Gﬁ.)).

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS 43

Suppose now that P( k 1)) Eff(Pi(k"l)(G;)), 2<k-1<n.

A Letll e Eff(]-"i(’”)(G’T)), where IT is of cardinality k.
Case 1: T = {(i,5)} UII;, II; € S,;. Then it follows that
T (I) = &o{i, ) + I'(T;), an element in the set {cp(%,j) + I'(IL;),
I; € 551}, Since I € Ef(P™)(G))) and has cardinality k,
II e P(Fr(ik)), as desired.
Case 2: 11 = {(¢,7)} UIIL;, II; ¢ S,. We claim that II; €
Eff(P; k_l)(G’,)). To obtain a proof, suppose not. Then there must
exist I; € P¥V(G) such that T\(IT}) <# T,(I1). But then,
leting I' = {(3,7)} U I}, we get ['(IT") <# T,(II), by the
additivity of I',. This is impossible since II € Eff (Pi(k)(GL)). Hence,
II; € Eff(P(k_l)(G' )). By the inductive hypothesis, it follows that
I, € P(F, (k 1)) Therefore, I'(II) € {cy(¢,7) + F(’?_l)}. Since
e Eff(P}’"’(G;,)), (1) € F®, or I € P(EW).

B. Suppose now that II € P(F(k))\Eff(P(k)(G’ ).
This implies the existence of a path II' € P(G.) such that
I, (') <# T'»(IT). Without loss of generality, II' can be assumed to
be an element of Eff(Pi(k)(G'T)). But then, by part A, II' € P(F(k))
Since II € P(FT(:C)) by hypothesis, I',(II') <# I'r(II) is impossible
by the definition of FT(Zk ).

The theorem follows from parts A and B. O

Define the set Eff;(P,) by the condition IT € Eff;(P,) if and only if the
set {I' : II' € P;(G) and T (I') <# T'+(II)} is empty.

TheoreM 3: P(F,;) = Effi(FP).

Proof:

A. Let Il € Effy(P,).
Case 1: Suppose II € P;(G.). Then, since I € Eff;(P,), it is
also true that I € Eff (P;(G))); this yields, by Theorem 2, that
IIe P(F " )). But then, since Fy; = VMIN{FT(?—I) U {sr}} (and
II is an element of Eff;(P;)), we must have IT € P(F};).
Case 2: Suppose I € P;(G.). Then II € S,; by definition. Recalling
F, = VMIN{FT(:-Z—I) U {s,}} and since II € Eff;(P,), II must be
in P(Fy).

vol. 34, n° 1, 2000



44

T. GETACHEW, M. KOSTREVA and L. LANCASTER

B. Suppose now that II € P(F;)\Eff;(P;). Then there must exist

I € P(G,) (WLOGII' € Eff;(P;)) such that T, (II') <# TI'.(I).
We now identify two cases:

Case 1: Suppose II' € S,;. Then I'\(IT') € {s;}; but, since
Il € P(F,;), we have that I';(I') <# I',(II) is not possible, by
the definition of Fi;.

Case 2: Suppose II' ¢ S,;. Then, I' € P,(G,). Since II' €
Eff (P;(GL)), we have, by Theorem 2 that I'.(II') € Fr(?_l). But,
then ', (IT') <# I, (II) is impossible since II € P(F};).

Together parts A and B establish the theorem. O

The next theorem gives the main theoretical result of this paper. It
establishes that after a finite number of iterations, the algorithm determines
the entire set of efficient paths for all possible initial nodes.

THEOREM 4: Let the algorithm terminate after t iterations. Then, P(Fy;)
= Eff;(P).

Proof:

A. Let II € Eff;(P). Let Il(;) denote the path II with cost given by I';.

Case 1: Suppose Il;) € uzi. Note that Vi; = . In the case where
I € P(F;), there is nothing to prove since I'(II) = Ft(H(t)) € Fy
or II € P(F3;). So, consider the case where II(;) & P(F%;). Since,
by Theorem 3 we have that P(F};) = Eff;(P;), this implies that
H(t) € Eff;(P;). But, then there must exist a path II' (WLOG
in Eff;(P;)), such that Ty(II') <# T'(II). Since by Theorem 3
I € P(Fy), and Fy; is terminal, I't(IT') = T'(II'). We thus have,
I(I') = Iy(IT") <# T4(II) = I'(IT). This is not possible, since
I € Eff,‘(P )

Case 2: Suppose ;) & uy. Once again, if Il € P(Fy;) there
is nothing to prove since ¢ is terminal and I'(II) = T'¢(Il;y)). So,
suppose Iy & P(Fy). This implies that there exists Ir', (WLOG
in Eff;(P;)), which, by Theorem 3, is the same as P(F%;), such that
Ft(H/) <# Ft(H(t)) But, since I‘t(H(t)) < F(H(t)) = F(H) (H(t)
and II are the same path), we have I';(II') < I'(II). However, the
facts that T'y(II') = [(II') (because II' € P(Fy;), t terminal), and
I(IT') <# T'(II) from above, force II ¢ Eff;(P).

Contradiction.

Let II € P(Fy)\Eff;(P). This implies that there exists a path
I € Eff;(P) such that I'(II') <# T(II). This in turn yields

Recherche opérationnelle/Operations Research



PARETO OPTIMIZATION IN DYNAMIC NETWORKS 45

I(I'y < T(Il') <# I(II). But, since II € P(Fy;), T'y(II) = I'(I);
moreover, by Theorem 3, IT € Eff;(P;). These two facts make the
inequalities I';(1T") < T(II') <# T(II)(= I's(1I)) impossible.

Parts A and B together establish the theorem. .

A principle of optimality

While the Principle of Optimality of classical dynamic programming is no
longer directly applicable to the problem of multi-stage decision optimization
with time-dependent cost functions, there is a similar principle that does
pertain to this type of problem. It is a generalization of the Principle of
Optimality that specializes to classical dynamic programming in the case of
time-invariant parameters. This principle requires a rigorous definition of the
notion of a partition of a set of paths.

Let (P,T') denote a set of paths P with costs determined according to the
path-costing function I'. Let I'; and I'y be two path-costing functions defined
on two subsets P; and P, = P\P; of P. Then, the set {(P1,I'1), (P, T'2)}
is called a partition of (P,T").

Let (P',T") denote a set of paths P’ costed according to I''. A path I € P’
is said to be P’-nondominated if and only if it is nondominated with respect
to the set of paths in P’ costed according to I".

THEOREM 5 (Principle of Optimality): Let (P,I") be a given set of paths,
as in the algorithm. Suppose I1 € P is P-nondominated. Then, there exists a
unique, finite set of partitions { P, } = {{(P1r,T0), (P2, T)}}. Pik 2 Pikqy

and Py, 2 Py(x11), and a nonempty set of non-negative integers I, such that
for at least one i € I, every subpath of 11 is Py;-nondominated.

Proof: The algorithm, whose proof appears above, also serves as a

constructive proof of this result. An explicit proof follows.

1. Uniqueness: This is established by noting that the initial partition is
uniquely defined, consisting of all paths costed at their infima, and that
subsequent partitions are uniquely determined by the sets F;;, which
are themselves unique.

2. Existence: Let IT be P-nondominated. Let s be the smallest index for
which II € P(FS(Z" _l)). Such an index exists by the algorithm and
finiteness. Suppose now that II' is a subpath of II. If II' coincided
with 11, there is nothing to prove, since P is, by virtue of being in
P(Fs(in _1)), P1, nondominated. So, suppose II' # II. Suppose now that

vol. 34, n° 1, 2000



46 T. GETACHEW, M. KOSTREVA and L. LANCASTER

there exists a path II” € Py, such that T'g(II"”) # To(I') is true. This

yields, To({II\IT'} U {IT"}) < To({II\IT'} U {IT'}) = To(II), and a

contradiction. O
Note that this is a generalization of the classical Principle of Optimality
since in the case of time invariance the set of partitions has cardinality one,
and hence every subpath of a nondominated path must be nondominated.

6. FUTURE RESEARCH

This algorithm was implemented with an object oriented language since
data structures (such as arrays, bags, and dictionaries) are useful given
the requirements in both the first and second phases of the algorithm to
search sets for given subpaths. It is not clear, however, that with increasing
problem size this convenience does not carry a price. As the algorithm
proceeds, the computational burden shifts from the first phase to the second
phase. The time-invariant network of phase one decreases in size while the
avoidance set of phase two increases. As such, the burden of computation
shifts from the combinatorial operations of dynamic- programming to the
lookup and comparison operations of vector minimization. It is of interest to
investigate how, given efficient data structures (for the information handling
required in both phases), the complexity of this algorithm (for optimization
with time-varying parameters) compares with dynamic programming in the
time-invariant case. The conjecture is that given sufficiently efficient data
structures, the two should be comparable, to within a polynomial.

The algorithm, with its alternating dynamic programming and avoidance-
set-definition phases has been conceived and formulated as an iterative,
region limiting type of algorithm. (It is worth noting that unlike most
methods of this type, it is guaranteed to converge to the optimal solution in
a finite number of iterations.) Recent work by Getachew [11] suggests that
a fruitful re-formulation exists in terms of stratified partially ordered sets.
A POSET p is said to be stratified if there exists a sequence of functions
{cj}jes. ¢ : p — T, T a POSET, such that for each p € p the sequence
{cj(p)} is monotonic in j. Such an abstract conception has made it possible
to see that the algorithm is applicable to, among others, fuzzy multi-stage
decision problems where the constraint and goal sets-are time-varying.

ACKNOWLEDGEMENTS
This research was supported in part by Grant 60NANBOD1023 from the Building and Fire

Research Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland.

Recherche opérationnelle/Operations Research



1
2

3

4

5

(=)}

10.

11.

12.

13.

14.

15.

16.

17.

18.

vol

PARETO OPTIMIZATION IN DYNAMIC NETWORKS 47

REFERENCES

. R. E. BeLiman, On a Routing Problem, Quarterly Appl. Math., 1958, 16, p. 87-90.

. T. A. Brown and R. E. Straucu, Dynamic Programming in Multiplicative Lattices,
J. Math. Anal. Appl., 1965, 12, p. 364-370.

. J. BrumBaugH-SmitH and D. Suier, An empirical investigation of some bicriterion
shortest path algorithms, European J. Op. Res., 1989, 43, p. 216-224.

.R. L. Carraway and T. L. MoriN, Generalized Dynamic Programming for
Multicriteria Optimization, European J. Op. Res., 1990, 44, p. 95-104.

. K. L. Cooke and E. Haisey, The Shortest Route Through a Network with Time-
Dependent Internodal Transit Times, J. Math. Anal. Appl., 1966, 14, p. 493-498.

. H. W. Corey and I. D. Moon, Shortest Paths in Networks with Vector Weights,
J. Opt. Theory Appl., 1985, 46, p. 79-86.

7. H. G. DaerLensacu and C. A. DeKvruyver, Note on Multiple Objective Dynamic
Programming, J. Op. Res. Soc., 1980, 31, p. 591-594.

E. W. Dukstra, A Note on Two Problems in Connection with Graphs, Num. Math.,
1959, 1, p. 269-271.

S. E. Drevrus, An Appraisal of Some Shortest Path Algorithms, Ops. Res., 1969,
17, p. 395-412.

T. Geraceew, An Algorithm for Multiple-Objective Network Optimization with Time
Variant Link-Costs, Ph.D. dissertation, Clemson Univ., Clemson, South Carolina,
USA, 1992.

T. Geracuew, Optimization over Stratified Posets, in preparation.

J. Haveern, Shortest Route with Time-dependent Length of Edges and Limited Delay
Possibilities in Nodes, J. Ops. Res., 1977, 21, p. 117-124.

M. L. Henwg, The Principle of Optimality in Dynamic Programming with Returns in
Partially Ordered Sets, Math. Ops. Res., 1985, 10, p. 462-470.

D. E. Kaurmann and R. L. Smith, Minimum Travel Time Paths in Dynamic Networks
with Application to Intelligent Vehicle-highway Systems, University of Michigan,
Transportation Research Institute, Ann Arbor, Michigan, USA, IVHS Tech. Rpt.
90-11, 1990.

M. M. Kostreva and M. M. Wiecek, Time Dependency in Multiple Objective Dynamic
Programming, J. Math. Anal. Appl., 1993, 173, p. 289-308.

A. Orpa and R. Rowm, Shortest-path and Minimum-delay Algorithms in Networks with
Time-dependent Edge-length, J. Assoc. Comp. Mach., 1990, 37, p. 607-625.

A. B. Puwrorr, Continuous-time Shortest Path Problems and Linear Programming,
SIAM J. Cont. Opt., 1994, 32, p. 538-552.

S. Verou and H. V. Poor, Abstract Dynamic Programming Models under
Commutativity Conditions, SIAM J. Cont. Opt., 1987, 25, p. 990-1006.

. 34, n° 1, 2000



