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A GENERALIZED PROXIMAL POINT ALGORITHM
FOR THE NONLINEAR COMPLEMENTARITY PROBLEM (*)

by Regina S. BURACHIK (U**) and Alfredo N. IUSEM (2>***)

Communicated by Jean-Pierre CROUZEIX

Abstract. - We consider a generalized proximal point method (GPPA) for solving the nonlinear
complementarity problem with monotone operators in R ' \ lt differs from the classical proximal
point method discussed by Rockafellar for the problem offinding zeroes of monotone operators in
the use of generalized distances, called (p-divergences, instead of the Euclidean one. These distances
play not only a regularization wie but also a penalization one, forcing the séquence generaled by
the method to remain in the interior of the feasible set, so that the method behaves like an interior
point one. Under appropriate assumptions on the ip-divergence and the monotone operator we prove
that the séquence converges if and only if the problem has solutions, in which case the limit is a
solution. If the problem does not have solutions, then the séquence is unbounded. We extend previous
results for the proximal point method concerning convex optimization problems.

Keywords: Nonlinear complementarity problem, proximal point methods, monotone operators.

1. INTRODUCTION

In this paper we are concernée with proximal algorithms for solving the
nonlinear complementarity problem in R ' \ We start with some preliminaries.
The operator T : R n -> P(R n ) is monotone on a subset C C R" if

(u-v,x-y) > 0,

for all x,y G C and all u G T(x).v G T(y). A monotone operator is called
maximal if for any other monotone operator f with T(x) 2 T{x) for all
x G R ' \ it holds that f = T.
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Given T : R" —» P(R n ) , the nonlinear complementarity problem,
NCP(T), consists of finding z G R" such that there exists u E T(z)
satisfying

z > 0, u> 0, (z,u) = 0. (1)

An in-depth study of NCP(T) can be found in [9]. This problem arises in
many situations; the most obvious one is obtained by taking T(x) = V/(x)
with / :R / ? —• R differentiable, in which case (1) are the first order
Karush-Kuhn-Tucker conditions of min f(x) s.t. x > 0.

Let C be a closed and convex set. The NCP(T) is a particular case of
the well-known Variational Inequality Problem for T and C, which we will
dénote by VIP(T, C). This problem is defined as:

find x* E C such that there exists y* G T(x*) with

{y\x-x*} > OforallxG C.

The most important aspects of this problem are studied in [14]. It is easy to
see that when C = R£ , VIP(T, C) becomes NCP(T). The "unconstrained"
version of VIP(T, C)9 ie., when C = R n , is the problem of finding the
zeroes of T. In fact, VIP(T, C) for an arbitrary C can be seen as the
problem of finding the zeroes of an operator, namely T + NQ, where Afc
is the normality operator associated to C (see Sect. 2). The proximal
algorithm, or more exactly, "the proximal point algorithm", according to
Rockafellar's terminology (PPA, for short, from now on), is basically the
successive approximation method for finding zeroes of monotone operators
in Hubert spaces. This method, which is therefore not new [15, 19], seems
to have been applied the first time to convex minimization by Martinet (see
[17, 18]). The first important results (iike approximate versions, linear and
finite convergence) in the more gênerai framework of maximal monotone
operators are due to Rockafellar [22]. This algorithm is still the object of
intensive investigation (see [16] for a modern survey on the method).

The PPA can be seen as a regularization method in which the regularization
parameter need not to approach 0, thus avoiding a possible ill behavior of
the regularized problems. The PPA for the problem of finding zeroes of T
générâtes a séquence {xk} C TV1 in the following way: it starts with any
x° G R n and, given xk\ xk+1 is taken so that

where
Tk(x) = T(x) + \k(x-x% (2)

and Afc > 0.
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It is shown in [22], Theorems 1 and 2, that {xk} converges to a zero of T,
provided that Xk is bounded away from 0 and the set of zeroes is nonempty.
It is also proved that the séquence converges strongly at a linear rate if T" 1

is Lipschitz continuous at 0, À& is nondecreasing.

As we remarked before, the PPA is used to solve the problem of finding
zeroes of monotone operators, Le., the "unconstrained" variational inequality
problem associated with a maximal monotone operator. Now we will exhibit
a similar kind of algorithms with all the advantages of the PPA, but suitable
to NCP(T).

In the classical proximal point method, each subproblem in volves a
quadratic regularization. Indeed, the second term that appears in itération
(2) is precisely the gradient of the quadratic norm. We consider below
generalized proximal algorithms in which this quadratic distance is replaced
by a distance-like function adapted to the set R™.

Though the operators 2\ in (2) are better conditioned in principle than
T (e.g., Tk has a unique zero when T could have several or none), the
subproblems are structurally as hard to solve as the original problem. In this
paper, we consider a generalized proximal point algorithm, for NCPCT),
which générâtes subproblems which are structurally simpler than the original
problem, as we show below.

In the algorithm considered in this paper, the subproblems are of the form
0 G Tk(x

k+1), but in this case Tk(x) = T(x) + A fcVx^(x,x fc), where d^
is a ^-divergence. This means, basically, that dip(^xk) is a strictly convex
function defined on R" whose gradient diverges at the boundary of R!}.. As
a conséquence, Tk has always a unique zero, and it lies in the interior of
R!j_. So that the subproblems are genuinelly unconstrained. We make this
point clearer with the following example.

Take T point-to-point and d^ as in Example 1 of Section 2. We will prove
that under suitable assumptions, our algorithm solves the NCP(T). The PPA
applied to this problem générâtes a subproblem of the form

x\T(x) + Xk(x - xk)) = 0, x > 0, T(x) + Xkx > \kx
k,

while our scheme will reduce to the following system of nonlinear équations

T(x)j + Xk logXJ = Afc logXj, j = 1 , . . . , n.

The différence between PPA and the algorithm we propose in this example
is clear. The PPA subproblems are NCP's of the same nature as the original

vol. 33, n° 4, 1999



4 5 0 R.S. BURACHIK and A.N. IUSEM

problem, considerably harder to solve, from a computational point of view,
than the System above. For instance, if T is continuously differentiable, the
mentioned System can be easily solved with Newton method, while the PPA
algorithm has the additional combinatorial complication of determining the
set of zero components of x.

The distance-like functions we will consider are called 99-divergences.
These cp-divergences are "distances" adequate to the positive orthant. They
are defined using a strictly convex function tp that satisfies the conditions

<p'(l) = Q, and </(!) > 0.

The distance-like function obtained by this <p is given by the formula

(3)

These distance-like functions, called (p-divergences, provide a regularization
term that penalizes the proximity to the boundary of R+, forcing the
séquence {xk} to be in the interior of RIJ. and making stet the subproblems
unconstrained. Another kind of regularization, suitable for the VTP(T, C), is
the one obtained using the so called Bregman distances (introduced in [2])
instead of the quadratic distance in (2). In [6] it is proved welldefinedness
and convergence of the séquence for the VIP(T, C) with this special kind
of regularization, adapted to any convex and closed set C C üT, for H
an arbitrary Hilbert space. In summary, the proximal algorithms we will
study replace the quadratic distance by other distance-like function whose
properties are chosen so that they behave with respect to the feasible set in
an analogous way as the norm behaves in R n .

Generalizing the scheme (2) of the classical proximal point method, we
define the proximal point method with c^-divergences as

Initialisation: Take x° such that

x° > 0. (4)

Itérative step: Given xk G R++, if %k solves NCP(T), stop. Otherwise,
find xk+1 e R ^ + such that

0 G Txk+l + AfcV^Ca:^1 ,**), (5)
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where À& is a séquence of positive numbers and Vx dénotes the gradient
with respect to the fîrst argument. In Section 5 we will prove that under
adequate assumptions (5) uniquely détermines xk+1.

Observe that we have replaced the regularization term in (2) (which is, as
we mentioned before, the gradient of the quadratic norm), by \/xdip(xJx

k).
The properties of this distance imply that ail itérâtes are in the interior of R!J_.

Convergence results are available for this algorithm applied to the convex
optimization problem, Le., when T = <9/, with ƒ convex and closed. This
analysis is rather involved and can be found in [10] and [11]. In these works
it is proved that, under reasonable hypothesis on y?, the séquence generated
by the algorithm converges to a minimizer of ƒ on R™, as long as the set
of minimizers in not empty. Further results on proximal-like methods for
convex optimization can be found in [25].

For the gênerai NCP(T), Auslender and Haddou proved in [1] convergence
of the séquence for a spécifie </?-divergence, namely, the Kullback-Liebler
divergence, defined as

n , v

d<p(x,y) = V X j log( — ) +yj -XJ,

corresponding to (p(t) — t logt — t + 1 in (3). Later on, we will describe
more carefully these results.

For an operator T, we define

5* := {x \x solves NCP(T)},

We will show here that under appropriate assumptions this method générâtes
a séquence that converges to x* E S* if and only if 5* / 0.

2. (^-DIVERGENCES

In this section we discuss a special class of distance-like functions,
adequate to the positive orthant. They are denoted by d^(-,-), defined on
R+_l_ x R++. Take tp : R++ —> R+, strictly convex, closed and twice
continuously differentiable, satisfying

<p(l) = <p'(i) = 0, and ̂ "(1) > 0.

The set of cp satisfying these conditions will be called $.
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DÉFINITION hlftpe $, then d^(-, •) : TL'l+ x K%+ -> R + defined by

èe a (p-divergence.
The notion of ^-divergence was first introduced in [8] and furtherly

developed in [24].

DÉFINITION 2: <^ w ^ató to be boundary coercive iff

lim ipf(t) = —oo.

DÉFINITION 3: c^ /5 z<?n̂  coercive ij and only ifit is boundary coercive and

lim iff(t) = +oo.

Clearly zone eoerciveness implies boundary coerciveness. We consider some
spécifie subsets of $.

DÉFINITION 4: Define $3, $4, a/?<i $5 as

$3 : = {^ G $|y?7(i) < (p"(l) logt for all t > 0}.

$4 : = | v e $ | M _ -j<p"(l) < <pf(t) < <p" (l) logt for all t > o | .

"(l) < <pf(t)fort> 0 , 4 ^ 1 ,

+ ^ ( ) ¥ ( ) ^

(We skip subindices 1, 2 for the sake of compatibihty with [10].)

The following proposition establishes the basic properties of G^(-, •) and
its proof can be found in [24].

PROPOSITION 1: Let <p G $. Then

(i) dkpix.y) > 0 for all x,y e R ^ + ;

(ii) dkpix.y) = 0 iff x = y;

(iii) the level sets of rfy>(-, y) and ^ ( a ; , •) are bounded for all x% y G R + + ,
respectively;
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(iv) dtp('j-) is jointly continuous and convex on x,y and strictly convex
in x;

(v) limfc^œc^(y,yfc) = 0 iff Y\mk^ooy
k - y..

In order to describe the subdifferential properties of d,p(-, y) (with y G R++)
we will assume from now that d^(-,y) has been extended in the usual way,
Le., taking d^(x^y) — +00 for all x £ R-++-

For a convex ƒ : R n —> R, we dénote by domf the effective domain
of ƒ. By df we dénote the subdifferential of ƒ (Le, &f(x) is the set of
subgradients of ƒ at x), and by dd^-.y) the subdifferential of d^ as a
fonction of its first argument, in the same way as Vdv,(-,y) dénotes the
gradient of d^ as a fonction of its first argument. For X c R ? \ ÔX will
dénote the boundary of X.

The following lemma is a straightforward conséquence of [23],
Theorem 25.6, and its proof will be ommited hère.

LEMMA 1: If (p E $ is boundary coercive, then the domain ofdd^^y) is
R7|+ for ail y E R ? |+ , Le.,

otherwise,

where {e^} is the canonical basis ofHn.

Let us present now some examples of cp-divergences.

Example 1: Let ipi = tlogt — t + 1

x'

f.e., dy»! is the so called Kullback-Liebler divergence, which can be extended
to R+ x R + + . It is easy to see that ^ e $5. The fonction d^^x, •) is a
strictly convex fonction, well defined for x in the boundary of R++ and
with bounded le vel sets.

Example 2: Let (f2 = t — logi — 1. Then

It is easy to check that </>2 G ^4 but tp2
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Example 3: Let </?3(t) = (y/t - l ) 2 . Then

It can be easily verified that tp$ E $5.

All these (^-divergences are boundary coercive, but only <p\ is zone
coercive.

Remark 1: Consider now the two families of ^-divergences 7A(0
px(') given by:

and

where A E (0.1] and y?i, v?2 and (̂ 3 as above. Elementary calculus shows
that all the éléments of these families are zone coercive and belong to $5.

3. PARAMONOTONICITY AND PSEUDOMONOTONICITY

Our convergence theorems require two conditions on the operator T,
namely para- and pseudomonotonicity, which we discuss next. The notion
of paramonotonicity was introduced in [7] and further studied in [12]. It
is defined as follows.

DÉFINITION 5 : T is paramonotone on a convex set C if it is monotone on
G and (z - z\w - wf) = 0 with z, zf <E C, w £ T(z), wf € T(z'), implies
w E T(z!),wf E TO).

The next proposition présents the main properties of paramonotone
operators.

PROPOSITION 2:

i) IfT is the subdifferential df of a convex function ƒ : H —+ R, then
T is paramonotone on H.

ii) IfT is paramonotone on C, x* solves V7P(T, C) and x E C satisfies
that there exists an element ü E T(x) such that (ü^x* — x) > 0 then
x also solves VIP(T, C).

iii) If T\ and T2 are paramonotone on C then T\ + T2 is paramonotone
in C.
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Proof: (i) and (ii) are Propositions 1 and 2 of [12]. (iii) follows easily
from Définition 5.

Other conditions guaranteeing paramonotonicity can be found in [12].

The notion of pseudomonotonicity, as introduced in [5], Définition (7.5),
is formulated in a much more gênerai framework than ours. For simplicity
of the exposition, however, we restrict ourselves to R n .

DÉFINITION 6: Let G be a closed and convex subset of D(T). An operator
T : R'? -> P(Rn) is said to be pseudomonotone from G to V(Rn) if and
only if it satisfies the following condition:

Take any séquence {x } C G, converging to an element x E G, and any
séquence {wk} C R'\ with wk G T(xk) for ail k, such that

limsup{u/fc
}:r

fc - x) < 0.

Thenfor each y E G there exists an element w G T(x), such that

{w,x - y) < \imm{(wk
ix

k - y).

The term pseudomonotonicity is also used for operators such that

Vx,yeC (T(x),y-x) >0 =* {T{y),y - x) >0

(see e.g. [13]). In our framework, the concept of pseudomonotonicity is the
one presented in Définition 6.

We recall now the classical définition of upper semicontinuity.

DÉFINITION 7: Let S and Si be two topological spaces and T a mapping
of S in V{S\). Then T is said to be an upper semicontinuous set valued
mapping of S if for each point so G S and each open neighborhood V of
T(SQ) in Si, there exists a neighborhood U of SQ in S (with U depending
on V), such that T(U) C V.

We dénote by intX the topological interior of a subset X C R n .

For a ciosed and convex set V C R7\ let 8y be the indicator function
of F , Le,

K ( \ / ° if X e V

Oy(x) = < ,

[ +oo otherwise.

vol. 33, n° 4, 1999
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We define the normality operator Ny of V as Ny(x) = d6y(x) (ie. the
subdifferential of Sy at x). Indeed,

{w \ (w,y — x) < Q for any y G V} otherwise.

As a direct conséquence of the définition above, it holds that Ny(x) — 0
for any x G intV.

PROPOSITION 3: With the notation above, it holds that

i) Ny(x) is paramonotone;

ii) Ny(x) is pseudomonotone from V to V(Ra).

Proof: Item (i) is an application of Proposition 2(i) to the convex fonction
<5y (*). Let us prove (ii). Take {xk}9 {wk}, x and y as in Définition 6. Since
wk G Ny(xk) and y G D(Ny) = V, it follows from the définition of the
normal cône Ny(xk) that {wk, xk - y) > 0. On the other hand, it is obvious
from the définition of Ny(x)9 that 0 G Ny(x). Take w = 0 and conclude
that {wyX - y) — 0 < l iminf^00(^,2;* - y). D

PROPOSITION 4: IfT : Kn —> P(R n ) w maximal monotone and int(D(T))
contains a nonempty closed and convex set G, then T is pseudomonotone
from G to V(Rn).

Proof: (See [20], p. 106.)

The next proposition lists several conditions which ensure pseudomono-
tonicity.

PROPOSITION 5: Considéra maximal monotone operator T : R" —> V(Kn).
If any of the following conditions holds:

i) D(T) is closed (henceforth convex), set valued function from each
Une segment in D(T) to R";

ii) T is point-to-point and hemicontinuous, le., for ail ar, y G R n the map
(p(t) defined as (f(t) = (T((l — t)x + ty)>x — y) is continuous;

iii) T = V ƒ with ƒ : Hn —> R convex arc<i differentiatie;

then T is pseudomonotone from D(T) to V(Rn).

Proof:

i) This resuit can be found in [5], Proposition (7.4).

ii) (See [20], p. 107.)
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iii) Follows from (ii) and the fact that the gradient of a convex and
differentiable function is hemicontinuous, proved in [20], p. 94. •

It is easy to verify that every point-to-point and continuons operator is
pseudomonotone. In particular, if we take T(x) = Ax with A 6 Rnx™, A
positive semidefinite and nonsymmetric is an example of a monotone and
pseudomonotone operator which is not the subdifferential of any convex
function.

4. STATEMENT OF THE ALGORITHM

Let T : Rn —> P(R n ) be a maximal monotone operator and {Xk} a
séquence of positive real numbers bounded above by some À > 0 and
ip G $5. We define algorithm GPPA as follows.

i) Initialization:

z ° € R Î + . (6)

ii) Itérative step: Given xk e R++' i f xk i s a solution of NCP(T), stop.
Otherwise define Tk : Rra -> V(Rn) as Tk(-) = T(-) + XkVxd^,xk) and
let xk+1 e R7 |+ be such that

QETk(x
w). (7)

As we mentioned in Section 1, for the case in which T — df, it has been
shown in [10] and [11] that when the set of minimizers of ƒ is not empty,
the séquence given by (6-7) converges to one of these minimizers, as long
as any of several technical hypotheses hold (e.g. when the set of minimizers
is bounded, or when x° is close enough to the set of solutions, or when
(p G $4). For a gênerai NCP(T), Auslender and Haddou considered only
the case of cp as in Example 1 and proved in [1] convergence to a solution
when the foliowing conditions hold:

(Hl) 5* ^ 0.

(H2) H%+ n D(T) ? 0.
(H3) Each subproblem has a solution in R+.

(H4) There exists u* G 5* such that for all e > 0, and for ail
K cK'l+n{y eR^|Vx* 6 S*,\\y-x*\\ > e}, where K is bounded,
it holds that

inf ( c , w - u * ) > 0 .
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We will prove that at each step k of the algorithm, xk+l exists (Hypothesis
(H3)). It is unique by requiring some additional conditions on T. Our proof
will hold for any tp G $5 (see Def. 4). Instead of condition (H4), we will
make some hypotheses on T, not involving the solution set.

For proving in Section 5 that the séquence given by (6-7) is well defined
and contained in R++ we will need some preliminary material. For any
convex set X in R n , ri(X) will dénote the relative interior of X.

PROPOSITION 6: Let T\, T2 : R n —> V(Rn) be maximal monotone operators.
Suppose that D(T\)n int(D(T2)) / 0. Then T\ + T2 is a maximal monotone
operator.

Proof: (See [21], Th. 1.)

Remark 2: Suppose that T is of the form T = f + Ny, where
a) T is maximal monotone, with D(f) closed;
b) int(D(f)) D G, for some nonempty closed and convex set G\
c) V is a closed and convex set with V n mt(D(f)) ^ 0.

Then T is maximal monotone and pseudomonotone from D(T) = D(T)P\V
to V(Rn). Indeed, as a conséquence of Proposition 6 and condition (c),
T is maximal monotone. Let us prove now the pseudomonotonicity. By
Proposition 4, conditions (a) and (b) imply that f is pseudomonotone. Since
Ny is also pseudomonotone and the sum of pseudomonotone operators is
also pseudomonotone (see [20], p. 97), we deduce that T is pseudomonotone.

Remark 3: It is easy to check that for closed and convex sets C and
V, the solution set of VIP(T + Ny^C) coincides with the solution set of
VIP(T, V fi C) for any monotone operator f. Our algorithm is devised
for NCP(T)=VIP(T,R^), but, by taking T := f + Ny, it can be used
for VIP(T,R^ n V) for any closed and convex set V c Rn . In this
case the constraints in V are transfered to the subproblems. For instance
in the linear programming case we would have f{x) = c (constant) and
V — {x e R n : Ax = b}. In this case, the subproblems become

min{c, x) + \kdip{x.x') s.t. Ax = &,

thus yielding an interior point algorithm for the linear programming problem.
We could have a simpler convergence proof assuming, instead of

pseudomonotonicity, continuity or even local boundedness of T (T is said to
be locally bounded at x if there exists a neighborhood U of x such that T(U)
is bounded), but that would not cover cases like T — T + Ny, since Ny is
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unbounded on the boundary of V. Our pseudomonotonicity assumption, on
the other hand, covers this situation when T is well behaved, e.g. when it
satisfies conditions (a), (b) and (c) of this remark.

Note that existence of xk+1 satisfying (7) is not immédiate at all, and will
be ensured only under some extra assumptions on T and <p. This issue is
the matter of the next section.

5. WELLDEFINEDNESS OF THE SEQUENCE

Now we introducé a function that will be useful in the sequel.
Let T : R n —• V(Rn) be a maximal monotone operator and C a nonempty,

closed and convex subset of Kn such that D(T) n C ^ 0. We define the
function

R n ^ R u {oo}

as
h>T,cix) : = S U P ( u > x " y)> (8)

(y,v)eGc(T)
where GC(T) := {(y,v)\v G T(y),y G D(T) n C}.

This function, which is called the gap function associated with T and
C, has interesting properties, some of which are described in the following
lemma.

LEMMA 2: Let T, C and hx,c &e as given by the définition above. Then

i) hx^c ^ convex.

ü) hT,c > 0 in D{T) n C.

Proof:
i) h>T,c(z) is t n e supremum of a family of affine transformations, which

are, in particular, convex functions, and the supremum of a family of
convex functions is always convex.

ii) Take y = x in (8). D
We need now the notion of regularity, a property of maximal monotone
operators introduced in [4]. Let G(T) dénote the graph of T, Le.
G(T) - {(y,v)\y G Rn,v G

DÉFINITION 8: A maximal monotone operator T : Rw -
te re^w/ar # / o r a// u G i2(T) and for all x G J3(T), ft toto that

- u,x ~ y) < oo.
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PROPOSITION l\lfT — df, with f closed, proper and lower semicontinuous,
then T is regular.

Proof: (See [4], p. 167.)
We want to analyze the range of the sum of two maximal monotone

operators T\,T2 : R n —> P(R n ) , i.e., we will study the sets

R(T1+T2)= |J
u£D{

and

For any set X in R ' \ conv(X) will dénote the convex huil of X, and X
the closure of X.

The following lemma was proved in [4], in the more gênerai case of a
Hilbert space.

LEMMA 3: Let TQ : R n —» P(R n ) a maximal monotone operator and
F C Rn . / / /or a// u G F r/iere ejrijto x G R n

sup (v — u, x — y) < oo, (9)
(y,v)€G(T0)

then,
i) conv(F) Ç R(T0);

ii) conv(int{F)) Ç R(TQ).

The following proposition is new and can be useful for other applications.

PROPOSITION 8: Let T\, T2 be monotone operators defined in R' \ Suppose
that they satisfy the following conditions:

a) T\ is regular;

b) D(Ti) n D(T2) / 0 and R(Ti) - R";
c) T\ + T2 is maximal monotone.

Then R(Tr + T2) = Rn .

Proof: We apply Lemma 3 to F := R(Ti) + R(T2) and To := Ti + T2.
The result will follow from Lemma 3 (i) or (ii) and assumption (b), if we
prove that F satisfies (9). We proceed to verify (9) for F = iï(Ti) + R{T2).
Let ii G R{T2) + i2(Ti), and take x G i5(Ti) n D(T2) and w G T2(x).
Then u = w + (u — w).
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Since R(Tx) = R ' \ there exists y G R'? such that u - w G T\(y). Then,
since T\ is regular, given u — w G R(T\) and x G D(T\), there exists some
7 G R such that

sup {5 — {u — w), x — z) = 7.

Then, for any (z,s) G G(T\), we have

{s - (u- w),x - z) < 7. (10)

Take u G r2(z), with z G £>(T2) n D(Ti). By monotonicity of T2, we have

(v~w,z-x) > 0, (11)

because w G T2(a;). Adding (10) and (11), we obtain

((s + v) - UjX — z) < 7,

for any z G £>(Ti + T2), 5 G Ti(z), u G T2(z), Le., for any s + v G
(Ti +T2){z). Therefore,

sup (t — u,x — z) < +cx)

and (9) is established for F = i?(Ti) + i2(T2) and To = Tx + T2. •
Now we can state and prove the following lemma.

LEMMA 4: Let T : R n —• V(Rn) be a maximal monotone operator such
that D(T) n Rn++ / 0. Take y G R + + an<i A > 0, assume that ip e $ is
zone coercive and define T(-) := T(-) + AV:ï<i^(*,y)

i) T w maximal monotone;
ii) ^(T) = Rn .

i) The operator f is obviously monotone. Let T\ := T, and T2 :—
Wxdv{',y) . By Lemma 1, ^ ( T ^ f l m ^ i ? ^ ) ) = , D ( r ) n R ! j : + 7̂  0
by assumption. By Proposition 6, T = Ti + T 2 is maximal monotone,

ii) It is a conséquence of Proposition 8 which can be applied because
conditions (a), (b) and (c) hold for T2 = T and T\ = W { )
More precisely,
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a) Wxdtp(-,y) is regular, by Proposition 7;

b) D ( T ) n R ! [ + ^ 0 and R(Vxd^>(-,y)) = R" by zone coerciveness;

c) T is maximal monotone by (i).

Then R(f) = Rn by Proposition 8.

COROLLARY 1 : If T\ and T2 are maximal monotone operators such that
D{T2) n int(D(T{)) ^ 0 then

i) Ti + T2 is maximal monotone.

ii) If furthermore T2 is the subdijferential of a proper and lower
semicontinuous convex function, and T2 is onto, then T\ + T2 is onto.

Proof: (i) follows from Proposition 6. Conclusion (ii) follows from
Propositions 7 and 8. D

PROPOSITION 9: Let T : R n -> P (R n ) be maximal monotone. If D(T) is
bounded, then T is onto.

Proof: (See [3], Cor. 2.2.)

From now on, we work with a maximal monotone operator T : Hn —»
7>(Rn).

Now we present our existence results.

THEOREM 1 : Suppose that the following conditions hold:

i) D(T) n R»+ ^ 0;

ii) y? w zone coercive.

Then, for each x° satisfying (6), (7) defines a unique séquence {x } contained
in R ^ + .

Proof: The proof will be performed by induction on k. x° G R++ by (6).
Suppose that xk G R++. Let Bk{-) := AfcVdV9(-,a;fc). Then Bfc is strictly
monotone because tp is strictly convex. This implies strict monotonicity
of Tk := T + Sfc. By Lemma 4(ii), Tfc has a zero in D(Tfc), which is
unique by strict monotonicity. We call this zero xk+1. We have to show
that this zero belongs to R++. By Lemma 1, D(Tk) = D(T) n R!j_+,
and since xk+1 G Z)(Tfc) we obtain that xk+1 G R++- We conclude that
{xk} c R!^+. D

The theorem below introduces a different kind of hypothesis on the
operator T, namely, the finiteness of the function /iT,Rn • The following
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results explain the meaning of this assumption and give some conditions
under which it holds for a maximal monotone operator T.

We will consider /IT,R- as in (8), for C = R+.

DÉFINITION 9: Suppose that D{T) n C / 0. We will say that T is C-stable
at x G D(T) H C iffhr,c(z) < oo. For the case in which C = R+, we are
considering the NCP{T). We will say that T is stable iffT is K^-stable.

The following lemma establishes a relation between stability and existence
of solutions of the NCP(T).

LEMMA 5: Suppose that int(D{T)) n R™ ^ 0. If T is stable at some
a G D{T) H RÏJ., then 0 G R(T + JVR«).

Proof: For pro ving our claim, we will use Lemma 3 for F = {0} and
To = T + 7VRî. Take 2/ G D(T) n R!^ and 7; G (T + JVRU )(y). Then there
exist w G N-Rn(y) and iw G T(y) such that v = u + w;. We have that

(v,a-y) = {u + ̂ ,a-y) = (u,a-y)-\-{w,a-y) < (w,a-y) < ;

where we used in the expression above the définition of 7VR̂  (y) and the
fact that a G R" . Taking in the last chain of inequalities supremun over the
graph of T + iVRn, we obtain:

sup

On the other hand, it is easy to check that the supremum above coincides
with the one in (9) for the mentioned choices of To and F. Then our
hypothesis on stability at a implies that condition (9) holds. Under this
condition, Lemma 3 (i) yields that 0 G R(T + JVR~ ). •

Remark 4: It is not true in gênerai that 0 G R(T + iVRn ) under the
assumptions of Lemma 5 as the following example shows.

Example 4: Take n = 1 and ƒ (t) — e~f. Then /iv/,R+ has no minimizers.
Indeed,

x) = sup {~e~y){x -y) = e"*"1.

Then V ƒ : R —• R is stable. However, we know that V ƒ has no zeroes. Take
again C as a closed and convex set, we summarize below some conditions
under which hT£ is finite for any x G D(T) n C. We dénote by S(T, C)
the solution set of VIP(T,C).
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PROPOSITION 10: Let T, C and ^

a) T is C-stable (Le., C-stable at any x G D(T) n C) if any one of the
following conditions holds:
1) T — df where ƒ is a convex fonction such that

inf/ > -oo . (12)
c

2) T + Nc is regular and S(T, C) ^ 0.
3) T is strongly monotone (with modulus a > 0), Le.,

(v — wyx — y) > a\\x — y\\2 whenever v G T(x), w G T'(y).

4; J9(T) is bounded.
b) T is C-stable at a point x° e D(T) D C if there exist a > 0 and

c G R with

{v,y-x*)>-c, (13)

for all (y,v) G GQ(T) such that \\y\\ > a.

Proof:

a)

1)
() =$upGc{df)(v,x-y) < sup{u,x-y)

yeC

< snp(f(x) - ƒ(»)) - f(x) - inf ƒ < oo,

where we used (8), monotonicity, the subgradient property and (12)
respectively.

2) IfS(T,C) / 0 then there exists z G D(T)n(7 with 0 G ( r + JVc)^
Then taking n = 0 G R(T + Nc) in the définition of regularity we
have that for any x G D(T + Nc) = P(T) fl C,

oo.

3) As x G £>(T) n C, then there exists some u G T(x). Using this fact
and the définition of strong monotonicity, we can write:

(u,x - y) - a\\x - y\\2

T) y€D(T)nC

= sup \\x-v\\({"'X~f-a\\x-y\\).
yeD(T)nc \ \\x-y\\ J
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As u G T(x) is fixed, we can take R > 0 large enough, so that
whenever \\x — y\\ > R, the expression between parentheses is
nonpositive. This implies that the supremum can be taken for y
such that ||a; — y\\ < R, and hence it is finite. This establishes the
finiteness of

4) Suppose that D(T) is bounded. By (8) and monotonicity, we have
for any u G T(x),

tiTc(%) — SUP (VJX "" y) S sup(u,a; — y) < oo,
)G(T) C

where the last inequality holds by boundedness of D(T).
b) Suppose that there exist a and c as in (13). We claim that it is enough

to evaluate the supremum in hx,c in a bounded subset of C. Indeed,
take u G T(x°), (which is possible because x° G D(T)), and then

0 < hT,c(x°) = sup {v, x° - y)
yeD(T)nC,v€T{y)

c5 sup (v^x — i

f 0 1
< max< c, s u p {u^x — y)>,

l y€CJ|«| |<a Jy€C,\\y\\<

where the second equality is a direct conséquence of (13) and
the rightmost inequality holds by monotonicity. But the rightmost
expression is finite because y is taken in a bounded set. So /ir,c(^°)
< oo and the C-stability at x° has been established. D
From now on, we will write h :=

LEMMA 6: For h as above, suppose thaï D(T) n Rn+-j- ^ 0. Then h has
zeroes in R^ if and only if S* is nonempty, and in such a case 5* is precisely
the set of zeroes of h.

Proof: We will see first that if x G R!j: is a zero of h, then it is a
solution of NCP(T). Define A := T + NK~, so that D(A) = D(T) n Rlf..
If h(x) = 0, then, by (8), we have that for any y G D(T) D R | , v G Ty,

{v,x-y) < 0.

On the other hand, if we take any w G NR»(T/), then, as x G R!^, by
définition of

(w}x-y) < 0.
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Adding both inequalities above, we obtain

{0-(v + w),x-y) >05

for any y G D(T) n R+ = D(A) and any v + w G Ay = Ty +
By Proposition 6, A is maximal monotone. Then the latter fact together

with the last inequality, yield

0 e Ax = TX + NB%(X),

and this implies that x G S*.
Conversely, suppose now that we have an element x E S*. Then for any

y G R!j_, there exists an element v G Tx with

(vyy-x) > 0.

Using the last inequality and monotonicity, we have that for any w €
Ty, (w, y — x) > 0. Then it follows from (8) that

h(x) = sup (W)X — y) < 0.
( ) G (

As h{x) > 0 we conclude that h(x) = 0, as we wanted to prove. D

THEOREM 2: Suppose that the following conditions hold:
i) S* ^ 0;

ii) D{T) n ÏU|+ / 0;
Ui) h(x) < oo /or all x E R% f) D{T);
iv) (p is boundary coercive.

Ifxk ^ S*, then (7) uniquely defines a vector xk+l G R++-

Proof: Now we do not have the property R(Tk) = R ' \ which is essential
in Theorem 1 and is implied by zone coerciveness of tp. This hypothesis
is replaced here by boundary coerciveness of ip and the finiteness of h in
R ? | H D(T). We proceed by induction. x° G R + + by (6). By inductive
hypothesis and (7), there exists xk G D(T) n R!^+ with 0 G Tk-i{xk). So
we have that 0 < h(xk) < oo. By assumption, xk £ S*. By (i) and Lemma
6 h(xk) > 0, In this case, define the set

Sk := L G
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By Proposition l(iii), (iv), Sk is open, convex and bounded. Then its
closure is also convex. Observe that xk G Sk because d^ ( •, xk ) is
continuous and dip(x

k,xk) — 0 < h(xk)/Xk and that also xk G R,++
by inductive hypothesis. Let Nk := N-g-, the normality operator of 5^.
Being the subdifferential of a closed and convex function, Nk is a maximal
monotone operator with domain D(Nk) — Sk, which is also a bounded
set. This implies, using Proposition 9, that Nk is onto. Now we define
Bk(-) := iVfc(-) + ÀfcVxd^(-,xfc). In order to prove that Bk is maximal
monotone, we check the condition of Proposition 6. By the induction
hypothesis and Lemma 1, xk G D(Nk) n R + + = 5^ n D(Vxdip(-,x

k)).
Then D(Nk) n mt(jD(Va;dv?(-)rc

fc)) 7̂  0 and so Proposition 6 applies.
Then £?& is maximal. Also, D{Bk) is bounded, being a subset of S&,
and using Proposition 9 we conclude that R(Bk) — R n . Let us consider
now the operator Ak =: T + 5^. We check now that this operator is
also maximal monotone. By Proposition 6, it will be enough to show that
D(T) n int(D(Bk)) ^ 0. Actually, because D(Bk) = R!^+ H 5fe, we can
write

rrfc G D(T) n R!^+ n Sk = D(T) n int(D(Bk)).

Then A& is maximal monotone. Now using Proposition 9 again we get that
Ak is onto, because its domain is a subset of D(Bk), which is bounded.
Then there exists y G D(Ak) = £>(T) n D(Bk) c D(T) n R ? | + , such that

0 G T(y) + 7Vfc(7/) + A&VXC^CÎ/ ,^) . (14)

Let us call uk,wk and vk the éléments in R n such that

u* G T(y),wk G JVfcCî/), and î;fc G XkVxd^(y7x
k),

and
0 = ufc + w;fc + ufc. (15)

We claim that y G Sk. Since y G jD(Afc) C D(Bk) C ö (V s ^ ( - , x f c ) )
= R++ by Lemma 1, it will be enough to show, in view of the définition
of Sk, that

We proceed to establish (16). Applying the gradient inequality to dip('Jx
k)i

which is a strictly convex function, by Proposition l(iv) we obtain
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Using (15) in (17) and rearranging terms

yk((u\xk - y) + {w\xk - y)) > d^{y,xk). (18)

Since wk G Nk(y), and xk G S&, we have by définition of Nk that

(wk
yx

k -y) <0. (19)

Using (19) in (18) we get

0<Xkd^(y,xk)<(uk,xk~y). (20)

Since (nfc,^fc - y) < sup z € R « n z ? ( T ) j V € T 5 (ü , : z* — JST> = /i(xfc), we obtain

from (20) that c^(y,xfc) < ^ p , i.e. (16) holds. We have proved that
y e Sk = int(Sfc) and therefore Nk(y) = {0}. Where we used the
well-known fact that any convex set X for which int(X) / 0 satifies
mt(X) = int(X). Then wk = 0 and by (15) 0 = wfc + vk. In view of
(14), 0 G Tk(y). By strict monotonicity of T&, y is the only zero of Tk. By
(7), y = xk+1. As y e R++, then ^ f c + 1 G R + + and the induction step is
complete. D

6. CONVERGENCE RESULTS

We have not been able to obtain the convergence resuit for any tp G $4, as
it is proved for the case T = dƒ in [11]. We must restrict our set of functions
ip to $5 (see Def. 4). We remark that this hypothesis on tp is weaker than
those imposed by Auslender and Haddou in [1], and the assumptions of
our existence and convergence results are satisfied, e.g., by the families of
(^-divergences mentioned in Remark 1.

In this section we will establish the convergence properties of the séquence
generated by (6-7). We will use in our analysis the Kullback-Liebler
divergence introduced in Example 1, which will be denoted by ip, Le.,

i(>(t) = t l o g i - t + 1.

We recall here that this v?-divergence can be extended to R!J_ x R++. Before
presenting the convergence results, we need some previous tools. Let us
call a := </( l ) .
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Consider ip G $5, Le., such that

( 1 - - ) < ^ - ^ < logt, for all t > 0,t 7e 1, (21)

and

lim y/(t) > a, lim *<//(*) > -a.

Define (p(t) :— t(p'(t) — a(t — 1), and consider d^(-,-) with the same
structure as in Définition 1, Le.,

and

Observe that <%(-,*) is not necessarily a (^-divergence because y? may fail
to satisfy some of the conditions of Section 2. Nevertheless d^(-, •) shares
some properties of (^-divergences, as the next lemma shows.

LEMMA 7: Let d^(-, •) fo defined as above with <p G $5 . Jftew /? satisfies:

i) dç,{x,y) > Ofor ail x,y G R!j : + ;

û'j If d(p(x,y) — 0 fAew a; = y;

iii) If{xk},{yk} C R 7 | + , ^ -> X,Î /* -> y fl/M/Km^ood^C^,/) - 0,
r/ï^ït x — y,

Proof: i) By définition of <i^(-,-), we can write

^D

Defining tj := ^ we get from the last formula
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and this expression is strictly positive by (21) and the fact that Xj > 0
for all j .

ii) Suppose that d(p{x,y) — 0. Then all terms in the expression above must
be zero. Since x E R++, we conclude that (pf(tj) — a ( l — ̂ ) for all j .
From (21), we get t3 = 1 for all j . Then x3 = yj for all j . Then we can
conclude that x — y.

iii) Use (22) with x — xk and y — yk, and tk- := % to get
J yj

M ; - (23)
J = l

Since d^(xk,yk) > 0 and each term in (23) is nonnegative, we have that
all of them must go to zero. That is,

lim y ^ ( é : ) = 0 for all j . (24)

We will consider two cases.
a) Suppose that j is such that yj — 0. We will prove that l im^oo xk- — 0.

Suppose that l im^oo xk > 0. We will show that this assumption leads

4to a contradiction. In this situation, we have that liirifc_>oo tj = +00.
Hence, using the inequality coming after inequality (21),

lim (p'(tj) > a. (25)

We know that

, / . / 1 W
(26)

By (25) and our assumption on the l im^oo x^, the rightmost expression
in (26) has a positive limit, which contradicts (24). This means that

ktoo xk must be 0. So we proved that if yj — 0, then x3 = 0.

b) Suppose that j is such that yj > 0. Then by (24) we must have

lim (f(Ê) = 0.
k—>oo J

Since y> e $5, it is easy to see that this can only happen if

lim tk - 1, (27)
k—>oo J

and (27) implies directly that Xj = yj also in this case.
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So we conclude that in both cases x — y. •

Finally we present our first convergence resuit for the Proximal Point
Method with (/^-divergences.

THEOREM 3: Let T : R71 —> ̂ (R™) be a maximal monotone operator with
closed domain. Consider NCP(T), and suppose that thefollowing conditions
hold:

i) D(T) n R™ + / 0;

ii) NCP{T) has solutions, le., S* ^ 0;

iii) T is pseudomonotone from D(T) to V(Ra).

iv) Xk G (0,A] for some À > 0;

v) (p e $5;

vi) either

vi\) (p is zone coercive, or

vi<i) <f is boundary coercive and h(x) < 00 for ail x E R+ H D{T).
Then, either the algorithm stops at some itération k and xk solves NCP(T),
or it générâtes an infinité séquence {xk} such that

a) {xfc} is bounded and so it has cluster points;

b) If x is a cluster point of {xk}, then there exists ü G T(x) such that
(û,x* - x) — 0 for any x* G 5*.

Proof: The finite case follows from the stopping criterion. We consider
the case of an infinité séquence, (a) We will show that {x } satisfies

(28)

for ail z G 5*, where îjj(t) = tlogt - t + 1 and d^(-, •) is as given before
in Lemma 7. By Theorem 1 or Theorem 2 we know that there exists

k

0 G T{xk+1) + ÀfcVxdv,(z
fc+\zfc) for/c = 0 , 1 , . . . (29)

Hence, there exists uk G T(xk+1) such that
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where we used (29) in the first equality and Lemma 1 in the second one.
xk+1

So, for any x € R+, we have, defining t- :— : J T - ,

_ T*+J- _ r \ - \ \ol(^\(r- - r^1) (30)
^,x x ) - 2_jW Vlj)Kx3 xj )• VÖV))

Using now the définitions of d^, d^ and (30) we obtain, after some algebra,

-<2^(x,x f c+1)-id̂ê(x\x) 4 ( ^ . a ; x)

) ) > 0 , (31)

where the inequality in (31) holds because <p € $3.

Let*s take now z G 5*. By définition of 5*, there exists v* € T(z) such
that (v*,y - z) > 0 for all y e R" . By (31) for re = 2 we have that

~

(32)

where we used monotonicity in the second inequality. By (32) we get

k) ^ { \ k ) , (33)

establishing (28). Then (a) is a conséquence of the boundedness of the level
sets of d.^(zy') (see Ex. 1). Namely, by (28) the séquence is contained in
the level set

{x e R++|d0(z,a;) < d^z.x0)},

where z e 5*. This implies the boundedness of the séquence and so the
existence of cluster points. So (a) is proved. (b) We prove first that

lim dçJxk+\xk) = 0. (34)
fe—»oo
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By (33) and Lemma 7(i) {d^(z^xk)} is nonincreasing. Since d^(zyx
k) > 0,

it follows that {d^(z,xk)} is convergent. Then, by (33)

0 < -dç,(x
k+\,xk) < d^(z,xk) - dt(z,xk+1). (35)

Now (34) follows taking limits in (35). The next step will use the hypothesis
that ip G $5, in order to prove (b).

Let x be a cluster point of {x } and {x J} a subsequence of {x } such that
x = lim^^oo xkj. In view of (a), we may assume without loss of generality
that {#fcj+1} converges to y. By (34) lim^.^oo d^x^*1 ,xkj) = 0. In this
case we can apply Lemma 7(iii), which implies that x — y. Using now
Proposition l(v) (which holds for df):

lim d^{x,xk'3) = lim d$(x,xk*+1) = 0. (36)

Now we consider (31) with x = x and k = kj, obtaining

d ( k i ) d ( k t + 1 ) ç ( , ) ( ^ y - x \ (37)
a a \ A^ /

with uk* e T(xk3+1). The left hand side of (37) goes to 0 by (34) and
(36), therefore

0. (38)

Since {A^} C R++ and A& is bounded above (assumption (iv)), we have
by (38)

i , r c ^ + 1 - x) < 0 and ukj G T(xkj+1), (39)

We use now (39) together with the pseudomonotonicity assumption. Take
x* G 5*. By pseudomonotonicity there exists ü G Tx such that

(û,x - x*) < liminî(uki,xkj+1 -x*). (40)
k j —> c o

Since rr* G 5* and x G R+, we conclude by monotonicity that the left
hand side of (40) is nonnegative. On the other hand, by convergence of
the séquence {d$(x*}x

kj)} and (34) for k = kj, we get from (32) with
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k = kj that the right hand slde of (40) is zero. So we found ü 6 Tx such
that (ü,x - x*) = 0.

The next result establishes that when T is also paramonotone, the séquence
generated by (6-7) is convergent to a solution of NCP(T).

THEOREM 4: Under the assumptions of Theorem 3, if T is paramonotone
on R!j_, then the séquence {x } given by (6)-(7) is convergent to a solution
x of NCP(T),

Proof: This theorem is just a continuation of Theorem 3. Since now T is
paramonotone, combining Theorem 3(b) and Proposition 2(ii), we conclude
that any cluster point of {x } is a solution of NCP(T). It remains to prove
that there is at most one cluster point. Let x be a cluster point of {x }? LetJ

there exists a subsequence {x j} of {x } such that

lim xkï = x. (41)

Since x is a solution of NCP(T), the séquence {dé(x}x
k)} is nonincreasing,

as established after équation (34) in the proof of Theorem 3. On the other
hand, as ij) E # , by Proposition l(v), we have that

lim dü{xyx
k*) = 0.

A nonnegative and nonincreasing séquence with a subsequence converging
to 0, certainly converges to 0, ie.,

lim d*é(x,x ) = 0.

Again, Proposition l(v) allows us to conclude that

lim xk = xy
k—i'OO

as we wanted to prove. D

We point out that the pseudomonotonicity assumption required in
Theorems 3 and 4 is guaranteed to hold in the cases considered in
Propositions 4 and 5, Conditions for existence as (vii) and (vi2) in Theorem 3
hold for tp as in Remark 1 or for tp boundary coercive and T as in
Proposition 10.
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We close this section showing that the existence of solutions of NCP(T)
is a necessary condition for convergence of the séquence {xk} generated
by (6-7). In f act, we will show that if the solution set 5* of NCP(T) is
empty then {xk} is unbounded.

LEMMA 8: Suppose that all hypotheses of Theorem 3 hold, excepting for
(ii). Let {xk} be the séquence generated by (6)-(7). If S* = 0, then {xk}
is unbounded.

Proof: Suppose that {xk} is bounded. Hence there exists a bounded,
closed and convex set B c R + + such that {xk} C int(B). Consider the
operator T :— T + NB, where NB is the normality operator associated with
B. This operator is maximal monotone because {xk} C int(B) n D(T) and
Proposition 6 applies. Consider now the séquence {xk}, generated using T
instead of T in (7), and starting with x° in (6) (the same initial point as
{xk}). We claim that:

1) {xk} is well defined and contained in R++;

2) {xk} converges to a solution of NCP(T);

3) xk = xk for ail fc.

We proceed to establish these three claims.

1) We know that T is maximal monotone, and its domain is D(T)
= D{T) H B, which is nonemty and bounded by boundedness of B.
Then by Proposition 9, the operator f + AfcVa;dv>(-) x

k) is onto, which
asserts existence of xk for any k. By strict convexity of the function
dip(-yx

k), the operator T + AfcVa;d¥,(-,a;fc) is stricly monotone, which
yields uniqueness of each iterate. Hence, the séquence {xk} is well
defined and contained in D(f) = D(T) nB C R + + . In particular,
the nonemtyness of D(T), together with the last inclusion establishes
condition (i) of Theorem 3.

2) For proving (2), we will check first that the hypotheses (ii-vi) of
Theorem 3 hold (so we assure boundedness of {xk} and hence
existence of cluster points), and then we check paramonotonicity of T
(so we have convergence):

(ii) the solution set NCP(T) = {z G Kn\f(z) + NK~(z) = 0} is
nonempty because D(f + N^ ) = D(f) n R^ is bounded, hence
by Proposition 9, the operator T + JVR^ has zeroes.

(iii) It follows from Proposition 3(ii) that NB is pseudomonotone. By
assumption, T is pseudomonotone. Using now that the sum of two
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pseudomonotone operators is pseudomonotone (see [20], p. 97),
we conclude that f = T + N& is pseudomonotone.
Conditions (iv, v, vi.l) do not depend on T, so they automatically
hold.

(vi.2) It is enough to check that

h f R« (x) < oo for all x G R+ n D(f).

Indeed, as B C Rif., it is easy to check that

GR?(T) C {(y,v) \y G D ( T ) n R ^ G f (y) = T(y) + NB(y)}.

Hence, for any (y, f) G G R ^ ( T ) , it holds that there exist
u G T{y)yw G iVB(y) such that

v = u + w. (42)

Take now (y,t;) G G R « ( T ) , X G R!jl f) D(f) C J5, and u,tü as
in (42), we can write

(v, x - y) = (u + w.x - y) = (u, x - y) + (w, re - y)

< {UjX — y) < /irTR«(a;)r

where we used in the first inequality the f act that x G B, and that
w G Nsiy)' The second inequality follows from the définition
of h>T,nn- Taking in the expression above the supremum on
(y,v) G G R J ( T ' ) , we obtain

in — f 7 1 \ —~» Q11T\ (7'J T* 9-7 1 ^

(

and the rightmost term is finite by assumption, as x G R?î+ H
D(f) c R+ n D(r).

Let us check now paramonotonicity: Since f = T + d(8s)9 f is
paramonotone by Propositions 2(i) and 2(iii).

Thus, all the assumptions of Theorem 4 hold for the séquence {xk}
defined by T and x° := x°» so we conclude that it converges to a solution
of NCP(T). This establishes (2).

3) We will prove by induction that a^ = x^ for ail k.
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The conclusion holds for k — 0 by assumption. Suppose that xk — xk.
By (7)

0 G T(xk+1) + Xkyxd^(xk+\xk) = f(xk+1) + XkVxd^(xk+\xk), (42)

using the fact that T — T 'm int(B), (recall that, by définition of NB, we
have that Ng(x) — {0} for ail x G int(S)) and the inductive hypothesis.
Then xk+1 is a solution of the équation in y,

OeT(y) + \kVxdv(y,xk). (43)

As we remarked before, the operator T + XkVxd^(-, xk) is onto and strictly
monotone. This implies that (43) has a unique solution. By (42), xkJrl solves
(43). Recalling now that the iterate xk+1 is defined precisely as the unique
solution of (43), we conclude that xk+1 — xk+1. The induction step is
complete.

Applying now Theorem 4, we can conclude that {xk}, and therefore
{xk}, has cluster points and ail of them are solutions of NCP{T). Let re*
be a cluster point of {xk}. It follows from our assumption on {xk} that
x* G int(5). Since T{x) = f(x) for ail x G int(5), we get T(x*) = f(x*)
and then it follows from (1) that x* is also a solution of NCP(T), in
contradiction with our hypothesis. We conclude that {xk} is unbounded. D

We summarize our results in the following theorem.

THEOREM 5: Assume that all hypotheses of Theorem 4 hold, excepting for

(ii). Let {xk} be the séquence generated by (6)-(7). Then

i) {xk} is convergent if and only if S* ^ 0.

U) if S* + 0 then the limit z* of {xk} belongs to 5*.

Ui) If S* = 0 then {xk} is unbounded.

Proof:

i) If S* 7̂  0, then the result follows from Theorem 4. If the séquence
converges, then it is bounded and it follows from Lemma 8 that S*
is nonempty.

ii) Follows from Theorem 4.

iii) Follows from Lemma 8.
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