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REDINV-SA: A SIMULATED ANNEAUNG
FOR THE QUADRATIC ASSIGNMENT PROBLEM (*)

by N.M.M, de ABREU C1), T.M. QUERIDO (2)

and P.O. BOAVENTURA-NETTO ( l )

Communicated by Catherine ROUCAROL

Abstract. - An algebraic and combinatorial approach to the study of the Quadratic Assignment
Problem produced theoretical results that can be applied to (meta) heuristics to give them information
about the problem structure, allowing the construction of algorithms. In this paper those results
were applied to inform a Simulated Annealing-type heuristic (which we called Redlnv-SA). Some
results from tests with known literature instances are presented.

Keywords: Quadratic assignment problem, meta-heuristics, simulated annealing, and
combinatorial prograrnming.

Résumé. - Une étude algébrique et combinatoire du Problème d'Affectation Quadratique a
produit des résultats théoriques qui peuvent être appliqués à des (meta)-heuristiques. Donnant
des informations sur la structure du problème, ils conduisent de cette façon à la formulation
d'algorithmes. Dans cet article, ces résultats ont été appliqués à l'information d'une heuristique
de type Recuit Simulé, appelée Redlnv-SA. Des résultats de l'application de l'algorithme à des
problèmes classiques de la littérature sont présentés à la fin de l'article.

Mots clés : Problèmes d'affectation quadratique, métaheuristiques, recuit simulé et programmation
combinatoire.

1. INTRODUCTION

We consider the Quadratic Assignment Problem (QAP) in the classical
forai defined by Koopmans and Beckmann (KB57) as that of minimizing a
sum of flow-distance products, which is the objective function of an allocation
problem of n "machines" to n "positions" with pairwise cost dependency.
This description has been applied to a variety of practical situations, from
hospital plants through university campi to integrated circuits and keyboards.

(*) Received January 1996.
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The purposes of this paper are to present the essential features of an algebraîc-
combinatorial approach for QAP study and to apply some of these features in
the building of a Simulated Annealing (SA) heuristic algorithm, as well as to
allow for a solution quality évaluation. The theoretical basis, following Abreu
(Ab84) involves a number of results concerning the permutation set. Among
the results there presented it is important, for what follows, a condition for
partial ordering of the permutations corresponding to the solutions of QAP
instances and the connection between the permutation inversion number and
the solution costs.

The K-B formulation is that of équations (1.1).

n

min Z = y fijdpqXipXjq

subject to

(1.1)

= 0 or 1

where the f ij and the dpq are non-negative integers defining matrices F
and D respectively. In this work we will consider these matrices as being
symmetrie, which allows us to substitute the Gavett-Plyter vector description
(GP66) for them.

The QAP has some amazing properties, as it is extremely well structured
and, on the other hand, it is a NP-hard problem for whose resolution the
present tendency is the design of efficient heuristics. Such algorithms require
instance banks for comparative testing and, in fact, a QAP instance library,
QAPLIB [BKR94] has been constantly utilized and amplified. Techniques
for generating instances with known optima have also been developed by
Palubetskis [Pa88] and Li and Pardalos [LP92], allowing researchers to
design their own test instances. An important référence on QAP is [PW94ed]
where, among several important articles, a good review by the same authors
[PW94] can be found.
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2. SOME CONCEPTS AND DEFINITIONS

The graph theory basic concepts and définitions used in this work follow
Berge [Be73].

The Koopmans-Beckmann description is equivalent to the Burkard and
Stratman form [BS78], considering the assignment of facilities to locations
as a permutation <p on {1,2, . . . , n } by setting (p(i) = j if facility i is
assigned to location j , such that

At this point it is convenient to recall some basic définitions.

DÉFINITION 2.1: A permutation (or t-permutation) is a bijective fonction
£ : T —» T (where T is the set of the first t naturals) represented as

( 2-2 )

The natural t is known as the order of the permutation.

Let Sf be the set of all permutations over the éléments in T. The identity
permutation is the fonction bt E St such that tt(j) = j , for j = 1 , . . . , i.
Two éléments x, y € T are adjacent in ^ £ St when there exists i ^ T - {£}
such that x' = ^(i) and y = £(i + 1) or ?/ = ^(i) and a; = £(i + 1). We
say that a: précèdes y in the image of £ when there exist i, j E T such that
i < j , x = £(i) and y = f (j). An ordered pair (ar, t/) G T x T such that a?
précèdes y in the image of £ is an inversion in £ when x > y.

It is frequently useful to shorthand a permutation by its image £ =

DÉFINITION 2,2: Let £ be a permutation. Then

#(f ) = {(a;, y) ET x T\{x, y) is an inversion in £} (2.3)

where #(£) is the inversion set in ^. The cardinality |#(£)| is the number
of inversions in ^.

DÉFINITION 2.3: A cycle (fc-cycle) in St is a i-permutation /i with
(t — k) fixed éléments ji{j) = j , the remaining fe éléments being given

vol 33, n° 3, 1999
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by fj.(xi) = Xi+i (i — l , . . . , fc — 1), /x(xfc) = xi. A cycle is usually
represented as ( # 1 , . . . ,£&). A 2-cycle is also called a transposition.

DÉFINITION 2.4: A QAP instance of order n is the association of two
n-cliques Kf and K^, respectively valued by the material flows between
machines and by the distances between positions (Fig. 2.1).

28

4

y
15

13

23
K

f

Fig. 2.1. - Cliques Kf and Kd.

This example is the Gavett-Plyter instance [GP66]. These authors
developed a QAP relaxation (which is a Linear Assignment Problem of
size N = Cn^) defined by two column vectors, F = [/r] and D = [d$]
(r, s — 1 , . . . , iV) where the components are respectively the edges of Kf
and Kd taken in lexicographie order.

DÉFINITION 2.5: We define a flow-distance edge-edge matrix F, as

T = FDT = [ 7 M ] . (2.4)

Every QAP feasible solution is a solution for the relaxed problem defined
by F. The reciprocal, however, is not true, because the relaxed problem has
N\ solutions, of which only n\ are feasible.

The original and the relaxed problems can be associated to each other by
the bijection between lexicographie and numerical orders; for a pair (i,j)
(1 < i < j < n) the numerical ordering ipij is

(2.5)

DÉFINITION 2.6: By sorting F components in non-decreasing order and D
components in non-increasing order and calling F and D the vectors thus
obtained, we define a standard matrix F as

(2.6)

Recherche opérationnelle/Opérations Research
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and cf>F and <fo> as the permutations t^king respectively F into F and D
into D.

Example matrices are shown in Figures 2.2 and 2.3, where lines and
columns are identified by both orderings and by the edge values.

D

1

2
3
4
5
6

h 3

12
13
14
23
24
34

F

28
25
13
15
4
23

1
12
6

168
150
78
90
24
138

2
13
7

196
175
91
105
28
161

3
14
2

56
50
26
30
8
46

4
23
5

140
125
65
75
20
115

L/
l

24
6

168
150
78
90
24
138

6
34
1

28
25
13
15
4
23

Fig. 2.2. - T matrix - [GP66] instance.

5
3
4
6
2
1

24
14
23
34
13
12

F
4
13
15
23
25
28

2

13

7

28
91
105
161
175
196

1

12

6

24
78
90
138
150
168

5

24

6

24
78
90
138
150
168

4

23

5

20
65
75
115
125
140

3

14

2

8
26
30
46
50
56

6

34

1

4
13
15
23
25
28

D

Fig. 2.3. - Standard T matrix for the [GP66] instance.

The feasible solution corresponding to [2 1 4 3] in the graphs of Figure 2.1,
is shown in both matrices as underlined characters (with a cost equal to 464).
As a conséquence of F ordered structure we can obtain a lower bound tr(F)
for the optimal QAP solution; Hardy et al. [HLP52] and Wimmert [Wi58]
show it is as being equal to the trace of F, that is, the sum of its diagonal
éléments. (For this instance we have tr(F) = 389, the optimal solution being
[4 1 3 2] with cost 403.)

DÉFINITION 2.7: To a given matrix F we associate a set QA(T) of all
instances /p which can be obtained by different F and D orderings. Each
of these instances will be defined by a given {F,D) pair.

vol. 33, n° 3, 1999



2 5 4 N.M.M. DE ABREU, T.M. QUERIDÖ and P.O. BOAVENTURA-NETTO

3. THE FEASIBILITY PROBLEM

DÉFINITION 3.1: Let us now consider a given matrix F and a given N~
permutation pp. We say that the iV-vector X = (/idp_(i),.. . , /N^P-{N)) *S

feasible for a given instance P G QA(T) if we can find a vertex permutation
ip such that

) = ƒ**<***«)*<;) (r = 1, - . . , # ) . (3.1)

The feasibility is guaranteed by the coherent application of Kd edges over
Kf edges, that is, preserving vertex over vertex.

For a given ip £ Q^-OO we consider the permutations pp and pp as
acting respectively on F and F columns. It is easy to see that

pr = (f)F o p p o ^ 1 . (3.2)

In order to clarify the composition opération shown in the example that
follows, we will use hère the notation presented in (2.2). This composition
is done from left to right.

Example: We take again the [GP66] instance, with the solution defined in
T as p r = [1 5 4 3 2 6] and in F as pp = [1 4 5 6 3 2].

PT =

Then

_ / 1 2 3 4 5 6 \
~~ V 1 5 4 3 2 6 /

To identify whether an edge-permutation pr corresponds or not to a feasible
solution for a given instance /p, we have to verify if there is a vertex-
permutation (p E Sn leading to an edge allocation in F corresponding
to

_

Recherche opérationnelle/Opérations Research
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For the [GP66] instance we have, as an example (see Figs. 2.2 and 2.3),

Matrix > FF F F

Position > (6,2) (1,1) (5,3) (2,5)

Entry value -> 168 150.

4. INVERSIONS AND COSTS

Through this item we will consider every JV-permutation as a permutation
of T columns; for sake of simplieity we will not use the F index.

The translation of (1.1) into edge permutations associated to permutations
of F columns allows us to write, for a given JV-permutation £,

N

DÉFINITION 4.1: The increase associated to a permutation £ e Sj\r is

Ae = Zi - Zj (4.2)

where Zj — tr(F) is the problem lower bound associated to the identity
permutation tjy.

THEOREM 4.1: The increase associated to a cycle [i = (a;i , . . . ,#&) E SJ\T

is given by

k-i

J(xj)(d(xj+1) -d(xj)) + J{xk)(d{Xl) -d{xh)).

Proof: By considering (4.1) and (4.2). D

We know that every permutation can be expressed as a composition of
disjoint cycles (see for instance Berge [Be68]). The next theorem allows
the increase of a permutation to be defined as a function of the increases
associated to its cycles.

vol. 33, n° 3, 1999
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THEOREM 4.2: Let £ E Sjy be a permutation expressed as a composition of
r disjoint cycles £ = ji\ o ̂ 2 ° • • • ° Mr- The increase associated to £ is

Proof: As the cycles are disjoint, we can write

r

and therefore

AC = Z{ - Zj = J2 [ E ttvMfAv) - <*(*)]] = E A(W). (4.4)
D

This rather simple resuit has a strong conséquence; as every parcel in the
sum is non-negative, we can say that, for every j , j = 1 , . . . , r,

A(MJ) < A(0- (4.5)

Then we can have permutation pairs (£, TT) such that A^ < ATT or A^ > ATT,
regardless of the instance values.

DÉFINITION 4.2: Two increases A£i and A^2 are freely comparable if it
is possible to verify either A£i < A^2 or A^i > A^2, regardless of F
entry values.

THEOREM 4.3: If a permutation £2 is obtained from a permutation £1 by
applying a transposition 9, then £1 and £2 #re freely comparable.

Proof: Let us consider 6 = (x,j/)s rr < y and £2 = £1 ° Ö. We will have
60*0 = 6(2/) , 6 ( y ) = 6 W and 6 ( 0 = 6 ( 0 for iy£x,y. Then

A(6) - A(6) - (7(a:) -/(yîJpttid/)) -3(6(x))]. (4.6)
As î 1 has a non-descending ordering the first factor of the right-hand
member will always be non-positive. For the same ordering reason, the
second factor will always be non-negative if £1 (y) < Çi(x) and non-positive
if£i(y)>6(^ •

Recherche opérationnelle/Opérations Research
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According to this proof the comparison direction (either A (£2) <
or A(£2) > A(£i)) dépends on whether £i(x) is lesser or greater than
This comparison corresponds to an order of scalar products, an approach
used by [Re85]. The next theorem relates this result to the inversion number
of £1 and £2.

THEOREM 4.4: Let £1, £2, 9 E SJ\T, where 9 is a transposition. If £2 = £1 ° 0
and |#(£i)| < |#(É2)|» then £1 and £2 arefreely comparable and Z^ < Z^2.

Proof: Consider 9 = (x,y) where 1 < x < y < N. Then the permutations
£1 and £2 are respectively of the form

Taking into account that |#(£i)| < |^(^2)| implies £i{x) < £1(2/) we have,
from (4.6),

A€l - Ai2 = (J{x) - 7(y))[3«i(y)) - 3(6(*))].

The orderings defined for F and JD imply respectively f(x) < f(y) and
- d(Çi(x))9 from which we obtain A x̂ < A^2 and, consequently,

DÉFINITION 4.5: Theorem 4.4 allows us to build a directed graph
GIN ='(SN,W) where W is the set of pairs (£i,£j) such that tf(£j)
has exactly one more inversion than tifêj). This graph is known as the
inversion graph.

G IN is a circuitless graph whose level ordinal function is the number
of inversions. Level 0 has exactly one element (which is I?JV, the identity
permutation corresponding to the lower bound tr(F). It has a lattice structure
[Be68, AV95],

Figure 4.1 is a scheme of GIN vertex distribution for N = 6; the graph is
regular of degree TV - 1, so the single vertex in Level 0 is adjacent to every
vertex in Level 1; from now on, the adjacency relations depend on which
positions of each TV-pmfitttatiöïï are affècted by the possible inversions.
For N — 6 we have CQ^ + 1 — 16 levels and their cardinalities Ni can

vol. 33, n° 3, 1999
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# • * • •

Fig. 4.1. - Scheme of GI6.

be easily found, through a generating function, to be 1, 5, 14, 29, ..., 29,
14, 5, 1 [Ab84].

Figure 4.2 shows the first three levels of Gis with the corresponding
permutations. We consider the edges to be directed from Level k + 1 to
Level k, according to Définition 4.5.

(231456)

(214356) (Ï32465) (124536) (125346)

Fig. 4.2. - GI6 first three levels.

(123564)

(123645)

THEOREM 4.5: If there exists a directed path between ^ and Çj in GIJ\T,

then A(^i) and A ( ^ ) are freely comparable, with \8((U)\ < !
consequently Z^ < Z^..

Proof: It follows from Définition 4.5 and Theorem 4.4. D

Theorem 4.5 allows us to identify a class of freely comparable permutation
pairs where the respective number of inversions grow with the increases and
consequently with the costs.

The freely comparable increases are studied in more detail in [Ab84,
AbBo89]. One of the most important results there presented is a Maximal
Partial Ordering Theorem (MPOT), which gives necessary and sufficient
conditions for free comparability between permutations.

A resuit equivalent to Theorem 4.5 is not available for ail MPOT cases.
To discuss the application of this theory with regard to heuristic applications
we present a conjecture (the Inversion Conjecture) [Ab84, AB89] which

Recherche opérationnelle/Opérations Research
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is reinforced, from a practical point of view, by Figures 6.1a and b and
6.2a and b.

CONJECTURE 4.1: The cost function within freely comparable solutions
increases with their number of inversions in the corresponding permutations
on F columns. •

5. THE REDINV-SA HEURISTIC

5.1. A brief discussion of Simulated Annealing meta-heuristic

Some exact algorithms have been formulated to work with the QAP [Ro87,
CB89, MR94a, RRP96, PRRL97] but its NP-hardness stimulâtes the use of
heuristic techniques and meta-heuristic-based algorithms [BR84, WW87,
SK89, Con89, Con90, F190, Ta91, MM92, MLP92, Wh93, BM93, LPR94,
FF94, CSK94, SK94, MM95].

The Simulated Annealing (SA) meta-heuristics has been used with the
QAP [BR84, WW87, Con89, and Con90]. These références will also be
considered for a gênerai SA description, allowing us, after a short recall, to
deal only with our approach specificities.

Let us consider a minimization problem, where we examine at each
itération the increase 8 on the objective function. If 6 is négative the new
solution will always be accepted, while for worse solutions (S > 0) we
evaluate the expression

p = e - W ) (5.1)

where T(t) is a monotonically non-increasing température function and p
is the probability of acceptance of a new (worse) solution. We then have
a strategy to avoid the algorithm path to be stuck to local optima. The
probability p will be greater at the beginning as we initialize T with a
comparatively high value, a réduction ("cooling") strategy being applied
during the algorithm exécution, for which a given number of itérations is
specified to use each new T value. The initial T value sélection and the
possible stratégies for its réduction has been extensively discussed in the
literature. The gênerai SA form is as follows:

vol. 33, n° 3, 1999
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begin
< Data: initial solution x\ function T(t); >
t «- 0;
while T(t) 0 {stop criterion} do

begin
* <- 0;
while i < M do < M: maximum itération number for each T value >

begin
generate a new solution x'';
A/ - f(x')-f(x);
if A / < 0 then x <- x';

else if exp(-A//T(£)) < random (0,1) then a; <- x';
% •— z + 1;

end;
ï <- i + 1;

end;
end.

The stopping criterion has to do with the algorithm's efficiency in obtaining
new better solutions. Eglese [Eg90] does a discussion on this point.

The criteria and the parameters used in the SA version here presented are
supported by the theory discussed in Items 2 through 4.

5.2. The formulation of the Redlnv-SA heuristic

We want to look for the best possible solution for the function

-d^ (5.2)

where Z(p^) is the cost associated to the permutation pp on F columns.
The corresponding F column permutation, which defines the instance edge
changing, can be obtained by the composition shown in (3.2).

We use Conjecture 4.1 to support the définition of a neighboring criterion
for the algorithm to work. The strategy here presented is then a représentative
of a family of possible heuristic techniques using the decreasing number of
inversions as a criterion for choosing éléments to be exchanged [Que94].

The permutations on F columns are related to those defined on F ones
by the expression already presented,

P f = <t>Fl ° Pv°<t>D' (5.3)

Recherche opérationnelle/Opérations Research
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We look for a position m in p^ which maximizes \i - Pp(i)|. The exchange
will be made with a position j which minimizes {\m~pY(i)\-\-\i-pf(m)\}, so
the decrease in the number of inversions will be maximum. The permutation
p!= thus obtained does not correspond to a feasible solution, as only two edges
have been exchanged and a vertex exchange would deal with 2(n - 2) edges.
We will then look for vertex exchanges whose realization implies exchanging
edges i and m, thus defining a neighborhood of feasible permutations. At this
point, better quality solutions cannot be guaranteed, as the neigborhood could
be that of a local optimum. The SA, nevertheless, was designed exactly to
deal with such situations.

To find the neighborhood we use (3.2) to return to a F column permutation
Pp and then look for the two positions in p'r which had their images
exchanged. From an algorithmic point of view it is not necessary to exécute
the whole of (3.2) to obtain this result: we simply obtain these two positions,
which will be

p = ^ ( m ) and q = ^(j), (5.4)

as well as the corresponding images t = pf
r(p) and u = Pr(q).

We finish by applying the inverse function /ip~1 of (2.5),

il>-1(t) = (xuyt) and i;-1(u) = (xu,yu) (5.5)

where we can have either four different vertices, if the edges m and j are
not adjacent, or, if they are adjacent, only three vertices. In the first case the
vertex exchanges will be xt <-» xu, %t <-• y«> Vt ̂  %u and yt <-* yu. The
second case will give only three exchanges, the fourth one being void.

5.3. An exchange strategy example

The Nugent 5 instance [NVR68] is defined by

F - [ 5 , 2 , A, 1,3,0,2,0,0,5] and D = [1,1,2,3,2,1,2,1,2,1]

respectively for Kf and K^ edges in lexicographie order. Then the
corresponding bijections defining the orderings for F and D will be

<j>F = [95847162310] and (f>D = [67213849510] .

Taking as an example a vertex permutation

tp= [41352]

vol. 33, n° 3, 1999
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we have, as pr = foKw,y>j)L 1 < i < 3 < n,

pv = [3810624 1957]

with cost 32. By (5.3) the corresponding permutation in F is given by

pT= [15389671024]

with 18 inversions.

We can easily find that m = 9, as max \i — p^(i)\ — 7 and j = 4, then we
have min{|9 — pp-(i)| + \i — Pp(9)|} = 3. The modified permutation p1— is

P j , - [15329671084].

When returning to F we have, at first,

^ 1 ( 9 ) = l;p^(l) = 3 and 0^ (4 ) = 4 ;^ (4 ) = 6.

From where we obtain

^- 1 (3) = (l,4) and ^ ( 6 ) = (2,4).

The exchangings will then be done between the vertices defining the edges
(1,4) and (2,4), in every possible arrangement. In this case the resulting
neighborhood is then (1,2), (1,4) and (2,4). The vertex exchanges being
defined on the image, we obtain respectively [4 2 3 5 1], [ 1 4 3 5 2] and
[ 2 1 3 5 4 ] . This last one has cost 30 and 17 inversions in its F column
permutation, which is [ 1 5 9 8 3 2 7 4 6 10]. We have Az = - 2 , the
objective function will decrease and the new solution will be accepted. If
Az were positive, we would use the SA proper criterion, according to (5.1).

5.4. The Redlnv-SA algorithm

Given n and F, we détermine ip, <f>F, </>£> and F as previously defined.

We make

A'

and we begin with a randomly chosen vertex permutation from K& vertices
on Kf ones.

Recherche opérationnelle/Opérations Research
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The initial température value will be taken as the problem upper bound (the
element sum from the secondary diagonal of F) reduced by an appropriate
factor K. We used the function T(t +1) - 0.9T(i), as proposed by Connolly
[Con89]. The température function loop size M ranged between one and
nine (in one case forty) times the problem order n.The stopping criterion
was t < tr(F)/ÜT, but limited to ten (in two cases five) température values.
As the edge exchanges are deterministic, a temporary hindrance was put on
the last n accepted solutions in order to avoid cycling.

The algorithm is as follows:

begin

T <- To;

while (T > tr(F) or ncyc = maxncyc) do

begin
i +- 0;
while i < n do

begin
procedure change; < return (Z^(pr) >

&Z +- ~Z ~ Z\

ïï AZ < 0 then tp ^~ ipf;

else if exp(-AZ/T) < random (0,1) then <p <- ip';

i e i + 1;

end;
T *- 0.9 T;

end;
end. < ipf: new solution; Zv/i cost >

The opération séquence within the procedure change is as follows, according
with what was discussed before:

The procedure receives a solution tpf with cost Z^*.

We détermine

12 13 . . . N -IN \

J
and

_
PV~ U(1M2) V(1)P(3) ... <p(N-l)<p(N)J
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We then find the positions for changing in p^:

m <— position corresponding to max \i — p(i)\\

j <— position corresponding to min{|m — p(i)\ + \i — p(m)\}.

We return to a F column based permutation: p = <f>]^l(m) and q — </>J, (j).

We find the images t — p^iv) a nd u = Prio)-

We find ip~l(t) = (a, b) and ^(u) = (r,s).

We generate the neighbor set Vp>:

Vp = W\v({ï) = vWî* 7̂  a,b]ipf(a) = r or s;tpf(b) = 5 or r}

Z —̂ min Z(n/;

Return: new solution y?7 with value Z^.

6. DISCUSSION OF RESULTS

The algorithm was programmed in Fortran-77. The computational tests
were conducted in two equipments:

• a Pentium-166 microcomputer;

• a DEC workstation with a 170 Mhz Alpha processor.

The presented processes times are in every case those corresponding to P-166.

A sample of 35 symmetrie instances from QAPLIB was processed. From
these, 21 were lower-order (12 < n < 18) and 14 were higher-order ones
(n > 20). In every case but the two larger instances, a number between
9 and 18 fifty-run tests were executed, combining better initial température
values with différent number of solutions per température value. The two
larger instances [Tai60a and Sko81] used 25-run tests.

The cooling schedule was based on a constant réduction factor equal to
0.9 for ail tests. The initial value was equal to the problem upper limit,
reduced by a factor K:

T0 = FTD*/K (6.1)
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where D* is the vector D taken in inverse order. The schedule end was
indicated by whichever the following constraints apply first:

• the last température going below the problem reduced lower bound,

• ten températures having already been obtained (five for TaióOa and
Sko81).

The initial température range was estimated, for each instance, by running
single runs and observing the behavior of the accepted/refused (A/R) solution
relation for the set of température values, an initial température being
considered appropriate when giving a fairly initial high A/R (say 4 to
8) and being able to decay to a fairly low A/R (say 0.2 to 0.4), thus showing
good sensitivity to problem structure. The values for K were chosen looking
for circumscribing this sensible zone.

The number nsol of solutions per température value is an indicator for the
instance difficulty, as some instances required higher values of it to converge
while for others the algorithm showed good results with much lesser values.

For each test, the minimum obtained value (Zmin), the average solution
value (Z) and the average P-166 processing time per run were obtained.
The optimal (or better-known) value Zopt for the instance was utilized to
calculate a percentile incrément of the average on it,

t (6.2)

and also a percentual incrément of the test minimum obtained value on it,

Pmin — 100 ^min/^opt-

In Tables 6.1 and 6.2 below we specify, for each instance:

• the number ntest of tests;
• the range of nsol values;
• pâys, the average value of pav for the test set;
• the next column has a double meaning:

- where Zopt was not obtained, this column shows pm s , the minimum
Pmin value for the whole set of tests.

- where Zopt was obtained (so pms = 0) the cell contains the number
rc-opt of this event for the whole test set.

• the average run time (in seconds) for the test set.
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TABLE 6.1

RedInv-SA results with lower-order instances (12 < n < 18).

Instance

Roui 2
Had 12
Nugl2
Tail2a
Scrl2

Chrl2b
Chrl2a

Hadl4

Tail5a
Nugl5
Roui 5
Scrl5

Chrl5a
Chrl5b

Esc16b
Nugl6a
Esc16c
Had 16
Escl6d

Had 18
Nugl8

ntest

9
9
10
12
12
9
16

9

16
10
9
16
12
16

9
14
12
16
9

16
16

nsol

30-50
12-36
10-80
12-48
12-36
36-108
48-480

20-70

15-120
10-45
30-90
30-240
135-225
45-225

16-48
32-128
16-48
32-112

8-32

36-126
36-144

Pavs

2.04
2.23
5.01
7.36
9.82

34.42
40.91

1.64

4.78
4.81
5.38

15.90
58.61
83.40

1.89
4.31

11.19
11.57
27.12

1.66
4.94

Pms—^opt

(23)
(1)
(39)
(17)
(39)
(16)
5.73

(4)

0.20
(12)
(4)
(2)

6.20
9.01

(89)
(2)
(29)
0.05
(69)

0,15
(1)

Av. time

0.55
0.15
0.38
0.36
0.51
1.69
4.10

0.65

1.40
0.83
1.77
1.44
2.60
1.98

0.95
3.29
2.24
1.55
1.38

2.72
5.86

TABLE 6.2
Redlnv-SA results with higher-order instances (20 < n < 100).

Instance

Had20
Nug20
Rou20
Tai20a
Scr20

Tai25a
Chr25a

Nug30

Esc32a
Esc32b

Ste36a

Sko42

Tai60a

Sko81

ntest

16
9
16
15
15

18
12

12

10
12

12

18

9

6

nsol

40-160
20-300
80-300
40-160
60-240

50-250
100-400

60-300

32-96
64-256

36-144

84-672

120-360

81-324

Pavs

1.64
3.39
3.84
5.59

21.29

5.98
110.00

8.53

51.33
49.75

52.82

7.84

7.58

8.57

Pms—^opt

0.15
0.15
0.38
1.87
0.02

1.71
50.31

2.68

25.69
27.97

17.23

3.74

5.43

6.47

Av. time

536
16.55
13.72
7.68

17.56

25.55
61.67

88.95

60.86
101.56

89.44

598.16

1456.33

2856.00
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The table was ordered by pavs values in crescent order for each problem
size. These values can be seen as a proximity measure (between Zopt and the
algorithm path) which can be used as a problem difficulty criterion. We can
see, for example, that the algorithm is not efficient for some tree-structured
Christofides instances: it looks like it cannot easily find a path along that
structure. Nevertheless in one case (Chrl2b) the pavs criterion does not seem
to apply, the average différences staying high whereas a number of optimal
values were found. As with any other technique, the problem order has a
strong influence: the Nugent series show it clearly. There appears a curious
question concerning the instances Escló and 32: in the former case we
have an important number of different optimal solutions, which allowed the
algorithm to present very good results. This is possibly not true for the
latter case, where the results were worse than, for example, those shown by
Ste36a. We did not consider this question of instance difficulty to be within
the scope of this paper; some discussion of it can be found in [MR94b],

Some examples of the algorithm convergence are given in Table 6.3 below.
Here we can observe for some sample instances how pavn (which we define
as the average of the paw values corresponding to a given nsol value) goes
to lesser values as nsol grows.

TABLE 6.3

Example for Redlnv-SA convergence.

Had 18

nsol

36
54
90
126

Pavn

1,90
1,78
1,53
1,42

Nug 18

nsol

36
72
108
144

Pavn

5,89
: 5,01

4,48
4,39

Tai 25a

nsol

50
100
150
200

Pavn

6,75
5,98
5,76
5,41

Sko 42

nsol

84
168
336
672

Pavn

8,56
8,09
7,38
6,96

Sko 81

nsol

81
162
324

Pavn

9,39
8,37
7,94

Another interesting point to observe in the tests is the comparison between
costs and inversion numbers along the algorithm path. The graphs from
Figure 6.1a show the costs and the inversion numbers for the solutions
examined by the algorithm during a run with the Nugent 12 instance. The
graph segments within the rectangles are zoomed in Figure 6.1b, where
the solutions are individually shown. The same is shown for Nugent 15 in
Figures 6.2a and 6.2b. This type of graph can be found for any instance.
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7 19 31 43 55
number of changings

7 19 31 43 55
number of changing&

Fig. 6.1a

19 21 23 25 27 29
number of changings

inversions
800

750

700

650 -

6 0 0

5 5 0
19 21 23 25 27 29

number of changings
Fig. 6.1b

A detailed analysis would require the détermination of free comparability
occurrence along the solution trail, but even without that we can see the
close relationship between these two solution properties.

6. FINAL REMARKS AND CONCLUSIONS

Although we give information about time processing we do not discuss
it, the variety of hardware resources quoted in the literature as supports for
computer tests making any time comparison very difficult.
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inversions
2.400

2,200 -

2,000 -

1.800

1.600 -

1 4 0 0 5 16 25 35 45
numbör of changings

5 15 25 35 45
number of chsngings

Fig. 6.1c

560 16 18 20 22 24
number of changings

16 18 20 22 24
number of changings

Fig. 6.1d

On the other hand, the number of solution changing made by previously
known SA schemes is known to be between

• 1,000 and 4,000 for n between 12 and 15;
• 4,000 and 16,000 for n near 20;
• 5,000 and 30,000 for n = 30.

As a comparison, the maximum nsol values used in the study, multiplied
by 10 (maximum number of different températures) gave, for the attained
convergence levels, values between

• 360 and 2,250 for n between 12 and 15 (exception: Chrl2a with 4,800);
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• 320 and 3,840 for n between 16 and 18;
• 960 and 6,720 for n equal or greater than 20.

These values will evidently be pushed up when going further into
convergence but we can see there is a fairly good slack, when relating
them with previous results, for the work involved with the majority of the
tested instances.

For problem order 18 or less the algorithm found the optimal (or best-
known) solution one or more times in the majority of the tested instances.
With order 20 it went near 0.4% or less in every but one instance. As it could
be expected the difficulty arise with the size; nevertheless the convergence
can be observed even in higher-order instances.

The second important point concerns Conjecture 4.1. By looking at
Figures 6.1a to 6.2b we can see that this conjecture is reinforced by the
results, similar graphs being easy to build for any instance. As the inversion
number détermination is an elementary procedure we think we have in it
an efficient parameter for resuit analysis when using metaheuristics to solve
QAP instances.
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