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THREE EASY SPECIAL CASES OF THE EUCLIDEAN
TRAVELLING SALESMAN PROBLEM (*)

by V. G. DEÏNEKO (l) (2), J. A. van der VEEN ( 3 ) ,

R. RUDOLF (2) and G. J. WOEGINGER <2)

Communicated by Philippe CHRÉTIENNE

Abstract. - It is known that in case the distance matrix in the Travelling Salesman Problem (TSF)
fulfills certain combinatorial conditions (e.g. the Demideriko conditions, the Kalmanson conditions
or the Supnick conditions) then the TSP is solvable in polynomial time. This paper deals with the
problem of recognizing Euclidean instances of the TSP for which there is a renumbering of the
cities suc h that the corresponding renumbered distance matrix fulfills the Demidenko (Kalmanson,
Supnick) conditions. We provide polynomial time récognition algorithms for ail îhree cases.

Keywords: Travelling salesman problem, Kalmanson condition, Demidenko condition, Supnick
condition, Combinatorial optimization, Geometry, Polynomial algorithms.

Résumé. — On sait que dans le cas où la matrice des distances du problème de voyageur
de commerce (TSP) possède certaines propriétés combinatoires (par exemple les conditions de
Demidenko, les conditions de Kalmanson ou les conditions de Supnik), alors le problème est
polynomial. Cet article traite du problème de la reconnaissance d'instances euclidiennes de TSP
pour lesquelles il existe un renumérotage des villes tel que la nouvelle matrice des distances
satisfasse les conditions de Demidenko (Kalmanson, Supnick). Un algorithme polynomial est fourni
pour chacun des trois cas.

Mots clés : Problème du voyageur de commerce ; conditions de Kalmanson, Demidenko, Supnick ;
optimisation combinatoire; géométrie; algorithmes polynomiaux.

1. INTRODUCTION

The travelling salesman problem (RSP) is defined as follows. Given an
n x n distance matrix C — (c^) find a permutation % e Sn that minimizes
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344 v. G. DEÏNEKO et al

the sum Yll=i C7r {ï) it (i+ï) + c%(n)iï(ï) ( t ne salesman must visit the cities 1
to n in arbitrary order and wants to minimize the total travel length). This
problem is one of the fundamental problems in combinatorial optimization
and known to be NP hard. For more information, the reader is referred to
the book by Lawler, Lenstra, Rinnooy Kan and Shmoys [8].

Several special cases of the TSP are solvable in polynomial time, due
to special combinatorial structures in the distance matrix. A large class of
such easy special cases is related to the concept of pyramidal tours, Le.
permutations n E Sn with TT = (1, ii, Z2,..., ir, ^, J i , . . . , jn-r-2) where
il < %2 < . . . < ir and j \ > . . . > jn-r-2 h°ld (for permutations, we
use the notation w — (xi, X2,. . . , xn) for 4V(i) = xi for 1 < i < n").
Although the number of pyramidal tours on n cities is exponential in n, a
minimum cost pyramidal tour can be determined in 0(n2) time by a dynamic
programming approach (cf. Gilmore, Lawler and Shmoys [5]). For several
classes of specially structured matrices it is known that these matrices always
possess an optimal TSP tour which is pyramidal. Among these classes are
the class D of Demidenko matrices, the class K of Kalmanson matrices
and the class $ of Supnick matrices» A symmetrie n x n matrix C is a
Demidenko matrix (C E D) if

Cij + cM < cik + CJI for 1 < i < j < k < l < n. (1)

A symmetrie matrix C is a Kalmanson matric (C G K), if it fulfills condition
(1) and additionally

<Hl + cjk < Cik + Cji for 1 < i < k < l < n. (2)

A symmetrie n x n matrix C is a Supnik matrix (C E $) if

Cir + Cjs < Cis + Cjr ÎOT 1 < i < j < 7l7 1 < T < S < fl, (3)

{h i } H {r5 s} = 0.

In a famous paper in 1976, Demidenko [3] proved that for the TSP with
Demindenko distance matrices there always exists an optimal tour that is
pyramidal Consequently, the TSP with Demidenko distance matrices is
efficiently solvable. Since K Ç D, this resuit immediately carries over to
Kalmanson matrices. Ho wever, hère an even stronger statement holds: For
symmetrie Kalmanson distance matrices, the (pyramidal) identity permutation
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THREE EASY SPECIAL CASES OF THE EUCUDEAN TRAVELLING SALESMAN PROBLEM 345

(1, 2, 3 , . . . . n) constitutes a shortest TSP tour {cf. Kalmanson [7]). Finally,
for Supnick matrices the pyramidal permutation (1, 3, 5, 7 , . . . , 8, 6, 4, 2),
Le. first the odd cities in increasing order and then the even cities in
decreasing order, yields an optimal tour {cf. Supnick [12]).

Another important special case of the TSP is the Euclidean TSP: hère
the cities are points in the two-dimensional plane and their distances are
measured according to the Euclidean metric. It is easy to see that in this
case, the shortest TSP tour does not intersect itself {cf. Flood [4]) and hence,
geometry makes the problem somewhat easier. Nevertheless, this special case
is still NP-hard {see e.g. Papadimitriou [6) or chapter 3 in the TSP book [8]).

The subject of this paper is to identify easy instances of the Euclidean
TSP based on the concept of Demidenko (Kalmanson, Supnick) matrices:
trivially, the length of the optimum TSP tour does not depend on the original
numbering of the cities. However for some of the numberings, the distance
matrix may fulfill the Demidenko (Kalmanson, Supnick) conditions whereas
for other numberings it does not. Hence, the problem arises of finding
numberings of the cities such that the resulting matrix fulfills the Demidenko
(Kalmanson, Supnick) conditions. The corresponding algorithmic problem is
called "récognition of permuîed Euclidean Demidenko (Kalmanson, Supnick)
matrices". In this paper, we will dérive the following results.

(a) Permuted n x n Euclidean Demidenko matrices can be recognized in
0{né) time.

(b) Permuted n x n Euclidean Kalmanson matrices can be recognized in
O(n2) time.

(c) Permuted n x n Euclidean Supnick matrices are trivial to recognize:
with a small number of exceptions only point sets in one-dimensional
subspaces have Supnick distance matrices.

Our methods strongly exploit geometrie structures in the problems like
convex subsets and orderings along convex hulls, points lying on the branch
of certain hyperbolas, intersection points of certain related hyperbolas and
so on.

Organization of the paper. Sections 2 and 3 summarize elementary
results and définitions for Kalmanson and Deminko matrices: Section 2 deals
with combinatorial preliminaries, Section 3 with geometrie preliminaries.
The récognition problem of permuted Euclidean Kalmanson matrices is
treated in Section 4 and permuted Euclidean Demidenko matrices are treated
in Section 5. Section 6 gives a full characterization of Euclidean Supnick
matrices. Finally, Section 7 closes with the discussion.
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346 v. G. DEÏNEKO et al

2. COMBINATORIAL PRELIMINAIRES AND DEFINITIONS

In this section, several basic définitions for permutations and matrices are
given and elementary properties of Demidenko, Kalmanson and Supnick
matrices are summarized.

For a n n x n mairie C, dénote by I = { 1 , . . . , n} the set of rows (columns).
A row i précèdes a row j in C (i -< j for short), if row i occurs before row
j in C. For two sets K\ and K2 of rows, we write K\ < K2 iffkx -< fe
for ail k\ e K\ and &2 G K2.

For V = {vi: V2,..., vr} a subset of / , we dénote by C[V] the r x r
submatrix of C which is obtained by deleting ail rows and columns not
contained in V.

The identity permutation is denoted by e, Le. e(i) = i for ail i e L For
a permutation <f>9 the permutation <p~ defined by <p~ (i) = (j) (n — i + 1) is
called the reverse permutation of <j>. Permutation <fi is called a cyclic shift or a
rotation if there exists a k E I such that <f> = (fc, A; + 1 , . . . , n, 1 , . . . , k — 1).

By Cfjy we dénote the matrix which is obtained from matrix C by permuting
its rows and columns according to <f>, Le, ^ ( ^ ( ^ ^ ( j ) ) . A permutation <f)
is called a Demidenko (Kalmanson, Supnick) permutation for some matrix
C iff C<£ is a Demidenko (Kalmanson, Supnick) matrix.

For a partition X — {Xi,..., Xx) of I into x subsets, the set
STR (XI , . . . , Xx) contains ail permutations <f> that fulfill <j> (x{) -< (f) (XJ) for
ail X{ G Xi and x3 e X3 with 1 < i < j < x. STR (XI, . . . . Xx) is called
the set of permutations induced by the séquence of stripes X\,..., Xx.
Readers that are familiar with the concept of PQ-trees (Booth and Lueker
[1]) may observe that the set STR (X\y..., Xx) can be représentée by a
PQ-tree of height two: the root is a Q-node with x sons. Ail sons of the root
are P-nodes, where the i-th son has the éléments in X% as children.

PROPOSITION 2.1: (Booth and Lueker [1]) For two partitions (X\,..., Xx)
and (Yu ..., Yy) of L the set S T R (XU . . . , Xx) n ST R (Yu . . . , Yy) either
equals STR (Z\,..., Z^} /or an appropriate partition Z = (Z\,..., Zz) of
I or it is empty. The partition Z can be computed in O (\I\) time. •

OBSERVATION 2.2: Let D> e D, K G K and S 6 $. Then D£~ € D, K£- € K
Se- € ^ ftoto, and /or any set J Ç I, D[J] eB, K [J] G K, and

[ J] E $. Moreover, for any cyclic shift a, Ka G K. •

Recherche opérationnelle/Opérations Research
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In other words, reversing a matrix does not destroy the combinatorial
structures we are interested in and cyclically renumbering the rows and
columns transforms Kalmanson matrices into Kalmanson matrices. For two
rows (columns) i and j of C, define

M (h j) = lk £ I\{h j}\cik - Cjk = - { ^ jl}}

LEMMA 2.3: Let C be a symmetrie nxn Kalmanson matrix with n > 4. Let
i and j be two rows of C with i < j , K — M (ir j) U {i} and Kr = I\K\
Then there exists a cyclic shift (f) such that C$ E K and K -< Kf in C^..

Proof: By définition i e K and j 6 Kf. Consider some k £ A4(i, j).
Then e^ - c3k — c# - c}\ for all l e K\{i} and c^ - c3k < cu - cp for all
ï E K'\{j}. Let F = I\{i, j , k}, Distinguish the following three cases on
the relative position of i, j and k: (i) k -< i < j . The condition (2) implies
p E K for all p e I' with k <p -< i. (ii) i -< k -< j . By condition (1) p e K
for all p e V with % •< p -< fc. (iii) i < j < k. Since C G K, p G ÜT for
all p G / ' with k -<. p or p -< i..

Summarizing, there exist two éléments r and s such that either i^ =
{r, . . . , i,...., s} or î A = {5 + 1, . . . s ƒ,... ' , r - 1}. By Observation 2.2
every cyclic shift of C yields again a Kalmanson matrix. Choosing 4> —
(^ . . - , ̂  , ̂  h--, r-l}or4>= (ry ..., n, 1 , . . . , 5, 5 + 1 , . . . , r - 1 )
complètes the argument. •

Sometimes it is useful to use other, equivalent characterizations of the
specially structured matrices. One such characterization of O was given
in [51:

OBSERVATION 2.4: ([5]) A symmetrie nxn matrix C is a Demidenko matrix iff

ij +• Cjf+ij < Cij+i + Cjj for all 1 < i < j < j + 1 < l < n. (4)

Below, we use another characterization of D and K which is formulated in
the following proposition.

PROPOSITION 2.5: A symmetrie n x n matrix C is a Demidenko matrix iff

m a x {cij — Cii3'+i} < m in {CJJ — Cj+ij} for all 2 < j < n — 2 . (5)
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A symmetrie n x n matrix C is a Kalmanson matrix iff

Ci+i^ <c?J+c,;+i, j+i for ail 1 <^<n-2, i + 2<j<n-l (6)

ĉ  j + Cj+ijn < c„ + Cj+i, i /or all2 <i <n-2. (7)

OBSERVATION 2.6: For a symmetrie n x n matrix C, it can be decided
in O(n2) time whether C is a Kalmanson matrix (Demidenko matrix,
respectively).

Proof: Characterization (5) for Demidenko matrices and characterization
(6) and (7) for Kalmanson matrices both can be verified in O(n2) time. •

3. GEOMETRIC PRELIMINAIRES AND DEFINITIONS

This section deals with planar Euclidean point sets whose distance
matrices are permuted Demidenko, Kalmanson or Supnick matrices. Let
P = {viy V2) • • •, vn Ç R2 be a séquence of points in the Euclidean plane
and let C dénote its distance matrix defined by cvj — d{vl./ VJ) where d (#, y)
dénotes the Euclidean distance between points x and y. If the distance matrix
C fulfills the Demidenko (Kalmanson, Supnick) conditions, it is called a
Euclidean Demidenko (Kalmanson, Supnick) matrix the séquence P is called
a Demidenko (Kalmanson, Supnick) point séquence, and the points in P are
said to form a Demidenko (Kalmanson, Supnick) point set. A permutation
of P that transforms the distance matrix into a Demidenko (Kalmanson,
Supnick) matrix is called a Demidenko (Kalmanson, Supnick) permutation
for P . For any rearranged subsequence P ' of the points in P, we dénote by
OP' the séquence of indices in P ' .

#10

4

1
2
3
4
5
6
7
8
9

10

( 13,184)
( 24,157)
( 21,129)
(143,48)
(2Ü9, 8)
(290, 36)
(467, 63)

••{377,119)

(.340,173)
(169,254)

. 5

Figure 1. - A Kalmanson point set.
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For x, y G M2 and A G R , dénote by h(x, y, A) = {p G R2\d(x, p) -
d(y,p) — ^ } t n e s e t °f points p G R which lie on one (uniquely
determined) branch of the hyperbola with focal points at x and y and
by H (x} y, A) = {p G R2 \d (x, p) —d (y, p) > A} the set of points p G R2

in the infinité région bounded by h (x, y, A) that does not contain the focal
point x. Finally, define Af = d(vk-i, v%) - d(vk, vt) for 2 < k < n.

THEOREM 3.1: A /?omf séquence P = (v i , . . . , vn) ^ # Demidenko point
séquence if and only if for each, 4 < p < n, the point vp lies within the région

where Ak = max{Af \i = 1 , . . . , k - 2}.

Proof: The proof is done by induction on p > 4. For p — 4,
condition (1) must be satisfied, z'.e. ̂ 4 must be located such that the relation
d(v2j vi) + d(^3, ̂ 4) < d(^2, ̂ 4) + d(vi, ^3) holds. This inequality is
equivalent to 4̂ G H (^2, f3, A3) with A3 = d(t;2, ^1) — d(^2, ̂ i)-

Next, assume that the statement is true up to p — 1 and that the
point séquence (i?i,..., v^-i) is a Demidenko point séquence. Then we
only have to deal with those inequalities where point vp is involved. By
Observation 2.4, it is sufficient to show that condition (4) is fulfilled, Le.
that d(vjy v%) — d(vj+i, vi) < d(vj, vp) — d(t/y+i, vv) for ail i and j with
l<i<j + l<p-lis equivalent to vp G Hp. Let k = j + 1. Then
d(vk-\, Vi) - d(vk, Vi) < d(vk-i; vp) - d(vk, vp) is equivalent to vp in
H (vfc-i, Vfc, Af). Since Hp is the intersection of ail H (i>fc_i, Ufe, Af) for
fc = 3 , . . . , p - 1 and i — 1 , . . . , k - 2, the theorem follows. •

In the geometrie interprétation, conditions (1) and (2) both correspond to
hyperbolas. Taking into account the characterization of K in Proposition 2.5,
Kalmanson point séquences may be characterized in analogy to the above
theorem.

THEOREM 3.2: A point séquence P = (vi,..., vn) is a Kalmanson point
séquence if and only if it is a Demidenko point séquence and if each point
vp G P, p > 4, belonfs to the région

vol. 31, n° 4, 1997
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lu
12

13
14

15

1
2
3
4

5
6
7
8

(-22.0,4.4) ;
(-20.0, 0.0)
(-18,0, -3.4)
(-15.0,-7.5)
(-10.0,-10.0)
( -5.0, -7.5)
(-2.0,-3.4)
( 0.0, 0.0)

9
10
II
12
Û
14

•15

( 2,0
( 5.0,

( 10.0,
( 15.0
( 18.0
( 20.0
( 22.0

3.4)
7.5)
L(J.O)

, 7.5)
,3 .4)
,0.0)
-4.4)

Figure 2. - A Demindenko point set.

Figure 1 gives an illustration for Kalmanson point séquences. Note the
depicted point set is "almost convex" and that the numbering gollows the
"almost convex huil". AU Kalmanson point sets that we constructed in our
computation experiments had a similar shape. Figure 2 depicts a Demidenko
point séquence. The optimum TSP tour for this point set is (1, 2, 3, 4, 5,
6, 7, 8, 15, 14, 13, 12, 11, 10, 9).

A point set P is called degenerate if ail points in P lie on a common
line and non-degénérale otherwise. A point set P is called convex if each of
its points lies on the boundary of the convex hulL A séquence of points is
called cyclically ordered, if its points form a convex set and if the numbering
corresponds to the clockwise or counterclockwise order along the convex
huil. In the case of a degenerated set, a cyclic ordering is one of the two
orderings along the line.

OBSERVATION 3.3: Assume that the points vi, V2, v% and v$ (in this order)
form a non-degenerate convex quadrangle. Then

(i) d{vi, vz) 4- d(v2, v±) > d(v\, V2) + d(^3, ^4) ond d{v\, v$) +
d (^2, ^4) > d (v2y v$) + d (i?i, ^4) fi.e. the total length ofthe diagonals
is greater thon the total length of two opposite sides).

(ii) Up to cyclic shifts, (ui, ^2, ^3, v^} and {̂ 4, ^3, t?2, ^1} are the only
permutations that yield Kalmanson séquences, M.

The following proposition is an easy conséquence of Observation 3.3(i)
above.

PROPOSITION 3.4: (Kalmanson [7], folklore). If P = {v\,...,vn) Q R2

is a non-degenerate, convex, cyclically ordered séquence of points, then its
distance matrix is a Kalmanson matrix. Moreover, up to cyclic shifts, this
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and its reverse permutation are the only orderings for the points in P that
yield Kalmanson séquences. M

In case the Euclidean coordinates of all n points of a convex set are
explicitly given, a cyclic ordering (and thus a numbering that makes the point
set a Kalmanson séquence) can be found in O(nlogn) time by applying
a standard convex huil algorithm (see e.g. Preparata and Shamos [10]). In
case the coordinates of the points are not given explicitly, but only implicitly
via the distance matrix, numerical and computational difficulties arise: In
order to compute the exact coordinates from the distances, computations
with irrational numbers are to be performed. This will lead to rounding
errors and to numerical instabilities. Moreover, the computational Standard
models (Turing machine, random access machine) cannot cope with irrational
numbers. For these reasons, all algorithms in this paper will be designed
in such a way that they work directly with the distance matrix and without
intermediate computation of Euclidean coordinates.

LEMMA 3.5: For the Euclidean distance matrix of a convex point set P, the
index séquence of a cyclic ordering of the points in P can be computed in
O (n logn) time without intermediate computation of Euclidean coordinates.

Proof: The cyclic ordering is easy to find if one has two adjacent points
x and y on the convex huil. One can check that d(x, v) — d(y, v) must not
decrease as we visit the points v by walking on the huil from x to y (the
différence may remain constant for some time, for points in P on the line
through x and y, but else it increases). Therefore, the correct ordering can be
found by sorting. In order to find x and y, we start with two arbitrary points x
and z and select y G P\{a;} so that d(#, y) — d(z^ y) becomes minimum. M

LEMMA 3.6: If all points o f a Euclidean point set P lie on a common line,
then the distance matrix of P is a permuted Demidenko, Kalmanson and
Supnick matrix.

Proof: Verify that if the points are sorted along the line, then the resulting
distance matrix fulfills all conditions (1), (2), and (3). •

4. PERMUTED EUCLIDEAN KALMANSON MATRICES

This section deals with the problem of recognizing permuted Euclidean
Kalmanson matrices. For our purposes, the most important case of Kalmanson
point séquences consists of two points v\ and vn and n — 2 points lying

vol. 31, n° 4, 1997
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on some hyperbola branch h(vi, vn. A). The following two lemmas deal
with this case.

LEMMA 4.1: Let P — (v\, vi, . . . , % ) t e û Kalmanson séquence for which
ail points, vt, 2 < i < n — 1, lie on h(v\^ vn, A). If A > 0, tóerc the points
in P\{vi} form a convex set and if A < 0, tóe points in P\{vn} form a
convex set.

Proof: We only deal with A > 0, since the other case is symmetrie. Hence,
let A > 0 and suppose that P\{vi} is not a convex set. Let Vi contain
those points of P which lie above or on the line L through v\ and vn, and
let V2 contain those points below L. Since P\{^i} is not convex, Vi ^ 0.
Let va G Vi and v^ G V2 be the points at minimum distance to L. The line
through va and v^ crosses the line segment Connecting v\ to vn (otherwise
P\{vi} would be convex). This yields that v\, va, vn and v^ (in this order)
form a convex quadrangle and contradict Observation 3.3 (ii). •

LEMMA 4.2: Let P = {v\, V2, • • •, vn} be a point set for which ail points vu
2 < i < n — 1, lie on h (i?i, vn: A). Then there exist at most two Kalmanson
permutations for P that have v\ as first point and vn as last point. These two
permutations can be computed in O (n log n) time.

Proof: Lemma 4.1 yields that in case a Kalmanson permutation with the
stated properties exists, then {t>2,..., vn-i} forms a convex set together
with, say, point v\. By Proposition 3.4, the only orderings that turn a convex
set into a Kalmanson séquence, are the clockwise and counterclockwise
orderings along the convex huil and cyclic shifts of these permutations.
Since v\ is the first point in the séquence, the cyclical ordering is anchored
at vi and thus fixed up to orientation. Lemma 3.5 yields the time bound. •

Next, a polynomial time récognition algorithm for permuted Euclidean
Kalmanson matrices will be designed in two phases. In the first phase, we
investigate the special case where the index p of the first point and the index
q of the last point in the Kalmanson permutation are a priori known. The
second phase treats the gênerai problem without any restrictions.

LEMMA 4.3: Let C be the Euclidean distance matrix of some planar point
set P = {i>i,..., vn} and let vp and vq be two points in P. Then it can be
decided in O(n2) time whether there is a Kalmanson permutation that has
vp as first point and vq as last point.

Recherche opérationnelle/Opérations Research
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Proof: The algorithm is mainly based on the above Lemmata 4.1 and 4.2,
and it uses the fact that every cyclic shift of a Kalmanson séquence again is
a Kalmanson séquence {cf. Observation 2.2). The algorithm consists of the
following five Steps (A1)-(A5).

(Al) Compute A [v) — d(vp, v) — d{vQi v) for all points v in P\{vp> vq},
and soit them by increasing A (v) values. By grouping points with
identical A-values together, a partition of the set into m < n — 2
subsets Pi obtained, 1 < i < m, such that all points in Pi have the
same A (v) value A{ and A?; < A*+i for 1 < i < m - 1.

Since vp and vq are the first and the last point in the Kalmanson point
séquence, d(vp, v) — d(vq. v) < d{vp, w) — d{vqi w) must hold for all
points v preceding point w just to fulfill condition (1). Hence, each set P{
must précède set F?+i in a Kalmanson séquence, and the set of potentially
feasible permutations is described by STR ({p}, 0^1 , • • •, O F̂m, {q})

(A2) For every set Pt with s = \Pt\ > 1, 1 < i < m do: if Ai < 0, construct
a cyclic ordering a[ of the points Pi U {vp}, otherwise construct a
cyclic ordering a\ of the points Pi U {vq}. This yields a permutation
a\ = (p, xi,..., x$) or a • = ( i i , . . . , a ; 5 , q) of the indices of the
points in Pi. Set a" = (x i , . . . , xs)-

If m — 1, compute two permutations according to Lemma 4.2. Check
whether one of them indeed yields a Kalmanson séquence. Stop.

Note that every set Pi is located on the branch of a hyperbola. Lemma 4.1
yields that for every i, P% U {vp} or P% U {vq} is a convex set (depending on
the sign of A?;. Similarly as in Lemma 4.2 this implies that for every such
convex set the only orderings that turn the set into a Kalmanson séquence, are
the clockwise and counterclockwise orderings along the convex huil. These
orderings are computed (up to orientation) in Step (A.2), and it remains to
détermine the right orientation for every ordering.

(A3) For every permutation <r" = (xi,..., x$) of a set Pi with \P%\ = s > 1
do: compute the value \Ê  = d{vP7 vXl) — d(vPi vXa).

If d(v, vXl) - d(v, vXa) = *2- for all v G P\PÛ then find two
permutations for P\Pi U {vXl, vXs} as in Lemma 4.2. In both
permutations, replace the séquence x\, xs by er" (respectively, x$,
x\ by (cr-')~). Check whether one of them indeed yields a Kalmanson
séquence and whether it (or one of its cyclic shifts) has vp and vq as
first and last point. Stop.

vol. 31, n° 4, 1997



354 v. G. DEÏNEKO et al

Consider the branch h(vXl, vXs} \&i). It contains vp by définition and it
is not hard to see that it also contains vq. In case this branch also covers
all other points in P\Pi. Lemma 4.1 applies to the set P\Pi U {vXl, vXs}-
We know that in any feasible Kalmanson séquence, Pi is a contiguous
subsequence and hence we may replace the two indices x\ and xs by an
appropriate cyclic ordering of Pi.

(A4) Otherwise, there exists some point v with d(v> vXl) — d(v, vXs) ^ \J/2.
If v G Pi U' . . . U'Pi-i and d(v, vXl) — d(u, vXs) < ** or if
v 6 P?+i U . . . U Pm and d(v, vXl) — d(v, vXs) > ^i then x\ -< xs in
ai and otherwise xs -< x\ in a%. Set ai = a*l or ai = (af )~, depending
on the relative placement of x\ and xs.

(A5) For every P% of cardinality one, Pi = {vz}, define a% — (z). Compute
a by glueing together p, a i , . . . , am, q. Test if Ca G K. Stop.

If the algorithm branches into (A4), then there exists some points
v $ h(vXl, vXs) ^i). Assume without loss of generality that v e Pi U
. . . U Pi-i and that d(v> vXl) — d(v, vXs) < tyt (ail other cases are
symmetrie). The problem boils down to deciding whether the ordering
(vp, v, vXlJ vXs, vq) or whether (vp, v, vXs, vXl, vq) is the correct ordering.
Since d(v, vXl) - d(v, vXs) < ^i = d(vp, vXl) - d(vp, vXs), the second
ordering contradicts condition (2). Thus, it is infeasible and vXl must précède
vXe, Exactly this check is performed in Step (A4).

Finally, in Step (A5) the orderings for the sets Pi are composed to a
potential solution permutation a. Since a was computed just by investigating
necessary conditions, we must verify in the end whether it indeed yields
a Kalmanson séquence.

The correetness of the algorithm is clear by the above arguments, and it
remains to prove the claimed time complexity. The sorting and grouping in
Step (Al) is done in O (nlogn) time. Computing the orderings along the
convex hulls of ail m sets Pi in Step (A2) is done in overall time O (n log n)
by applying the algorithm described in Lemma 3.5. The case m = 1 is
handled according to Lemma 4.2 in O (nlogn) time. Steps (A3) and (A4)-
together cos at most O(n) time per set P% and thus are performed in O(n2)
time. By Observation 2.6, testing permutation a in Step (A5) takes O(n2)
time. Summarizing, this yields an overall time complexity of O(n2) and the
proof of Lemma 4.3 is complete. •

THEOREM 4.4: For the n x n distance matrix C of a Euclidean point set P,
it can be decided in O(n2) time whether C is a permuted Kalmanson matrix.
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Proof: Applying the aigorithm in Lemma 4.3 to each of the O(n2) pairs of
indices (p,q) yields a naive O(n4) time aigorithm for recognizing permuted
Euclidean Kalmanson matrices. To improve on this, we generate a small
(constant size) set S of candidate pairs with the following property: in case
C is a permuted Euclidean Kalmanson matrix, then there exists a Kalmanson
séquence of P in which at least one of the pairs in S is adjacent. Then we
call the aigorithm designed in Lemma 4.3 for every index pair {p, q) e S.
By the définition of <S, the procedure will succeed for at least one pair and
yield a permutation that transforms C into a Kalmanson matrix.

Hence, it remains to explain how to generate the constant size set S in at
most O(n2) time: choose two arbitrary indices i and j and compute the set
A4 (i, j).If \A4 (i, j)\ < 2, then let S contain all pairs over A4 (z, j) U {i}.
If \M (i, j)\ > 3, observe that all points with index in AA(i, j) lie on
h (vi, VJ, A) for some appropriate A and thus form a convex set. Compute
the indices k, l and m of three consécutive points on the huil and let S
contain all pairs over {k,l,m}.

By Lemma 2.3, there exists a cyclic shift that makes the points
corresponding to A4 (i, j) U {i} a prefix of some Kalmanson séquence. This
justifies the définition of S in case \M (i, j)\ < .2 holds. If \M (i, j)\ > 3
holds, then the ordering of this convex set within a Kalmanson séquence
must follow the convex huil (cf. Observation 3.4) and thus is fixed up to
orientation and up to cyclic shifts. By Lemma 2.3, there exists a Kalmanson
permutation that has a prefix this convex set with the point vi somewhere
inbetween. Out of three consécutive points on the huil, at most one pair can
be separated by the point v% in the Kalmanson séquence. •

5. PERMUTED EUCLIDEAN DEMIDENKO MATRICES

This section deals with the récognition of permuted Euclidean Demidenko
matrices. Our approach is conceptually similar to the approach for Euclidean
Kalmanson matrices described in the preceding section. The main différence
(and main difficulty) anses from the fact that condition (2) need not be
fulfilled by Demidenko matrices. Hence, less combinatorial structure is
imposed. e.g. Lemmata 4.1 and 4.2 are not necessarily true for Demidenko
point séquences and (worst of all!) cyclic shifts of Demidenko permutations
do not necessarily yield Demidenko permutations.

For an Euclidean point set P two points / i , ƒ2 E P are called a pair
of focal points for P , if there exists a real A such that ail other points
in P \ { / i , ƒ2} lie on fr(/i, ƒ2, A). We will make use of the following
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two observations (where the first observation is elementary and the second
observation is an easy conséquence of the first one).

OBSERVATION 5.1: Two branches of two not-identical hyperbolas intersect
in at most four points. M

OBSERVATION 5.2: A set P ofn > 9 points in the Euclidean plane possesses
at most one pair {/i, ƒ2} of focal points for P. •

The polynomial time récognition algorithm is designed in three phases. In
the first phase, we deal with the special case where (i) the index p of the
first point and the index q of the last point in the Demidenko permutation
are a priori known and where (ii) vp and vq are not a pair of focal points
for the underlying point set P. This forms the main part of this section. The
second phase treats the complementary case where vp and vq are a pair of
focal points for P. Finally, in the third phase the gênerai problem without
any restrictions is solved.

LEMMA 5.3: Let C be the Euclidean distance matrix of some planar point
set P — {v\,..., vn}, let vp and vq be two points in P that are not a pair of
focal points for P, Then it can be decided in O(n2) time whether there is a
Demidenko permutation that has vp as first point and vq as last point.

Proof: We will call a Demidenko permutation that has vp as first point
and vq as last point an appropriate Demidenko permutation. The algorithm
consists of three STEPS (Bl), (B2), and (B3). Recall that Step (Al) in the
preceding section only exploited the Demidenko condition (1). Hence, we
may start the same way and have (BI) identical to (Al).

(Bl) Compute A (v) = d(vp. v) — d(vq, v) for ail points v in P\{vp. vq},
and sort them by increasing A (v) values. By grouping points with
identical A-values together, a partition of the set into m < n - 2
subsets Pi is obtained, 1 < i < m, such that ail points in P% have the
same A (v) value A2; and At < A / + 1 for 1 < i < m - 1.

Again in any appropriate Demidenko permutation, set Pi must précède
set Pi+i. Hence ail appropriate Demidenko permutations are contained in
STR,! = STR ({p}, < ) f i , . . . , §Pmi {<?})• Moreover, subset Pi is situated on
the hyperbola branch h (vPl vq^ Ai) with A; = A (v) for v £ Pi. Note that
m > 2, since vp and vq are not focal points for P. Consequently, Pi 7̂  Pm.

Next, select two arbitrary points vr G Pi and vs G Pm • In any appropriate
Demidenko permutation, point vr précèdes ail points in P2 U.. . UPM U {vq}-
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Analogously to Step (BI), sort the différences d(v, vr) — d(v, vq) for
v G \J"=2Pt increasingly and obtain another partition R\,...,R^ by
grouping points with identical values together. Symmetrically, point vs

comes after all points in {vp} U Pi U . . . U P m - i . Sorting the différences
d(v, Vp) — d{vy vs) increasingly for all v G [j^î1 Pi results in a third
partition S i , . . . , Su of IJ"=T P%- The way we derived the three partitions
implies that any appropriate Demidenko is contained in

STRl n STR ({P}, OPu ORu • • -, OR^ {?})

These explanations clarify and justify the next Step (B2).

(B2) Select vr G Pi and v$ G P m . Compute A1 (v) = d(v, vT) - d(v, vq)
for all points v in (J"l2 Pi and construct the partition i ? i , . . . , RfJj

by sorting and grouping the points according to their A1-values. Set
STR2 = S T R ( M , 0Pu0Ri,...,0Rtl, {g}). Compute A1 (v) =
d(v, vv) — d(v: vs) for all points v in U^1 Pi and construct the
partition S i , . . ., Sv by sorting and grouping the points according to
their A2-values. Set STR 3 = S T R ({p}> <>A, O^ i , . . . , 0S„, {^})-

Compute STR = SxRi n STR2 n STR3 . In case SJR is empty, stop with
the answer "No APPROPRIATE PERMUTATION EXISTS". Otherwise, there is
a partition T i , . . . , T«, of P with 7\ - {vp}, TK = {vq}, and \Tt\ < 4
for^all 2 < i < n - 1 such that S T R = S T R «>TI , . . . , 0TK).

Intersecting STR I S STR2
 a n^ STR3 is done according to Proposition 2.1

(this proposition also guarantees the existence of stripes Tz). Since the points
of every Ti are intersection points of at least two non-identical hyperbola
branches (the hyperbolas habe distinct focal points), Observation 5.1 yields
\Tj\ < 4 for ail 1 < j < K. Hence, ail that remains to do is to détermine
the internai orderings in every set T*. Recall that by condition (5) for two
neighboring points pj and pj+i in a Demidenko séquence

must holds. Conversely, if (8) for ail neighboring points pj and pj+i with
2 < ] < n — 2 than this ordering indeed is a Demidenko ordering.

Now consider some fixed permutation n of the éléments of some set T%

with \Ti\ > 2. We test for every pair of neighboring indices x and y in
this permutation (where x comes before y) whether they fulfill the inequality
corresponding to (8) as follows: let Q\ contain ail numbers in T\ U. . .
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together with ail numbers in Ti that précède x and y in n (if any exist). Let
Q2 contain ail numbers in Tj+i U . . . U TK together with ail numbers in T%

that suceeed x and y in TT. The necessary condition to hold is

Cxt ~ %£ƒ•

The permutation TT is called a nice permutation for Ti if ail of its pairs
of neighboring indices pass this test. For sets Ti with |TJ| = 1, the unique
possible (trivial) permutation is nice by définition.

A similar test is performed for every index x in TJ;_i and every index y
in Ti (with Qt = (Tt U . . . U 3ï_i)\{x}) and Q2 = (Ti U . . . U Tlc)\{y}).
In cases the indices x and y pass tMs test, they are called nicely adjacent.

(B3) Construct a directed auxiliary graph G = (Y, E): for any nice
permutation for any set Ti with \Ti\ > 2, there is a corresponding
vertex in V. If -K\ is nice for TUi, 7T2 is nice for Ti and if the last
element in n\ is nicely adjacent to the first element in TT2, then there is
an edge in E going from the vertex corresponding to iri to the vertex
corresponding to TT̂ .

Test whether in G there is a directed path going from the (unique)
vertex corresponding to T\ to the (unique)vertex corresponding to TK.
G is a permuted Demidenko matrix if an only if such a path exists.
In case the path exists, a solution permutation can be computed by
concatenating ail nice permutations along this path.

It is easy to see that the existence of appropriate Demidenko is equivalent
to the existence of a Connecting path in the auxiliary graph G: in G there are
only edges going from permutations corresponding to Ti-\ to permutations
corresponding to T%. Because of this leveled structure, any path Connecting
Ti to TK in G must visit exactly one nice permutation for every Tj. Hence,
it spans the whole set P. By the définition of "nice" and "nicely adjacent",
every pair of adjacent indices along this path fulfills condition (8) and
hence, by Proposition 2.5, the corresponding permutation is a Demidenko
permutation. On the other hand any Demidenko permutation trivially gives
rise to a path Connecting Ti to TK.

It remains to analyze the time complexity of the above algorithm. The
sorting in Step (Bl) costs O(nlogn) time, the grouping opérations are
done in O(n) time, Analogously, Computing STR2 and STR3 in (B2) costs
O (nlogn) time. According to Proposition 2.1, intersecting the three sets of
permutations is performed in linear time. The auxiliary graph in Step (B3)
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has at most 24AC vertices and it is easy to verify that the number of edges is
also O (ft). Testing whether a permutation is nice for some T{ and whether
two indices are nicely adjacent amounts to Computing the minimum and
maximum of two sets with O(n) éléments according to (8). Hence, G can
be constructed in O (UK) time. Testing for the existence of a Connecting
path is solved e.g. by Depth-First-Search in time linear in the number of
edges and vertices in a graph. Hence, O(n) time is sufficient for this. Since
ft < n, the overall time complexity is 0(n2) . This complètes the proof of
Lemma 5.3. •

LEMMA 5.4; Let C be the Eucïïdean distance matrix of some planar point
set P = {vi , . . . . vn}, let v2) and vq be a pair of focal points for P. Then
it can be decided in O(n?) time whether there is a Demidenko permutation
that has vp as first point and vq as last point.

Proof: There are n — 2 candidates for the second point px in a Demidenko
permutation. For a fixed candidate point pXi ail appropriate Demidenko
permutations are in STR ({p}, {̂ }> A{P> x-> #}? {<?})• Hence, we are in
a situation analogous to that one after Step (Bl) in the algorithm in the
preceding Lemma 5.3 (Le. m > 2 holds and Pi / Pm\ Performing Steps
(B2) and (B3) in O(n2) time per candidate results in O(n3) overall time
as claimed above. •

THEOREM 5.5: For the distance matrix C of some Euclidean point set, it
can be decided in O(n4) time whether C is a permuted Demidenko matrix.

Proof: For n < 8 check all possible permutations of C in constant time.
For n > 9, test for every pair vp, vq G P whether there is an appropriate
Demidenko permutation with vp as first point and vq as last point. By
Lemmata 5.3 and 5.4, this takes O(n2) time for every non-focal pair of
points and O(n3) for focal pairs of points. Since by Observation 5.2, there
is at most one pair of focal points for P the claimed overall time complexity
O(n4) follows. •

6. PERMUTED EUCLIDEAN SUPNIK MATRICES

In this section, it will be shown that the combinatorial structure of Supnick
point sets is rather primitive: in case a Supnick set contains n > 9 points,
all these points must lie on a common straight line. Hence, Supnick point
sets are trivial to recognize. This resuit was also mentioned without proof
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in a paper by Quintas and Supnick [11] in 1965. The proof combines the
foliowing two propositions.

PROPOSITION 6.1: Any non-degenerate point set P in the Euclidean plane
with \P\ > 9 contains a non-degenerate subset P* such that (i) \P*\ = 5
and (ii) P* is a convex set. •

PROPOSITION 6.2: Let C be a 5 x 5 Supnick matrix. Then the our
(1, 3, 5, 4, 2) yields a shortest travelling salesman tour. •

A proof for Proposition 6.1 can be found in the book by Lovâsz [9]
(solution to problem 15.31). Proposition 6.2(b) follows from Supnick's resuit
[12] as described in the introduction section.

LEMMA 6.3: Let P be a Supnick point set with \P\ > 9. Then ail points
in P lie on a cornmon Une.

Proof: Suppose the contrary and let (vi,...,vn) be a numbering of
P such that the corresponding distance matrix is a Supnick matrix. P
fulfills the conditions of Proposition 6.1 and hence contains a convex
non-degenerate subsets P* on five points, without loss of generality
P* = (i?i, V2) V3, Î>4, v§). By Proposition 6.2, the induced ordering
(vi, V3, v§, V4, V2) of the points in P* yields a shortest tour and obviouly,
this tour must follow the convex huil. This in turn implies that the points
v$, V4, f2, ^1 (in this order) form a convex quadrangle and also fulfill the
Supnick condition d(vi, V4) + d(v2, ^5) < d(vi, v$) + d(v2, V4). This is
a contradiction to Observation 3.3(i). •

THEOREM 6.4: For the distance matrix C of some Euclidean point set, it
can be decided in O(n2) time whether C is a permuted Supnick matrix.

Proof: For n < 8, check all possible permutations whether they yield a
Supnick matrix. For n > 9, check whether C is the distance matrix of a
point set on a line and apply Lemma 3.6. •

7. CONCLUSION AND OPEN PROBLEMS

In this paper we have shown how to recognize in polynomial time
Euclidean point sets whose distance matrices fulfill the Demidenko,
Kalmanson, or Supnick condition for an appropriate numbering of the points.
The applied methods heavily relied on geometrie features of the problems
and strongly exploited geometrie properties like convexity.
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Several related questions remain open: for which other "nice" classes of
matrices is it polynomial time decidable whether the distance matrix of some
given Euclidean point set belongs to this class? One potential candidate for
such a nice class are the symmetrie Van der Veen matrices [13] defined by

Cij + Cki < ca + Cjk for 1 < i < j < k < l < n.

There is a geometrie characterization of Euclidean Van der Veen point
séquences via hyperbolas analogous to the characterization in Theorems 3.1
and 3.2 for Demidenko and Kalmanson point séquences. However, we did
not succeed in finding a polynomial time récognition algorithm for Van der
Veen point sets.

Another problem consists in deriving polynomial time algorithms for
recognizing arbitrary permuted Demidenko, Kalmanson, and Supnick
matrices (that do not necessarily result from Euclidean point sets). Without
the geometrie structures, such récognition problems clearly become much
harder. A first step towards a solution was taken by Deïneko, Rudolf and
Woeginger [2] who showed how to recognize permuted n x n Supnick
matrices in O (n2 log n) time. Note that compared to the geometrie case, this
running time is a O(nlogn) factor slower.
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