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APPLICATION OF MARKOV CHAINS TO THE

ANALYSIS OF INTERZONAL FLOWS IN A NETWORK (*)

by Franco Caroti GueLu (1)

Communicated by Franco GIANNESSI

Abstract. — In this work we consider the motion of items between the nodes of a network as
a Markov Chain. Consequently, we show that the distribution of the trips (matrix O-D) can be
obtained from estimated transition flows rather than, as usually, from imprecise census data or by
maximizing global utility functions, whose meaning may be not very clear.

The proposed model, by means of an appropriate choice of the states, fits the case in which the
transition probability to any node depends on the nodes reached at the two previous times.

We also show how to obtain several interesting quantities, as the stationary distribution of the
items among the nodes, the flows and the speed of convergence to the stationarity. © Elsevier, Paris

Keywords: Markov chains, flows.

Résumé. — Dans cet article le mouvement de plusieurs objets, qui se déplacent parmi les neuds
d’un réseau, est traité comme une chaine de Markov. De cette facon la distribution des voyages
(matrice « Origin-Destination ») peut étre dérivée a partir des flots de déplacement estimés. Une
telle méthode est préférable aux méthodes habituelles, qui consistent a utiliser des données de
recensement (nécessairement imprécises) ou bien a maximiser des fonctions globales d’utilité, dont
la signification n’est pas toujours trés claire.

Le modeéle proposé, avec un choix approprié des états, permet de représenter le cas on la
probabilité de transition d’un neeud a I’autre dépend des neeuds atteints aux deux instants précédents.

On obtient notamment plusieurs quantités intéressantes, comme les flots, la distribution
stationnaire des objets parmi les nceuds et la vitesse de convergence vers cette distribution.
© Elsevier, Paris

Mots clés : Chaines de Markov, flots.

1. INTRODUCTION

This paper presents a model for the traffic flow of N items among the
nodes of a network; the system is observed at equidistant times ¢, ¢t + 1,
t + 2,... We suppose that the transitions between nodes are instantaneous.

The aim of this study is the vehicular traffic. We will refer to some division
into zones of the area to be analized; consequently the items stand for the
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416 F. C. GHELLI

vehicles and the nodes for the zones. Nevertheless the results obtained can
be applied to whatever flow.

In the past years a lot of Authors treated of the problem of the traffic
flow [2, 3, 4]. Generally they solved the problem by calculating the trip
distributions, which is represented by the so-called origin-destination (in
short, 0-D) matrix. Such a matrix is obtained by maximizing a global trip
function or by making census. Nevertheless, in the former case the results
may be not very significant, because usually the maximized function is
defined in a little arbitrary way; in the latter one, since the census does not
consider the occasional (namely, not foreseeable) trips, the resulting matrix
is not very close to the real traffic.

These drawbacks can be avoided by representing the traffic flow by means
of a stochastic process which, rather than to resort to the trip distribution,
refer to the probabilities of the shifts between contiguous nodes. This has
been done in a recent work [6], where the traffic flow is represented by a
Markov Chain model, so that the construction of the classic 0-D matrix is
avoided. This model nevertheless is subject to a heavy limitation, because
the node reached at the time ¢ is supposed to depend only on that reached
at the time ¢ — 1, by neglecting the dependence from those reached at the
times t — 2, t — 3, etc.

Here we show that, by means of a simple transformation, the case of
dependence on the nodes at times ¢ — 1 and ¢ — 2 can be treated by means
of an usual Markov Chain. In this way we reach the aim of both avoiding
the O-D matrices and obtaining more precise results. Furthermore, by this
model we can also draw the O-D matrices perhaps by a more satisfactoring
way, because they are derived from transition probabilities, estimated from
observed flows.

This procedure can be extended to the dependence of the node from the
ones reached not only at the times ¢ — 1 and ¢ — 2, but also at the times
t — 3, t — 4, etc.; nevertheless this has little interest, because the formulas
and the parameters estimation would be very heavy.

2. THE MODEL

Let us suppose that the NV circulating items are moving between n nodes
21, 43, .-, Zn. We will say that an item is in the state s;;, iff at present is
in the node Z; and at the preceding time was in the node Z;. Therefore an
item is in the state s;; iff it is staying in the node Z; (namely it is in Z; at
the present and at the preceding time).
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We observe that spj; is not a state for our process, iff the nodes Z5 and

Z are not communicating (i.e., iff it is not possible to shift from Z; to Zj

in a single step); therefore the different states can be less than 72,

Let S(t) denote the state of the item at the time ¢; the sequence of
the states {S (¢)};:°°, is a stochastic process, which we denote by II. We

~len
suppose this process is stationary; therefore the transition probabilities do

not depend on ¢.

Let m;;,; denote the transition probability from s;z to s in a single step
(namely, in an unitary step of time). If Z (¢) denotes the node reached by
the item at the time ¢, we have:

Tihj =P[S(t) = Sh]'|S(t— 1) = s;3)
—PZ() =2, Z(t—1) = Z4|Z(t - 1) = Zn, Z (t — 2) = Zi]
—P(Z(t) =2}, Z(t—1) = Zn, Z (t —2) = Zi]/
PIZ(t—1)=Zn, Z(t—2) = Z]
—PIZ(t)= 2| Z(t—1) = Zn, Z(t —2) = Zi].

Similarly we can show that, whatever the indices j, h, ¢, k,... may be,
we have:

P[S (t):shj!S(t - 1) = sin, S(t—2) = sp, -]
=PZ({{)=Z;|Z(t-1)=2p, Z (t—-2)=2Z;, Z (t—3) =2y, ...].

If IT is a Markovian process, namely if the conditional transition probability
from s;;, to sp; (Y4, h, j) does not depend on the previous states, we find:

P[S(t) = sthS(t—— 1) = sip, S(t—2) = Sgiy -
=P[S(t) = Sh]‘,S(t —1) = sip).

Because of the preceding formulas we have:

PlZ(t)=Z;|Z(t~1)=2h, Z(t-2)=2;, Z(t —3) = Zy, ...]
=P[Z({t)=Z;|Z(t~1)= 2y, Z(t—2) = Z;].

Let us now denote by IT* the process in which as the state at the time ¢ we
take the node Z (t); this process is defined by the sequence {Z (¢)};->°

-0
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418 F. C. GHELLI

The result just obtained shows that, if II is a Markov Chain, then in IT*
the state at the time ¢ depends on the two previous states, and vice-versa.

Therefore, if the node reached at the time ¢ depends on those reached at
the times ¢ — 1 and ¢ — 2, Il is a Markov Chain, differently from II*.

In the next Section we will prove that, by referring us to the properties of
the process 1I, we can recognize several properties of the process IT*.

Let us now suppose that, Vi, 7, h, k, the state spz of II can be reached
from the state s;;, in a finite number of steps; this implies that all the states
are communicating; therefore the process II admits a stationary density of
state, which we denote by 7 (column vector).

The components of 7 are the stationary probabilities m;; of the states s;;
(i, =1, 2,..., n). The order of the components of = is arbitrary, but that
of the transition matrix P depends on it: if 7, is the r-th component of
« and 7;; the c-th one, then =;;, must be the component of P in the r-th
row and c-th column.

With these positions, the equation for the stationary density is:

r=Px. (D
Let w;; (t) denote the probability that an item, chosen at random, reaches at

the time ¢ the state s;; in the process II; let also w; (¢) denote the probability
that it reaches Z; in IT*. It must be:

w; (t) = Z wij (t+1)= Z wji (t), Yi. )
7=1 1=1

Let w (t) be the vector with components w;; (t), ordered as z. It is well
known that:

w(t+1)=Puw(t).

If w(tp) is known for some %y, the repeated application of this equation
allows us to obtain w (¢) for any t > #.

Since w;j (t) — mij as t — +o0(V4, j), we conclude that w; () — 7,
where:

= Z T = Z s, Vi. 3)
7=1 7=1

Recherche opérationnelle/Operations Research
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Since the probability of the certain event is 1, we have:
S omin=1, Vi, j. 4)
h=1

These are the usual relations which holds between the components of any
transition matrix.

Because of (4), one of the rows (and of the columns) of P can be
expressed as a linear function of the others. Therefore the system (1) is
underdetermined, but it is determined if one of his equations is replaced by:

n n
2D mi=1 )
i=1 j=1
which is the well known normalization formula.
The relations (3) are not further conditions on =; indeed from (1) we have:

Tij = E Thij * Thi, Vi, j.
h

From this, by summing with respect to j and taking into account (4), we have:

Z ij =ZE Thij * Thi =Z Thi - E Thij
J J kR h J
S =Y Vi
h 7

This shows that (3) are a consequence of (1) and (4), and not further
conditions.

3. SOME IMPORTANT RELATIONS

If we know w (t) and the total number N of the items, we easily find
the expected number of items in every state 7;;. The expected number of
items in every node is obtained by summing on all the states 7;; which have
that node as their second node. If we can admit that between ¢ and ¢ + 7
(t and 7 integers > 0) P is constant, then the state distribution w (¢ + 7)
at the time ¢ + 7 is:

w(t+7)=P w(t).

vol. 32, n° 4, 1998
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We can also obtain the probabilities of the runs (routings) in stationarity
conditions for the state density. Let us calculate, for instance, the conditional
probability of the run Z; — Z; — Z, — Zi; we have:

P(Z; — Z; — Zy — Z|Z (t — 3) = Z]
=P[S(t) = shk, S(t — 1) = sjn, S(t —2) = 545|Z (t - 3) = Z)]
=P[S{t)=sm|S(t—-1) = Sjh, S(t-2) =82'j]
X P[S(t—1)=sjn, S(t—2)=s4|Z(t - 3) = Zi]
= P[S(t) = snlS (t — 1) = sjn] - P[S(t - 1) = s5;n|S (t - 2) = si5]
X PIS(t—2) = 8|2 (t—3) = Z]

= Tjhk - Tijh * Tij/Ti.
More generally, we obtain:

P(Ziy, - Ziy— ...~ Zi_, = Zi,|Z(t—h+1)=2Z;)

= Tiyistg * Tigizgty * " " Tip_pin_1tn ~ Tiy i‘?/ﬂ-il'

Let N;; be the number of items in the state s;; (namely, the number of
transitions from Z; to Z; in the process II*, during a unit of time). Let also
vi; be the expected value of IV;; and 7;; its variance. Since in stationary
conditions /V;; is a binomial random variable with parameters N and 7;;,
we have:

vij =N - my; i =N - 7wy - (1 —m5).
If I1* is a Markov Chain, we are in a particular case of the preceding one;
therefore the two results found are still valid. Let 7;|; denote the conditional

probability of reaching the node Z; if the item is in the node Z; at the
preceding time; this probability is defined by:

with 7; given by (3). Then the preceding formulas can be put in the form:
Vi]‘:N'ﬂ’i 71’J|1, ﬂi'j:N"/T,‘ 7T]|, '(1—71'1‘ ’/T}|Z)

Recherche opérationnelle/Operations Research
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We note that, if IT* admits a stationary density ©*, ; is the i-th component
of =* and 7;; is the component 7, j of the transition matrix.

Finally, let N; be the number of items in the node Z;; if v; is the mean
value of INV; and 1; its variance, since N; is binomial with parameters N
and 7w; we have:

vi=N - m, i =N - m (1 —m); Vi.
4. FURTHER CONSIDERATIONS ON THE STATIONARITY

If we introduce the conditional densities | (3) can be expressed as:

n
™ = E Ty T Vi,
j=1

namely:

T = P*r*, (6)

where by 7* we mean the vector with components 7; (¢ = 1, 2, ..., n) and by
P* the matrix which has in the entry &k, h(h, k =1, 2, ..., n) the transition
probability mg|p.

This is the equation which defines the stationary density in a Markov
Chain with P* as its transition matrix. On the other hand, if we treat IT*
as a Markov Chain, when II (hence also IT*) has reached the stationarity
the transition matrix for II* is just P*, hence (6) is the equation for the
stationary density 7*.

Consequently, the stationary density 7* can be obtained by treating
the process II* as a Markov Chain, with transition matrix P*.

We now will investigate on the speed of convergence to the stationarity.
Let P be the transition matrix of a regular Markov Chain; as it is well known,
the equation which defines the stationary density is P v = v. Whatever the
density z can be, for the well known Markov theorem as n diverges P" z
converges to v and P” converges to a matrix Q whose columns are all equal
to v. This matrix has rank 1, therefore it has a single eigenvalue, which
must be 1 since it is Qv = v.

Let M be the matrix which diagonalizes P; then:
MPM™! =D, (7N

vol. 32, n°® 4, 1998
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where D is the diagonal matrix which has as diagonal elements the
eigenvalues of P. We find:

MP"M=MP -P-P.....P)M™}
=MPM'MPM™'... MPM™! = D". 8)

The matrix D" is also diagonal, with elements which are the n-th power
of the corresponding ones of D. But they are also the eigenvalues of P",
therefore they must converge to zero excepting one, which is 1. From this we
deduce that the matrix P has an eigenvalue 1 associated to the eigenvector
v and the other eigenvalues must have modulus < 1, since their n-th powers
converge to zero. Therefore the convergence to the stationarity is the same as
the convergence to zero of the n-th power of the non-unitary eigenvalues of
P. Obviously the speed of convergence will depend from the initial density
vector z. For calculating the minimal value of n for which the stationarity
is practically reached, we must ask for which n we can admit that the
difference between the product P" z and v is negligible. This aim is reached
by multiplying the vector  from the left by the matrix P, for a number of
times sufficient to obtain a vector whose difference from v is negligeable.
If the convergence is slow, the number of these products is great; therefore,
this procedure can be heavily time consuming, especially if the matrix P
has great dimension.

We show an alternative procedure, which can be useful in these cases.

From (8), by multiplying from the left for M~! and from the right for M
we obtain:

P"=M"'D" M. ©
Therefore we must compare with v the vector:
h=zM ' D"M.

But the vector b = 2 M~ can be obtained from M~ (a single inversion
and a single matrix product) and the vector ¢ = b D" is made from the
components of b, each multiplied by the corresponding eigenvalue raised to a
power n. Therefore, for calculating b it is required, besides the determination
(once) of M, M1, D and of the product z M —1 the one of the powers of
the diagonal elements of D and of the product b D™ M. This last is rather
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fast since ¢ = b D" is simple to calculate, as shown. In this way the slow
operations are executed only once, whereas the iterations (corresponding to
the values tried for n) are fast. This procedure can be usefully applied to the
problem of investigating about the speed of convergence of the II process.

5. CONCLUSIONS

In this work we introduced a process, denoted by II, for which the states
are defined by pairs of nodes (the preceding and the present one). We showed
that, if the probability of reaching a node depends on the nodes occupied at
the two preceding times, the process II is a Markov Chain. If we can admit
that all the states of Il are communicating, the process admits a stationary
density. In this case the II* process, for which the state at the time ¢ is the
node reached at this time, admits a stationary density as well; this density can
be obtained by (6), namely by treating the process II* as a Markov Chain.

Let us observe that (6) implies a number of equations which is much less
than that implied by (1), which gives the stationary density for II. Indeed
(6) consists of n equations and (1) of a number of equations of the order n?.

Furthermore, the transition probabilities of II* are much easier and faster
to estimate than those of II. Therefore, if we are interested only in the
stationary density of II*, it is right (and advantageous) to work as it were
a Markov Chain.

In Section 4 we have outlined a method for calculating the number of
iterations necessary for reaching the stationarity if II is regular.

Moreover, in Section 3 we have quoted formulas which permit to follow
the process evolution when the stationarity is not reached, and others which
give the probabilities of runs with intermediate nodes. We calculate also the
expected values and variances for the numbers of transitions between nodes
(fluxes) and for the number of items in each node. These quantities can be
interesting if we investigate on the effects of changes in the flux system
(changes in the transition probabilities or in the initial density, eliminations
of connections between nodes or introductions of not pre-existent ones, etc.).

We conclude with a conjecture, put by F. Giannessi (Dept. of Math., Univ.
of Pisa, Italy), in a private communication. Let I be the identity matrix; it is
known [5] that the matrix I-P has determinant equal to zero, and its principal
minors are all strictly positive and < 1. From this the question: are these
minors the probabilities of meaningful events? Some studies, carried out
in [5], seem encouraging but do not offer a definitive answer.
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