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by D. DELAMARRE and B. VIROT (2)

Communicated by Catherine ROUCAIROL

Abstract. - We present an overview of the main problem-independent sequential and parallel
amélioration techniques of the Simulated Annealing algorithm.

We begin by briefly exposing the theoretical framework encompassing the standard markovian
model, the notion of cycle and the optimal température schedules. Theory of cycles yields explicit
relationships between the geometry of the energy landscape and the expected behavior of the
algorithm. It leads to the design of efficient température schedules, as well as to improvements of
the algorithm behavior by distorting the cost function.

Next, we present a survey of parallelization techniques, focussing on problem-independent
synchronous stratégies. They provide flexible and gênerai tools, allowing operational research
praclitioners to take advantage of the computational power of parallel architectures.

We conclude with an application. It concerns the searchfor Hamiltonian paths in cubic graphs. It
brings to the fore the efficiency of the cost function distortions technique, when used in combination
with Parallel Simulated Annealing. © Elsevier, Paris

Keywords: Simulated Annealing, Heuristics, Optimization, Température Schedule, Cost Function
Distortion, Parallelization, Cubic Graph, Hamiltonian «Path.

Résumé. - On présente une synthèse des principales techniques d'amélioration de l'algorithme
du recuit simulé. On se limite aux techniques génériques, séquentielles ou parallèles, indépendantes
du problème traité.

On commence par exposer brièvement le cadre théorique, comprenant le modèle markovien
classique, la notion de cycle et les schémas de température optimaux. La théorie des cycles
permet d'obtenir des relations explicites entre la géométrie du paysage d'énergie et la vitesse
de convergence de l'algorithme. Elle permet d'élaborer des schémas de température efficaces. Elle
conduit à la méthode des distorsions de la fonction de coût, améliorant significativement la qualité
des solutions pour certains problèmes difficiles.

Ensuite, on discute les techniques de parallélisation de l'algorithme du recuit simulé, en mettant
l'accent sur les méthodes synchrones indépendantes du problème traité. Elles fournissent des outils
génériques permettant aux praticiens de la Recherche Opérationnelle de tirer aisément parti de la
puissance des architectures parallèles.
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44 D. DELAMARRE, B. VIROT

On termine par une application. Elle concerne le problème de la recherche d'un chemin
hamiltonien dans un graphe cubique. Elle permet de mettre en évidence l'efficacité de la méthode
des distorsions de la fonction de coût utilisée en conjonction avec Valgorithme du recuit simulé.
© Elsevier, Paris

Mots clés : Recuit simulé, Heuristique, Optimisation, Schéma de température, Distorsion,
Fonction de coût, Parallélisation, Graphe cubique, Chemin hamiltonien.
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1. INTRODUCTION

The Simulated Annealing algorithm was introduced, as an optimization
method, in 1982 by Kirkpatrick, Gelatt et Vecchi [27], From mathematical
point of view, this stochastic algorithm allows the minimization of a numeric
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function (cost function or energy) x —» E(x), where the variable x represents
the current state of the System. In usual combinatorial applications, the
space e of all the possible states is very large and the function E has
numerous local minima. Therefore itérative improvement algorithms - such
as the steepest descent method - are inoperative. Similar to the methods
by itérative improvement, the simulated annealing algorithm produces a
séquence of approximate solutions. However, unlike the preceding methods,
it can generate moves which increase the cost E(x). These are accepted
according to a law of probability suitably chosen, controlled by a parameter
called température, which permits to escape from a local minimum. To obtain
solutions close to the optimum, one classically decreases the température
according to an appropriate law, defining in this fashion the température
schedule.

The Simulated Annealing algorithm has been successfully applied to
various combinatorial problems in the fields of operational research, image
processing, computer assisted design of VLSI circuits, artificial intelligence...
However, numerous expérimentations show the difficulty to obtain a solution
of good quality in a short time frame. Many researchers have shown interest
to the problem of improving the Simulated annealing algorithm. The existing
techniques in the literature can be classed in two catégories.

The first technique concerns the fine tuning of the parameters of the
algorithm, thereby improving the computation time and the quality of the
solutions. Several approaches exist based on the température schedule, the
cost function, the génération of the moves or the acceptance probability law. It
is possible to found the choice and the adaptation of the température schedule
by using an analysis of the distribution of energy like White [33], Otten and
van Ginneken [28]. A second possibility of research lies in the adaptation
of the génération of the moves. White [33] defines the concept of scale of
moves. He proposes to favor the génération of large scale moves at high
température and smaller ones at low température. Ingber ([24], [25]) proposes
a choice of functions of génération in the particular case of product spaces.
Some researchers have proposed to modify the acceptance probability law
to improve the speed of convergence ([29], [16]). However, it is a difficult
task to give gênerai a priori estimations of the effect of these heuristics on
the expected behavior of the algorithm.

The second technique consists in the designing of parallel algorithms,
intended to take advantage of the computational power of supercomputers.
The problem of parallelization of the Simulated Annealing algorithm has been
the object of numerous studies, showing difficulty to obtain significant speed-
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4 6 D. DELAMARRE, B. VIROT

ups [20]. The constraints imposed by the mathematical model, which result
in a strong coupling between processes, impose numerous synchronizations,
therefore are expensive in terms of time. Asynchronous algorithms reduce
the synchronizations by accepting to calculate changes of the cost function
based on non up-to-date data ([20], [21]). In the existing state of art, it seems
difficult to correctly control the admissible error, except for some spécifie
problems ([14], [15], [21]). In contrast with this approach, synchronous
algorithms guarantee the exact computation of the values of the cost function
by using updated data. Problem-independent synchronous algorithms rely
on simultaneous and coherent explorations of the space of states by the
processors. They provide flexible and gênerai tools, allowing operational
research practitioners to safely use parallel architectures. These coarse
grain parallelizations can be completed by problem-dependent data or task
partitioning techniques.

As noticed by Eglese [16], in order to design and optimize such techniques,
a crueial point is to have some theoretical results on the average or expected
performance of the algorithm. A first attempt in this direction was performed
by Hajek and Sasaki [23] for the Maximum Matching Problem. Recently, a
more gênerai approach was proposed by Azencott, Catoni and Trouvé [6].
The theoretical framework is fumished by the notion of cycle, as introduced
by Friedlin and Wentzell in the context of dynamic Systems [17]. Theory
of cycles yields explicit relationships between the geometry of the energy
landscape and the expected behavior of the algorithm, thereby allowing safe
design of amélioration techniques, suitable for sequential algorithms as well
as for parallel ones.

In this paper, our aim is to present an overwiew of the main problem-
independent sequential and parallel amélioration techniques of the Simulated
Annealing algorithm. We begin by briefly exposing the theoretical framework
encompassing the standard Markovian model, the notion of cycle and the
optimal température schedules. We show that it is possible to improve
the algorithm behavior by distorting the cost function. Next, we discuss
parallel synchronous algorithms, focusing on problem-independent ones. We
conclude with an application. It concerns the search for Hamiltonian paths in
cubic graphs. It brings to the fore the efficiency of the method of cost function
distortions, when used in combination with Parallel Simulated Annealing.

2. MATHEMATICAL MODEL

2.1. The Markovian model

We define E as the energy function to be minimized, which is defined on
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the set £ of the states of a System. We define a family of partial mappings of
£ into itself, called moves, or elementary transformations. A state y G £ is
a neighbor of a state x if there exists an elementary transformation from x
to y. We define a transition matrix Q = (qXy) on £ x £ such that

qXy > 0 iff y is neighbor of x and y ^ x

The Simulated Annealing algorithm can be modelled as the évolution of
a Markov chain (Xn) controlled by a séquence (Tn) of parameters, called
températures. Suppose Xo , . . . , Xn are built. We then choose at random an
elementary transformation of the state Xn into Yn according to the law

then, we choose at random Xn+\ among Yn and Xn> according to the law

P(Xn+l = Yn\XQ,X1,...Xn,Yn) = min (l,exp f ^ ^ \ \

where AE represents the variation of energy corresponding to the elementary
transformation of Xn into Yn. The séquence (Tn) is called température
schedule. If Xn+i = Yn, one says the chosen move is accepted or that
we have made a step, else (Xn+i = Xn) one says the move is rejected.
Note that the subscript n represents the time, namely the number of trials
effectuated so far. A chain is a finite séquence c — (si)i<i<p of states such
that, for every z, sz+i is a neighbor of S{. If, moreover, s\ — x and sp = y,
one says that the chain joins x to y. The number Zi(c) = sup1<i<n E(si)
is called the height of the chain.

We will suppose that the transition matrix Q is symmetrical and
irreducible: for any pair of states x, y G 5, ĝ y = ç ^ and, moreover,
there always exists a chain which joins x to y.

2.2. The notion of cycle in Simulated Annealing

The notion of cycle was introduced in the context of dynamic Systems by
Friedlin and Wentzell [17], and in the framework of Simulated Annealing by
Azencott [6]. It furnishes a convenient framework to bind the convergence
properties of the algorithm to a small number of simple parameters which
describe the geometry of the energy landscape. The approach consists in the
study of the probability of présence of the current state in a given subset of
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the state space. Amongst these subsets, Friedlin and Wentzell consider the
family of cycles, determined solely by the cost fonction and the elementary
transformations. Intuitively, a cycle is a maximal set of states which can
be joined by chains whose heights are less or equal to a given cost h, The
following définitions formalize the notion of cycle.

DÉFINITION 1: Two states x and y are equivalent modulo hy if x — y or if
there exists a chain of height less or equal to h joining x to y.

As the transition matrix Q is symmetrical, équivalence modulo h defines
an équivalence relation C^ over £. The équivalence classes are called cycles
of level h. We dénote by F h the set of cycles of level h, and by F = U/i>o ^h
the set of all the cycles. Note that a singleton {x} is a cycle of level h for
any h < E(x).

Remark: If h < h! then C^ refines Cf
h. Therefore, two cycles are either

disjointed or included one in another. The décomposition of the space of
states into cycles can be represented by a tree which root is the state space £
as a whole, and the leaves its singletons (see Fig. 1). The border of a cycle
7 is the set B(j) of the states y G £ - 7 which are neighbor of a state of 7.
Note that, if 7 G I \ is not a singleton, then for every x G 7, E{x) < h and
for every y G B(7), E(y) > h. The next définition summarizes the main
geometrical characteristics of a cycle.

11'

1»

tSs'
4'

3*

2'

a i

\ ' /

Space of states

a,b,c,dteXg,h.i

a / b,ci,e,f.g.h \ i

/f/fyk
b c d e f g h

Décomposition tree

Figure 1. - In this figure we display, on the left, the energy landscape (two neighboring
states are linked by a line), and on the right, the décomposition tree into cycles.

DÉFINITION 2: Let 12mm == w&xeS E(x). For every cycle 7 we define:

the height of exit He(j) = infy€fî(7) supxe7(E(y) -

the potential U{pf) = infxG7 E(x) - Emin,

the difficulty D{n) = %$
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2.3. Speed of convergence

Let us dénote by £min = {x G £\E(x) = £mm} the set of optimal states
of £. To estimate the performance of the algorithm, Catoni [7] évaluâtes, in
term of time n, the decrease of the probability P(Xn G £min), called speed
of convergence (according to Hwang-Sheu).

2.3.1. Asymptotically good température schedules

A température schedule is asymptotically good if it guarantees,
with probability 1, the convergence to an optimal state, namely if
lim^-^oo P(Xn G £min) = 1. In his Thesis, Catoni established the existence
of an explicit upper bound for the speed of convergence of asymptotically
good température schedules [7], Let us dénote by D — max{Z>(7)|7 G F}
the difficulty of the energy landscape. Catoni shows that, for every
asymptotically good température schedule,

where aopt = jj is a constant which only dépends on the energy landscape,
while K also dépends on the température schedule. The exponent aopt is
called the optimal speed exponent.

A température schedule is optimal if it achieves the best speed of
convergence (for some constant K), namely if:

If one completely knows the structure of the energy landscape, then it
is possible to design optimal schedules, by using triangular methods [8].
Otherwise, one has to use less accurate schedules, which are not optimal
in gênerai. We turn now to the simplest ones, namely logarithmic and
exponential schedules.

2.3.2. Logarithmic température schedules

A température schedule (Tn) is logarithmic if the température is in the form

Tn = ^-> (1)
lnn

where C is some constant. Hajek [22] has proven that there exists a smallest
constant Copt, such that, for all C > Copt» logarithmic schedules are
asymptotically good. Catoni has shown that the value of Copt is closely
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50 D. DELAMARRE, B. VIROT

related to the difficulties of cycles [7]. For asymptotically good logarithmic
schedules:

P{Xn $ £min) ~ f1-

where K > 0 and a > 0 are appropriate constants dependent on the structure
of the energy landscape and on the température schedule ([6], [9]). In the
gênerai case a is strictly greater than the optimal speed exponent aOpt-
Thus, logarithmic schedules are not optimal schedules. Practically, it is a
difficult task to estimate Copt • Moreover, a is very small (we can even make
it arbitrarily small by considering specifically created energy landscapes).
Therefore, logarithmic schedules are not of great use, even though they are
asymptotically good schedules.

2.3.3. Exponential température schedules

An exponential température schedule is a schedule (Tn ) such that
Tn — anTo, where a is a constant, 0 < a < 1 and a very close to 1.
In contrast with logarithmic schedules, exponential schedules are not
asymptotically good schedules. However, Catoni [8] has shown that they
have good robustness properties, as long as one considers the solution
obtained within a fixed number of trials (Time Bounded Annealing).

Fix a number N of trials to be performed and choose Tn = a-^To, where
To does not depend on N and ayv = (c In JV) N". Then, one guarantees the
property

p(xnë£min)~(^y,
where a is the largest exponent that one can obtain with a logarithmic
schedule. The constants Kf,To and c are simple to express in terms of
cycles. Exponential schedules are not optimal in gênerai. However, they
are, in some sense, almost optimal [8]. Moreover, it is possible to show
that the speed of convergence of an exponential schedule is less affected
by a poor choice of the parameters than the speed of convergence of a
logarithmic schedule [8]. Thus, exponential schedules are to be prefered to
logarithmic ones.

Practically, one often adopt a température schedule running by stages. For
such a schedule, we décompose the series of trials in consécutive stages
jPi) • • • ïPfc) • • •, of lengths L i , . . . , L&,..., respectively. On each stage, one
choose a constant température ©&• It decreases from stage according to
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the équation 0& = afc0o, where the constant a < 1 is chosen close to 1.
If the length of the stages increases exponentially with k, (Lk = lkLo),
such a schedule is an approximation of an exponential schedule ([2], [4]).
Therefore, we can reuse the previous discussion in this framework as well.

3. IMPROVEMENTS OF SIMULATED ANNEALING

3.1. Repeated independent annealings

As pointed out by Azencott [6], in the framework of Time Bounded
Annealing it can be préférable to perform several independent annealings of
shorter (time) length rather than only one of a given length. For instance,
suppose that one disposes of a fixed amount of time allowing N trials, and
that the température schedule gives a speed of convergence of the form

P\Xn $L £min) ^ ( "AT

Then, instead of realizing a single annealing of lenght N, we can perform 5
successive independent annealings with the same température schedule.
We stop each exécution after n — ~ trials. Dénote by {Xn^i,... ,XUyS}
the 5 final states. We then choose a state Yn e {X n j i , . . . , Xn^s} such that
E(Yn) = mm{E(Xn7l)i...,E{Xnt3)}. We obtain '

P(Yn ft e^) = II P(Xn,i t £min) ~ (^f) -

By using 5 successive annealings, it is therefore possible to replace the
exponent a by as at the cost of an increase of the constant K.

From the values of K and a one can easily compute the number s of
successive annealings that optimizes the speed of convergence. A Multiple
Optimal Simulated Annealing consists in the répétition of SN ~ N/eK
successive independent annealings of fixed length n ~ eK (with e the basis
of the exponential) and in the choice of the best final state Yn. We then
obtain an optimal speed of convergence of the form

P(Yn $ £min) - e " '* , with p = a/2eK

Remark: As e~pN is optimal, one sees that performing repeated
independent annealings can increase the speed of convergence if and only if
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52 D. DELAMARRE, B. VIROT

e-pN < ( | ^ ) a
 T h i s condition boils down to

K . N 1

Note that the last inequality does not depend on a.

3.2. Distortions of the cost function

To improve the speed of convergence, one can increase the optimal
speed exponent aopt = ^ , by decreasing the difficulty D of the energy
landscape. With this aim in view, Azencott [5] proposes to replace the
cost function E by f (E) where the function ƒ is non decreasing and strictly
concave. Intuitively, this replacement preserves the set £min of optimal states
and it yields an energy landscape with less deep cycles, thereby decreasing
its difficulty D. In f act, suppose we use an optimal température schedule
such that

where aopt is the optimal speed exponent attached to the energy function E.
Let us replace E by f(E), where the function ƒ is non decreasing, strictly
concave and continuously differentiable. Dénote by a£pt the new optimal
speed exponent attached to f{E), By the définition of difficulty D, there
exists a cycle 7 and two states w G £(7) and v G 7 such that

/ inf ƒ ( £ ( * ) ) - i n f ƒ(£(*))

a =

As ƒ is non decreasing, we have

inf f(E(x)) = ƒ ( inf Ê{x)) and inf f{E{x)) = f(Emin)
xt7 xfc7 rcÇo

Let us choose two states a G 7 and b G S such that E(a) = inf E{x)

and E(b) = £ m i n . We have E(u) > E(v) > E(a) > E(b). As ƒ is strictly
concave, a straightforward computation yields

j _ f(E{a)) - f(E(b)) E{a)-E{b) •
)) E(u) - E(v) ~ opt
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As a0t > aopt, by using an optimal température schedule adapted to the
cost function f (E), we obtain a speed of convergence strictly improved.
Azencott suggests, for example, the use of distorsion functions ƒ as

> f(x) = -e~bx with b > 0,

> f[x) = (x + a)1^ with a greater so that E(s) + a > 0 for every state s,

> f{x) — \n(x + a), for the same values of a.
In the last section, we will show that it is possible to compute

"adequate" distortion functions. Experiments show that they yield significant
improvements of the algorithm behavior, even when used with non-optimal
schedules such as classical exponential schedules.

4. PARALLELIZATIONS OF SIMULATED ANNEALING

The problem of parallelizing the Simulated Annealing algorithm has
recently been studied in numerous experiments, showing the difficulty to
obtain significant speed-ups [20]. The constraints imposed by the underlying
mathematical model are illustrated by a strong coupling between the
processes, imposing numerous synchronizations which are expensive in
terms of time. The existing approaches can be subdivided into two sub-
categories [20].

> The • asynchronous (inexact) algorithms reduce the amount of
synchronizations by accepting to compute the variations of the cost function
from non up-to-date data. In the current state of art, it seems difficult to
correctly control the acceptable error, except for some spécifie problems [14];

> The synchronous (exact) algorithms, on the contrary, guarantee an exact
computation of the cost function by using coherent data.

As the behavior of asynchronous algorithms can hardly be predicted,
excepted for some spécifie problems ([14], [15]), we will focus on
synchronous algorithms.

4.1. Principles of synchronous algorithms

One can imagine to parallelize the internai functions of a problem, by
decomposing the management of the problem-dependent data into parallel
tasks (task parallelism). This kind of parallelization is limited by the
parallelism that one can extract from the move génération and évaluation
functions. It can be successfully applied to large irregular data structures,
such as graphs. One can also think of distributing among the processors the
data describing the problem (data parallelism). Each processor then computes
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moves modifying its own variables. This approach leads to medium or fine
grain parallelizations. It is especially interesting when the treated problem
involves large regular data structures (image processing for instance).

However, these parallelization techniques are strongly dependent on the
treated problem. They do not preserve the genericity of the sequential
Simulated Annealing algorithm. In contrast with these spécifie approaches,
there exists parallelizations techniques that allow to design and implement
generic parallel algorithms. As they are not bound to a particular class of
problems, the same parallel harness can be reused for different applications.
As all of these algorithms rely on simultaneous évaluations of several
series of moves by the processors, it is possible to design libraires of
parallel functions, thereby facilitating implementations and expérimentations
of multiple stratégies on different parallel architectures. This approach was
successfully developed by Delamarre [11].

We turn now to a brief overview of the synchronous problem-independent
parallel algorithms.

4.2. Independent multiple annealings

As we have previously noticed, it can be more interesting, in the sequential
case, when one disposes of a bounded time, to effectuate several short
independent annealings, with the same température schedule, rather than a
long one (cf. section 3.1). These independent shor annealings can obviously
be performed in parallel. Then, Azencott [6] shows that one can reach the
same solution quality as in sequential computation in a shorter time. However,
the speedup is poor. Moreover, these parallelizations are hardly extensible
since each of the independent annealings must conserve a sufficient length
to insure its convergence.

Remark: A possible improvement consists in using repeated Simulated
Annealings on each processor, with the same optimal température schedule.
Azencott points out that this strategy would yield a linear speedup of order p
with p processors [6]. However, the method is merely of theoretical interest,
as it supposes that one is able to design an optimal température schedule.

4.3. Multi-temperature annealings

Another approach consists in the distribution of the séquence of
températures on the processors. Thus, each processor exécutes an annealing
with a fixed température. The processors synchronize and interact perio-
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dically. This class of parallelizations of simulated annealing is called
multi-temperature annealings. Two variants are to be distinguished.

> Deterministic propagation of states: When synchronizing, one propagates
in a deterministic way the best states from high températures towards the
lower ones [19].

> Probabilistic exchange of states: When synchronizing, one exchanges the
obtained states according to a probabilistic criterion aimed at approaching
a thermie quasi-equilibrium [26].

4.3.1. Deterministic propagation of states

The interaction scheme is described hereafter (Fig. 2). Each processor
7T& holds a constant température 2\ , (T& > ïfc+i). Processors synchronize
every s itérations, when synchronizing, K^ holds a final state Xk and the
processors exécute the following algorithm

for all 1 < k < p

if E(Xk)<E(Xk+1)then

In this way, better states are propagated towards lower températures.

K\

IC 2

m

itérations
0 s

-o
)

•—- 1
s itérations Y inter

f

f

I

action

2s

-o
-o

\
i

3s

_ ^

Figure 2. - Interactions in deterministic propagation of states.

Using this strategy, Graffigne [19] has performed experiments showing
that it is possible to obtain good convergence results for difficult problems.

A variant. At high température, almost all the moves are accepted. Each
accepted move costs - in addition to the time used to generate, evaluate and
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56 D. DELAMARRE, B. VIROT

décide to accept or reject it - the time of its realization. Therefore, a processor
with a high température will be longer, in average, to perforai s itérations
than a processor with a lower température. If we synchronize all processors
every s itérations, we make the processors using a low température wait for
the processors using the highest ones.

To overcome this difficulty, we do not stop the processors using a low
température as soon as they have computed s itérations. We rather let them
going on Computing moves until they are stopped by their higher température
neighbor. When the processor n\ which uses the highest température has
done s itérations, then it synchronizes with its immédiate lower température
neighbor. The subséquent processors synchronize by pairs using the following
algorithm, thus propagating a synchronization wave towards the lowest
températures.

if k > 1 then

synchronize (TT^_I);

if E(Xk-!) < E(Xk) then

if k < p then

synchronize

The function synchronize (n^) realizes a rendez-vous between the processor
which exécutes it and the processor ivk- This function terminâtes when the
two processors have executed the corresponding calls. Using this variant,
we can take advantage of some overlapping between communications and
computations. We prevent processors which hold low températures from
being idle while waiting for the ones owning high températures.

We have made a group of experiments conducted with this variant for two
classical problems, the Quadratic Assignment Problem (20 to 80 locations)
and the Traveling Salesman Problem (50 to 500 towns). We used a network
of 13 workstations. The main difficulty was to do a "good" choice of
températures. We tested two simple stratégies. Let us dénote by T\ = Too
the (highest) température on processor TTI and by Tp = T\ow the lowest one
on processor TCP. We have choosen T^ in a simple way, as suggested in [2]
for simple température schedules. We have perform experiments with two
different stratégies for the distribution of intermediary températures.
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> an arithmetical progression: Tk =

> a geometrical progression: Tk =
The expérimental results highlight a better speedup with a geometrical

progression. Moreover, they showed that T\ow must be low enough (100 to
1000 times less than T^). Otherwiwe, the mean energy at this température
would be strictly greater than the optimum, leading to a poor convergence.
One would therefore have to store explicitly the best solution encountered
so far.

Experiments conducted with the variant showed an increase in speedup of
the order of 10% to 20% (depending on the choice of ï io w) , when compared
with the algorithm using global synchronizations.

4.3.2. Probabilistic exchange of states

This strategy of multi-temperature annealing was proposed by Kouichi
Kimura and Kazuko Taki [26]. In contrast with the deterministic approach,
every s. itérations one interchanges the states between processors with
neighboring températures, using a suitable probability of exchange pe. The
probability of exchange is determined in a way to promote the thermie quasi-
equilibrium. Let us dénote by Z(T) = £]x 6£exp - ^ the Boltzmann
partition fonction. If (Tk - Tk+i)(E(Xk) - E(Xk+i)) < 0, as we obtain
a lower energy for alower température, then we choose pe = 1. On
the contrary, if (Tk - Tk+1)(E(Xk) - E(Xk+1)) > 0, then the following
équation, expressing the conservation of the thermie equilibrium, should be
verified:

fE(Xk)\ 1 fE(Xk+1)\
K ) e ^ \ )

exp

Therefore, we choose

(1 if ATAE< 0,
Pe(Tk,E(Xk),Tk+1,E(Xk+1)) = | fATjAE) o t h e r w i s e i

where AT = Tk - Tfc+1 and AE = E(Xk) - E(Xk+1).
It has been shown by Kouichi Kimura and Kazuko Taki that, if one

uses the previous probability of exchange pe then, for each processor, the
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distribution of states approaches in a monotonous manner, in the sense of
Kullback's distance, the equilibrium distribution [26].

Kouichi Kimura and Kazuko Taki have performed experiments for a
problem of graph séparation. They pointed out an improvement of the
solutions quality with respect to the sequential case for the same time of
computation.

An exchange of states between two processors TT̂  and TT^+I, having
the températures T& and 7&+i respectively, amounts to an exchange of
the températures of the processors 7r& and nk+\. Therefore, the algorithm
handles p Markov chains which change température by changing processors.
During a synchronization phase, each chain "chooses" a température schedule
by a series of tournaments with the chains at neighboring températures. Note
that, according to the choice of pe , these température schedules do not
necessarily decrease. The problem of convergence of the chains arises.

Remark: The Parallel Systolic Annealing algorithm proposed by Aarts and
van Laarhoven ([2], [1]) is close to the Multi-temperature Annealing with
probabilistic exchange of states. It differs in the initialisation stage and in the
choice of the exchange probability. This probability is computed by using
an approximation of the partition function of the Boltzmann distribution.

4.4. Parallelization by multiple trials

A simple strategy of parallelization consists in using a processor farm
to evaluate in parallel moves generated by a master processor. However,
parallelizations based on the processor farm paradigm can present a
bottleneck phenomenon due to the uniqueness of the move generator.
To remedy this difficulty, one can think of distributing the task of the
move génération equally on the processors. This leads to the parallelization
stratégies by multiple trials. The p processors start from the same state.
Then, each one independently computes a chain. The length of these chains
is controlled by previously fixed parameters. Then, one synchronizes the
processors and chooses the final state generated by one of the processors to
restait the procedure. The speedup obtained in this case comes from the fact
that at low température, the acceptance rate {Le. the rate of accepted moves
compared to the generated ones) is small. Then, one can hope to accept
a given number of moves by computing p chains in parallel in an order
of p less time than by computing one sequential chain. Several stratégies
belongs to this category. One distinguishes them by their way of controlling
the length of the chains.
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> In a first group, one places the stratégies for which the generated chains
correspond to a previously fixed number of accepted moves.

> In a second group, we place the stratégies for which the generated chains
correspond to a fixed number of trials ([4], "division algorithm").

Moreover, one can dynamically adjust the granularity of the parallelization,
either by increasing the number of processors, or by modifying the way of
grouping the processors during the annealing ([13], [2]).

We turn now to the description of these stratégies, following the two
criteria of the chain length counting and of the fixed or variable granularity.

4.4.1. Fixed granularity, length of chains in number of trials

One can think of controlling the chains length in terms of the number of
trials. This leads to the division algorithm proposed by Aarts and Debont [1],
If we dispose of p processors, then we can replace the computation of a
chain of length L by the construction of p chains of length L/p, called "sub-
chains". Note that the length of these sub-chains is expressed by a number
of trials. A difficulty arises, as this strategy leads to a hardly extensible
algorithm. In fact, when p increases, the length of the sub-chains becomes
too small to authorize a suitable convergence at low température.

4.4.2. Fixed granularity, length of chains in number of accepted moves

Instead of controlling the length of chains in terms of trials, one can use
a fixed number of accepted moves as well.

Starting from the same initial state, the processors independently generate
moves, until one of them, at least, has build a chain comporting a fixed
number a of accepted moves. Then, one synchronizes all the processors
and the final state of such a chain is chosen as the initial state for a
new itération. These methods have given rise to a number of experiments
on many classical problems of discrete combinatorial optimisation, and are
applicable on architectures having either a shared memory or a distributed
one ([6], [13]).

Synchronization at the first accepted move. We first consider the simple
strategy where the processors synchronize at the first accepted move (a = 1).
We can show three variants of this strategy for which we give an a priori
comparison.

> Synchronous by trial strategy. This parallelization strategy is also called
"high température mode" by Roussel-Ragot and Dreyfus [30]. It makes use
of the following algorithm to generate an accepted move with p processors.
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For every processor 7T&, 1 < k < p
generate, evaluate and test a move rrikl

global-synchro;
if there exists at least an accepted move then

choose an accepted move m randomly among them;
realize the move m;

The function global-synchro synchronizes the p processors. This strategy
uses too much synchronizations at low température. In fact, in this case,
the acceptance rate can be very low, and all of the processors are often
synchronized even though no accepted move has been found. Therefore, this
stretegy is generally used with température sufficiently high such that the
probability to obtain at least one accepted move at each synchronization
is high enough.

> Synchronous by move stragegy. This strategy avoid all useless
synchronizations while no accepted move is found. It is also called "low
température mode" or "asynchronous parallelization" by Roussel-Ragot and
Dreyfus [30]. Ho wever, as it uses synchronizations to maintain coherent
updated data, it is part of the category of synchronous algorithms. Every
processor 7r&, 1 < k < p exécutes the following algorithm.

Repeat
generate, evaluate and test a move m&

until 3i G { 1 , . . . ,p} such that mi is accepted;
global-synchro;
realize the move rrii\

Note that the fact one restarts with the first accepted move introduces a
bias in the choice of the move to be realized at high température. Indeed,
at high température, almost every trial is accepted. Therefore, one promotes
the moves which have the shortest time of computation. Even if the problem
comports only one kind of move, the moves which cause an increase in
energy are more slowly tested than energy decreasing ones since the former
require the computation of an exponential.

> Unbiased synchronous by move stragegy. We can solve the problem
of bias by using the variant çalled "one chain" strategy by Lülling [13].
This variant differs from the preceding one in the fact that during the
synchronization, we allow the processors to finish the computation of the
current move and take into account the fact that they can find an accepted
move during this last computation. Lülling noticed that the speedup obtained
increases with the number of processors until a certain number. Beyond this

Recherche opérationnelle/Opérations Research



SIMULATED ANNEALING ALGORITHM: TECHNICAL IMPROVEMENTS 6 1

limit, if additional processors are used, the performances decrease due to the
synchronization and communications costs.

Synchronization after a > 1 acceptée moves, Another interesting way
to alleviate the problem of bias while avoiding useless synchronizations
consists in synchronizing only when a processor has accepted a number
a > 1 of moves. Virot [31] proposed an analysis of this strategy. The
choice of the parameter a is important in the détermination of the expected
speedup. Virot describes a model showing that, for every température, it
is possible to compute an optimal number of processors, which increases
when the acceptance rate decreases. Moreover, this optimal number dépends
on the underlying architecture through the time required to synchronize the
processors.

4.4.3. Variable granularity

Stratégies with a fixed granularity bring to the fore the existence of
an optimal number of processors, which increases when the température
decreases. We could décide to use, with each température, only the optimal
number of processors for this température, until the moment where all the
processors are used. This approach is interesting in an environment of multi-
computing where one can dynamically add processors {Le, a network of
workstations used as a multi-processor machine). The computation power
unused by the annealing can serve to exécute other programs. In the case
of multi-processor architectures, where a set of processors is reserved at the
beginning of the annealing computation, this practice would lead to a waste
of computation power.

Two variants of a same solution were proposed by Arts and Debont [1] and
Lülling [13]. Suppose the optimal number of processors nopt is smaller than
the number p of available processors. Then, one can compute each of the
chains by using a parallel strategy on a group (or cluster) of processors. One
performs, thus, a "multi-level" parallelization. Each group uses an Unbiased
Synchronous by Move strategy for the computation of its chain. The manner
in which the processors are grouped evolves dynamically along the decrease
of the température. The différence between the two variants of Aarts-Debont
and of Lülling holds principally in the way of grouping (sizes of the clusters
and criterion to décide to group). The grouping criterion is, nevertheless,
based on the same heuristics. It consists in doing so that the size of a group
is kept as close as possible to nopt.
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4.5. Parallelization by spéculative computation

The parallelization of Simulated Annealing by spéculative computation
makes use of the parallelism coming from the overlapping of the computation
time of a move and of the next one [32]. We obtain this overlap by continuing
the computation from a given state on two processors. These processors
make a wager bef ore the end of the computation of the current move. One
processor bet that the given move will be accepted, the other that it will be
rejected. In this way, one builds a binary tree which describes the successive
possible choices: acceptance or rejection. On a binary tree of height one,
the computation is performed in the following manner. The three processors
start from the same initial state. Then

t> the processor that bets on a rejection starts immediately
the search for a move;

> the root processor générâtes a move m&. It sends it to
the processors wagging for its acceptance and goes on
its computation for m&;

> the processor betting on the acceptance {accept son)
realizes the move m& and generales its own move.

We formalize this behavior by the following algorithms on a height 1 tree:

for the root processor:

generate a move m&;
send rnjc to accept son;
evaluate and test move nik ;

for the others:

if accept son then
receive (m&);
realize {mk)\

generate a move
evaluate and test move

When the root processor finishes its computation, then one knows which
of the two wagerers holds the state corresponding to the exact computation
of the Markov chain.

We show in Figure 3 the time schedule comparing the exécution of the
algorithm on a tree of height one and in séquence. We dénote by

> "tm" the génération time of a move,
> "teval" the évaluation time,
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> "tr" the realization time,

> "td" the time of test and décision,

> "te" the communication time of a move.

Assume that computations and communications can overlap. Then, the
time required to build a chain of length greater than 2 is clearly shorter with
the parallel spéculative computation ("tp") than in séquence ("ts"). This is
even more true when the time of évaluation dominâtes the other times.

root

accept

rejcct

sequential

tm

SE

tm

t e

t r

teval

t r tm

1 td

teval t d

f 1
tm 1 teval | td

teval td tr

t

tm

P

teval

ts time

;

td tr

Figure 3. - Time schedule for a tree of height 1.

Clearly, one cannot dispose of a sufficient number of processors to develop
a tree high enough to speculate on the results of all the itérations of an
annealing. Consider a tree of bounded height. The effective successive
décisions form a path from the root up to one of the leaves. Then, the
processor situated at this leaf communicates its current state to the root
processor, and the computation continues. The obtained speedup, in this
case, is limited by the number h of processors having participated to the
effective décisions. If we dispose of p processors and if we use a balanced
binary tree, then we obtain a maximal speedup of h = log2 (p + 1). Thus,
the hypothesis of a balanced tree is unsuitable. One has to unbalance the
tree according to the acceptance rate. The idea is to allow a path of effective
décisions to descend the lowest possible in the tree before "exiting" by a leaf.

Witte, Chamberlain and Franklin [32] have proposed an analysis of the
expected maximal speedup according to the shape of the binary tree, the
acceptance rate and the times tm, teval and te. For a given number p
of processors, there exists an optimal tree, which shape dépends on the
acceptanee rate and on the parameters tm, teval and te. The construction
of this tree requires an algorithm in time O(p4). Witte, Chamberlain and
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Franklin propose an "approached" algorithm which yields a quasi-optimal
tree in time O(p). It needs a prédiction of the acceptance rate for the
next température stage. They applied the "approached" algorithm to a task-
assignment problem. Using an Hypercube architecture the obtained speedup
was 3.2 with 8 processors and 3.3 with 16 processors.

This static approach exhibits several inconveniences. We note that when
the path of décision has passed a certain level in the tree, some subtress
become useless (see Fig. 4). It would be bénéficiai, in a dynamic version to
recycle these useless processors to prolong the useful subtrees. In addition,
the processors situated at the top of the path should also be recycled. This
poses the problem of choice of the place where a new leaf can be grafted
and of the choice of the management of the migration of the processors
in the tree.

Another problem arises from the necessity to estimate the times of
computation and communication of a move in order to détermine a
suitable tree. This becomes particularly delicate on architectures such that
a network of workstations used as a multi-processor machine. The load of
the communication network is hardly predictable due to the sharing of the
network with other users.

Figure 4. - Useless and reusable processors.

5. AN APPLICATION TO THE PROBLEM OF HAMILTONIAN PATH SEARCH IN
CUBIC GRAPHS WITH COST FUNCTION DISTORTION

We turn now to an application. We choose a problem proposed by J. L.
Fouquet and H. Thuillier [10]. It concerns the search for Hamiltonian paths
in cubic graphs. It is a challenging problem, as classical approaches highlight
the poor behavior of the Simulated Annealing algorithm when applied to
difficult energy landscapes. In f act, the energy landscape présents deep
cycles near local optima and, moreover, large plateaux yielding an important
quantity of moves which leave the energy constant.
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We proceed in two steps. A first modification of the cost function
suppresses plateaux. Next, we use cost function distortions to get less deep
cycles. Our experiments are conducted using a parallel Synchronous by Trials
strategy (c/ 4.4.2), and a simple exponential température schedule.

5.1. Hamiltonian paths in cubic graphs

Given a non-directed graph G, we dénote by V(G) the set of its vertices
and by E(G) the set of its edges. We say that G is of order n if | ^ (G) | — n,
and that it is regular if all of its vertices have the same degree k. We only
consider finite graphs G regular, without cycles and of degree 3, called cubic
graphs. If P is a path in G, we dénote by l(P) the length of P, namely the
number of its edges. We extend this notation to all subgraphs H of G. We
dénote by l(H) the length of the longest path in H. A path P is Hamiltonian
if it passes exactly once by all the vertices of G. A forest is linear if all of
its connected components are paths. Two forests F\ and F<i are disjoint if
they do not have any common edge (E(F1) n E(F2) = 0). If, in addition,
E(G) = E(Fi) U E(F2), then we say that F = (Fi, F2) constitutes a linear
partition of G. The number l(F) = max(Z(Fi), J(F2)) is called the height
of the linear partition.

Here, we call Hamiltonian Problem, the problem to décide if a cubic graph
possesses a Hamiltonian path. The Hamiltonian Problem is NP-hard [18].
Let A; be a fixed integer, 2 < k < n — 1. We show in [10] that the problem
which consists in finding a linear partition of height k of G is a relaxation
of the Hamiltonian Problem for this graph. In fact:

> if the graph G has a partition of height n — 1, then it has a Hamiltonian
path;

> conversely, if G has a Hamiltonian path P, by taking F\ — E(P) and
F2 = E(G)\E(P), we define a linear partition of height n - 1.

Thus, to solve the Hamiltonian Problem for a cubic graph amounts to
build a linear partition F with maximal height: l(F) — n — 1.

Akayama, Exoo and Harary [3] have proved the existence of a linear
partition for every cubic graph. One can find an algorithmic proof of
this theorem in [10]. This last proof gives us a way to construct a linear
partition. Moreover, we can go from a linear partition F to another by a
simple transformation (cf. [10], section 3). Therefore, it is possible to use
the Simulated Annealing algorithm in order to search for a linear partition
with maximal height.
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5.2. The algorithm

5.2.1. The initial partition

We use the algorithm exposed in [10] (section 2) to build the initial
partition. This algorithm consists in an edge coloring with two colors. The
coloring is done in a manner that the subgraph of each color constitutes a
linear forest. Each time that an indifferent choice of colors arises, we choose
a color at random.

5.2.2. The moves génération

The génération of the moves is described by the following algorithm
(cf. Fig. 5).

choose at random i E {1,2};
If there is no path with length l > 2 in F% then

stop the annealing {We have a Hamiltonian path}
else

choose a non-terminal edge;
change its color;

< transformation

Figure 5. - A

— ^

*

move.

dst part of P

new path Qi +(aj, a

endof^-

5.2.3. The cost function

The easiest way to search for a linear partition of maximal length consists
in the application of the Simulated Annealing algorithm to the maximization
of the "sup" cost function ES(F) — l(F). This method leads to poor results.
We can give at least two reasons for this bad behavior.

> There exists an important quantity of moves which keep Es constant
(null moves);

> when a forest has a very long path, breaking this path - except near its
extremities - causes an important decrease of the cost function. Due to this
f act, it is difficult to prevent the System from freezing (Le. being trapped in
a local optimum), even with an extremely slow decrease of température.
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We therefore introducé another cost function. Let us dénote by fJi(F) the
average length of the paths of a linear forest F, and by UJ(F) the number
of connected components in F . We define the "mean" cost function E by
E (F) = |M(-FI) — /z(i<2)|* The next proposition states that, as long as we
search for Hamiltonian paths, we can safely replace Es with E. It can be
proved by classical graph-theory arguments (cf. [12]).

PROPOSITION: if G possesses a Hamiltonian path, then E reaches its
maximum value for exactly the states achieving the maximum of Es.

Remark: Note that this property is no longer true if the graph does not
hold a Hamiltonian path. One can exhibit cubic graphs for which there exists
a partition achieving the best value of the mean cost function and which
does not yield the longest possible path. Therefore, this functions is well
suited to the Hamiltonian path search but not to the longest path search in
arbitrary cubic graphs.

As confirmed by experiments, the "mean" cost function E comports much
less null moves than the "sup" cost function Es, thereby avoiding the first
cause of the bad behavior of Es. Nevertheless, the function E still exhibits
a pathological feature. As for the "sup" function, when a long path has been
built, the next move cause a large variation of cost. One can only get out of
such a local optimum by some moves causing a tremendous decrease of the
cost or by a long séquence of smaller moves. Therefore, the System freezes
easily when the température decreases.

5.3. Expérimental results

Our experiments were conducted on a network of 13 Transputers, using
a Synchronous by Trials strategy (cf. 4.4.2), and a simple exponential
température schedule. We applied a classical end-of-stage criterion based
on a minimal number of accepted moves while limiting the number of trials.

We used a generator of random Hamiltonian graphs or order n. For each
size n, we perform 20 exécutions with randomly generated Hamiltonian
graphs of order n. Let us call success ratio the rate of exécutions which
yields a Hamiltonian path. We dénote by iVacc the minimal number of
accepted moves in each température stage. We maximize the "mean" cost
function E. As shown by Table I, it does not give an optimal solution (a
Hamiltonian path) except for small graphs. In Figure 6 we have plotted the
acceptance rate and the mean value of l(F) on each température stage for a
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graph of order 100. The graphs highlight the brutal freezing of the System,
due to the large size of the leaps of energy near local optima.

TABLE I
Statistics over 20 exécutions with randomly generated
Hamiltonian graphs of order n: Mean Cost function.

JVacc = £
sucess ratio

average final value of l(F)

sucess ratio

average final value of l(F)

ra = 10

1

9

n = 10

1

9

n = 50

1

49

n^50

0.9

48.7

n = 100

0.1

70.1

n = 100

0

63.0

mean Es vs. température
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température

0.024 0.026

Figure 6. - Order 100 graph.

5.4. Cost function distortion

The existence of large energy leaps can be highlighted by a simple
experiment. For any elementary move m bringing a state x to a state y,
consider the jump J(m) = \E(y) - E(x)\. For each température stage, it
is possible to observe the mean value E of the energy E and the mean
value J of the jumps J(m) corresponding to all of the tried moves. We
have plotted the expérimental values of E and J for a number of graphs of
different sizes. The shape of the curve turns out to be very similar in all of
the cases (cf. Figure 7 for a graph of size n = 100). It exhibits large values
of J near the optimum of E, thereby bringing to the fore the pathological
feature of the energy E.
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Figure 7. - J , g\ and 52 vs. E.

To overcome this difficulty, we use a simple heuristics based on the method
of cost function distortion {cf. section 3.2). Consider a distortion E1 — f (E)
of the cost function E, where the function ƒ is non decreasing and strictly
concave. Dénote by Jf(m) = \E\x) - E\y)\ the corresponding jumps. By
considering a move as an elementary variation of the current state 5, we
have the approximation J(m) ~ | ^jjds |, hence, we obtain

df(E)
ds

ds
df(E) dE Jds

dE ds
df(E)

dE
J

To avoid large jumps near the optimum of f (E), we can define ƒ in
such a way as J ' stays approximately constant. Therefore, we can choose
^ ^ = j . In order to compute ƒ, we have to express J as a function
of E and, then, to define ƒ as a primitive of y. The guiding idea consists
in performing a best fit estimation of J as a function of E by a function g
belonging to a chosen fanüly. For example, we may choose piecewise linear
fonctions or polynomial fonctions of small degree. We have performed two
such estimations <?i and 52 of J by the means of the expérimental values
of J as a function of E.

> A rough best fit estimation by a polynomial function of degree 2 yields
91(00) = x2]
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> A rough best fit estimation by a simple piecewise linear fonction yields

_ f1/10^ i f x G [0,0.01],
92 {x) - | 1 / 3 : r + 7 / 3 0 0 i f x > 0_01

Dénote by f\ and ƒ2 primitives of g\ and £2 respectively. Experiments show
that the two distorded cost functions fi(E) and f2 (E) yield similar very
good results up to several hundred vertices. Therefore, we see that a more
accurate best fit estimation of J would not be useful. Expérimental results
are shown in Table IL The obtained speedup was 4.5 with a network of
13 Transputers.

TABLE II

Statistics over 20 exécutions with randomly generated
Hamiltonian graphs of order n, function "Distorted Mean".

AF — n<2i Vacc — 2

sucess ratio

average final value of l(F)

AF — ™2

i Vacc — xo
sucess ratio

average final value of l(F)

n = 100

1

99

n = 200

1

199

n = 500

1

499

1

99

1

199

1

499

6. CONCLUSION

We have presented some problem-independent amélioration techniques
for the Simulated Annealing algorithm. The study of cycles provides a
convenient theoretical framework leading to sharp évaluations for the speed
of convergence of the algorithm, as well as to the important practical method
of distortions of the cost function.

Numerous exact parallelizations of the Simulated Annealing algorithm
have been proposed. We have highlighted three main families, the Multiple
Trials stratégies, the Multi-Temperature stratégies and the Spéculative
stratégies.

Spéculative algorithms are highly scalable. However several difficulties
arise with spéculative stratégies, concerning the management of the tree of
processors and the load balancing. They deserve further experiments.
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Multi-Temperature stratégies seem to be well-suited to a relatively small
number of processors. Nevertheless, they yield interesting results when
applied to hard problems. Further experiments remain to be done, concerning
the fine tuning of the températures.

Multiple Trials Annealings have been experimented by many researchers,
and successfully applied to various optimization problems. They allow lots
of variants. One can find such variants well-suited to numerous particular
problems. When the move évaluation time is very large compared to the
move communication time, one can use an Unbiased Synchronous by
Move strategy or a Synchronous by Trial strategy at high température,
and then a Synchronous by Move one as the température lowers. One can,
even, use a processor farm if the move génération time is small enough.
When the ratio between the move évaluation time and the communication
time is not so favorable, on can use stratégies synchronizing after a > 1
moves, thereby allowing bounded desynchronizations. Another approach is
the variable granularity strategy progressively sliding from a Synchronous by
Trial strategy to an Unbiased Synchronous by Move one as the température
decreases. There are limits in the extensibility of the major part of the
Multiple Trials stratégies, the variable granularity one is a good candidate
at pushing these limits forward.

It is possible to design parallel libraries facilitating the implementation
of Parallel Annealings, as well as Parallel Taboo Search algorithms,
on various parallel architectures [11]. They provide flexible and gênerai
tools, allowing operational research practitioners to safely use parallel
architectures. These libraries are easily extensible to other parallelizations
of simulated annealing like asynchronous ones or combinations with data
parallelism. Moreover, this approach suggests an interesting direction of
research concerning the comparison between Taboo Search and Simulated
Annealing used in combination with cost function distortion, when applied
to large size optimization problems. Another interesting direction of research
concerns mixed stratégies involving approximate methods such as Simulated
Annealing and Tabu Search as well as exact ones such as Branch and Bound.
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