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THREE EASY SPECIAL CASES OF THE EUCLIDEAN
TRAVELLING SALESMAN PROBLEM (*)

by V. G. Denvexo (1) (?), J. A. van der Veen (%),
R. Rupore (%) and G. J. WOEGINQER Q)

Communicated by Philippe CHRETIENNE

Abstract. — It is known that in case the distance matrix in the Travelling Salesman Problem (TSP)
fulfills certain combinatorial conditions (e.g. the Demidenko conditions, the Kalmanson conditions
or the Supnick conditions) then the TSP is solvable in polynomial time. This paper deals with the
problem of recognizing Euclidean instances of the TSP for which there is a renumbering of the
cities such that the corresponding renumbered distance matrix fulfills the Demidenko (Kalmanson,
Supnick) conditions. We provide polynomial time recognition algorithms for all three cases.

Keywords: Travelling salesman problem, Kalmanson condition, Demidenko condition, Supnick
condition, Combinatorial optimization, Geometry, Polynomial algorithms.

Résumé. — On sait que dans le cas ou la matrice des distances du probléme de voyageur
de commerce (TSP) posséde certaines propriétés combinatoires (par exemple les conditions de
Demidenko, les conditions de Kalmanson ou les conditions de Supnik), alors le probleme est
polynomial. Cet article traite du probleme de la reconnaissance d’instances euclidiennes de TSP
pour lesquelles il existe un renumérotage des villes tel que la nouvelle matrice des distances
satisfasse les conditions de Demidenko (Kalmanson, Supnick). Un algorithme polynomial est fourni
pour chacun des trois cas.

Mots clés : Probléme du voyageur de commerce ; conditions de Kalmanson, Demidenko, Supnick ;
optimisation combinatoire ; géométrie ; algorithmes polynomiaux.

1. INTRODUCTION

The travelling salesman problem (RSP) is defined as follows. Given an
n X n distance matrix C = (c;;) find a permutation 7 € Sy, that minimizes
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344 V. G. DEINEKO et al.

the sum S0 ¢, (i) 7 (i+1) T Cx (n) r (1) (the salesman must visit the cities 1
to n in arbitrary order and wants to minimize the total travel length). This
problem is one of the fundamental problems in combinatorial optimization
and known to be NP hard. For more information, the reader is referred to
the book by Lawler, Lenstra, Rinnooy Kan and Shmoys [8].

Several special cases of the TSP are solvable in polynomial time, due
to special combinatorial structures in the distance matrix. A large class of
such easy special cases is related to the concept of pyramidal tours, i.e.

permutations © € S, with # = (1, i1, 42,..., %, 0, j1,..., Jn—r—2) Where
11 < tg < ... < 4 and j1 > ... > jp—_r—2 hold (for permutations, we
use the notation 7 = (x1, 3,..., z,) for “n (i) = z; for 1 < i < n”).

Although the number of pyramidal tours on n cities is exponential in n, a
minimum cost pyramidal tour can be determined in O(nz) time by a dynamic
programming approach (cf. Gilmore, Lawler and Shmoys [5]). For several
classes of specially structured matrices it is known that these matrices always
possess an optimal TSP tour which is pyramidal. Among these classes are
the class D of Demidenko matrices, the class IK of Kalmanson matrices
and the class § of Supnick matrices. A symmetric n X n matrix C is a
Demidenko matrix (C € D) if

cij + e < cik + ¢y for1§i<‘j<k<l§n. (1

A symmetric matrix C is a Kalmanson matric (C € [K), if it fulfills condition
(1) and additionally

citcp <ciptcey forl<i<k<i<n. 2)

A symmetric n X n matrix C' is a Supnik matrix (C € ) if

Cir+cjs Jcis+ejr forl<i<ji<n, 1<r<s<mn, 3)
{i, j}n{r, s} =0

In a famous paper in 1976, Demidenko [3] proved that for the TSP with
Demindenko distance matrices there always exists an optimal. tour . that is
pyramidal. Consequently, the TSP with Demidenko distance matrices is
efficiently solvable. Since KK C D, this result immediately carries over to
Kalmanson matrices. However, here an even stronger statement holds: For
symmetric Kalmanson distance matrices, the (pyramidal) identity permutation

Recherche opérationnelle/Operations Research



THREE EASY SPECIAL CASES OF THE EUCLIDEAN TRAVELLING SALESMAN PROBLEM 345

(1, 2, 3,..., n) constitutes a shortest TSP tour (¢f. Kalmanson [7]). Finally,
for Supnick matrices the pyramidal permutation (1, 3, 5, 7,..., 8, 6, 4, 2),
i.e. first the odd cities in increasing order and then the even cities in
decreasing order, yields an optimal tour (c¢f. Supnick [12]).

Another important special case of the TSP is the Euclidean TSP: here
the cities are points in the two-dimensional plane and their distances are
measured according to the Euclidean metric. It is easy to see that in this
case, the shortest TSP tour does not intersect itself (¢f. Flood [4]) and hence,
geometry makes the problem somewhat easier. Nevertheless, this special case
is still NP-hard (see e.g. Papadimitriou [6) or chapter 3 in the TSP book [8]).

The subject of this paper is to identify easy instances of the Euclidean
TSP based on the concept of Demidenko (Kalmanson, Supnick) matrices:
trivially, the length of the optimum TSP tour does not depend on the original
numbering of the cities. However for some of the numberings, the distance
matrix may fulfill the Demidenko (Kalmanson, Supnick) conditions whereas
for other numberings it does not. Hence, the problem arises of finding
numberings of the cities such that the resulting matrix fulfills the Demidenko
(Kalmanson, Supnick) conditions. The corresponding algorithmic problem is
called “recognition of permuted Euclidean Demidenko (Kalmanson, Supnick)
matrices”. In this paper, we will derive the following results.

(a) Permuted n x n Euclidean Demidenko matrices can be recognized in
O(n?) time.

(b) Permuted n x n Euclidean Kalmanson matrices can be recognized in
O(n?) time.

(c) Permuted n x n Euclidean Supnick matrices are trivial to recognize:
with a small number of exceptions only point sets in one-dimensional
subspaces have Supnick distance matrices.

Our methods strongly exploit geometric structures in the problems like
convex subsets and orderings along convex hulls, points lying on the branch
of certain hyperbolas, intersection points of certain related hyperbolas and
so on.

Organization of the paper. Sections 2 and 3 summarize elementary
results and definitions for Kalmanson and Deminko matrices: Section 2 deals
with combinatorial preliminaries, Section 3 with geometric preliminaries.
The recognition problem of permuted Euclidean Kalmanson matrices is
treated in Section 4 and permuted Euclidean Demidenko matrices are treated
in Section 5. Section 6 gives a full characterization of Euclidean Supnick
matrices. Finally, Section 7 closes with the discussion.
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346 V. G. DEINEKO et al.

2. COMBINATORIAL PRELIMINARIES AND DEFINITIONS

In this section, several basic definitions for permutations and matrices are
given and elementary properties of Demidenko, Kalmanson and Supnick
matrices are summarized.

For an n xn matric C, denote by I = {1,..., n} the set of rows (columns).
A row 2 precedes a row j in C (i < j for short), if row ¢ occurs before row
7 in C. For two sets K7 and Ky of rows, we write K1 < Kaiff k1 < k2
for all k1 € Ky and ky € K. '

For V = {v1, v2,..., vy} a subset of I, we denote by C[V] the r x r
submatrix of C which is obtained by deleting all rows and columns not
contained in V.

The identity permutation is denoted by ¢, i.e. (i) = ¢ for all 7 € I. For
a permutation ¢, the permutation ¢~ defined by ¢~ (i) = ¢(n —i+ 1) is
called the reverse permutation of ¢. Permutation ¢ is called a cyclic shift or a
rotation if there exists a k € I suchthat ¢ = (k, k+1,...,n, 1,..., k—1).

By Cy we denote the matrix which is obtained from matrix C' by permuting
its rows and columns according to ¢, i.e. Cg(cy (i),6(j))- A permutation ¢
is called a Demidenko (Kalmanson, Supnick) permutation for some matrix
C iff Cy4 is a Demidenko (Kalmanson, Supnick) matrix.

For a partiton X = (Xy,...,X;) of I into z subsets, the set
Str (X1, ..., X3) contains all permutations ¢ that fulfill ¢ (z1) < ¢ (z;) for
all z; € X; and zj € X with 1 <4< j < 2. Str(X1,..., X;) is called
the set of permutations induced by the sequence of stripes Xi,..., Xg.
Readers that are familiar with the concept of PQ-trees (Booth and Lueker
[11) may observe that the set Str (X1,..., Xz) can be represented by a
PQ-tree of height two: the root is a ()-node with z sons. All sons of the root
are P-nodes, where the 7-th son has the elements in X; as children.

PrOPOSITION 2.1: (Booth and Lueker [1]) For two partitions (Xi, ..., Xg)
and (Yl, N Yy) of I, the set Str (Xl, ceey Xa,) N Str (Yl, ey Yy) either
equals STR (Z1, ..., Zz) for an appropriate partition Z = (Z1,. .., Z,) of
I or it is empty. The partition Z can be computed in O (|I|) time. W

OBSERVATION 2.2: Let D € D, K € Kand S € $. Then D.- € D, K.- € K
and S.- € § holds, and for any set J C I, D[J] € B, K[J] € K, and
S [J] € $. Moreover, for any cyclic shift o, K, e K. R
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In other words, reversing a matrix does not destroy the combinatorial
structures we are interested in and cyclically renumbering the rows and
columns transforms Kalmanson matrices into Kalmanson matrices. For two
rows (columns) ¢ and j of C, define

M, g) = {k € I\{i, j}|cik — cjx = 11;1111;{021 — it}

Lemma 2.3: Let C be a symmetric n X n Kalmanson matrix with n > 4. Let
i and j be two rows of C with 1 < j, K = M (3, j) U {i} and K' = I\K.
Then there exists a cyclic shift ¢ such that Cy € K and K < K' in C.

Proof: By definition 7 € K and j € K'. Consider some k € M (i, j).
Then c;j, — ¢j = ¢y — c5y for all I € K\{i} and c;; — cji < ¢y — ¢;; for all
1 € K'\{j}. Let I' = I\{i, j, k}. Distinguish the following three cases on
the relative position of ¢, j and k: (i) K < ¢ < 7. The condition (2) implies
p€ K forall p e I' with k < p < i. (ii) i < k < 5. By condition (1) p € K
for all p € I' with ¢ < p < k. (iii) ¢ < j < k. Since C € K, peror
all p e I" with kK < porp < i.

Summarizing, there exist two elements r and s such that either K =
{ry...;4,...,s} or K' ={s+1,...,7,...,7— 1}. By Observation 2.2
every cyclic shift of C yields again a Kalmanson matrix. Choosing ¢ =
(ry .oy 8,0.,m L ., r=hordp={(r,....,n,1,..., 8 s+1,...,7—1)
completes the. argument. W

Sometimes it is useful to use other, equivalent characterizations of the

specially structured matrices. One such characterization of D was given
in [S]:

OBSERVATION 2.4: ([5]) A symmetric nxn matrix C is a Demidenko matrix iff

cij+cip1,0 < cije1+ci foralll<i<j<j+i<i<n (4)

Below, we use another characterization of D and K which is formulated in
the following proposition.

ProposITION 2.5: A symmetric n. X n matrix C is a Demidenko matrix iff

max {c¢ c < min {¢;;—¢ orall2<j<n-2(5
18155 {l] z]+1} +2<l<{]’l ]+ll} f J 3)
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348 V. G. DEINEKO et al.

A symmetric n X n matrix C is a Kalmanson matrix iff
Ci,jy1+cit1,j <ciy+cirt,j+1 foralll <i<n-2,i4+2<5<n—-1 (6)

Cij+ Civin < entcipr11 forall2<i<n-—2. )

OBSERVATION 2.6: For a symmetric n X n matrix C, it can be decided
in O(n?) time whether C is a Kalmanson matrix (Demidenko matrix,
respectively).

Proof: Characterization (5) for Demidenko matrices and characterization
(6) and (7) for Kalmanson matrices both can be verified in O(n?) time. W

3. GEOMETRIC PRELIMINARIES AND DEFINITIONS

This section deals with planar Euclidean point sets whose distance
matrices are permuted Demidenko, Kalmanson or Supnick matrices. Let
P = (v, v2,..., v, € R? be a sequence of points in the Euclidean plane
and let C' denote its distance matrix defined by ¢;; = d (v;, v;) where d (z, y)
denotes the Euclidean distance between points z and y. If the distance matrix
C fulfills the Demidenko (Kalmanson, Supnick) conditions, it is called a
Euclidean Demidenko (Kalmanson, Supnick) matrix the sequence P is called
a Demidenko (Kalmanson, Supnick) point sequence, and the points in P are
said to form a Demidenko (Kalmanson, Supnick) point set. A permutation
of P that transforms the distance matrix into a Demidenko (Kalmanson,
Supnick) matrix is called a Demidenko (Kalmanson, Supnick) permutation
for P. For any rearranged subsequence P’ of the points in P, we denote by
O P’ the sequence of indices in P,

010 Bl
(13,184)
( 24,157)
( 21,129)
(143, 48)
(209, 8)
(290, 36)
(467, 63) .
{377,119)
(340,173)
(169,254)

®
L J
(o]
-
O WO NDDWDN A WN -

Figure 1. '~ A Kalmanson point set.
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For z, y € R? and A € R, denote by h(z, y, A) = {p € R?|d (z, p) —
d(y, p) = A} the set of points p € R which lie on one (uniquely
determined) branch of the hyperbola with focal points at z and y and
by H (z,y, A) = {p € R*|d (z, p) —d (y, p) > A} the set of points p € R?
in the infinite region bounded by A (z, y, A) that does not contain the focal
point z. Finally, define A = d (vx_1, v:) — d (vy, v;) for 2 < k < n.

THEOREM 3.1: A point sequence P = (v1,..., vy) is a Demidenko point
sequence if and only if for each, 4 < p < n, the point v, lies within the region

p—1

Hp = m H(vk‘—-la Uk, Ak))
k=3

where AF = max{AFli =1,... k- 2}.

Proof: The proof is done by ‘induction on p > 4. For p = 4,
condition (1) must be satisfied, i.e. v4 must be located such that the relation
d(va, v1) + d(v3, v4) < d(v2, va) + d(v1, v3) holds. This inequality is
equivalent to vy € H (vz, v3, A%) with A3 = d (vy, v1) — d (w3, v1).

Next, assume that the statement is true up to p — 1 and that the
point sequence (vi,..., vp—1) is a Demidenko point sequence. Then we
only have to deal with those inequalities where point v, is involved. By
Observation 2.4, it is sufficient to show that condition (4) is fulfilled, i.e.
that d (vj, v;) — d(vj41, vi) < d(vj, vp) — d(vj41, vp) for all 7 and j with
1<t<j+1<p—1isequivalent to v, € H,. Let kK = j + 1. Then
d(vg—1, vi) — d (vg, v;) < d(vg_1, vp) — d(vg, vp) is equivalent to vy, in
H (vg_1, v, AF). Since H,, is the intersection of all H (v_1, v, AKY for
k=3,...,p—1landi=1,..., k — 2, the theorem follows. W

In the geometric interpretation, conditions (1) and (2) both correspond to
hyperbolas. Taking into account the characterization of K in Proposition 2.5,
Kalmanson point sequences may be characterized in analogy to the above
theorem.

THEOREM 3.2: A point sequence P = (vi,..., vy) is a Kalmanson point
sequence if and only if it is a Demidenko point sequence and if each point
vy € P, p > 4, belonfs to the region

p—1k-2

H), = ﬂ ﬂ H (viy1, v, —AFY. &
k=3 i=1

vol. 31, n® 4, 1997
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1 1 (-22.0,44) | 9 (20,3.4)
¢ 12 2 (-20.0,0.0) |10 (5.0,75)
1 0 o3 3 (-18.0,-3.4) | L1 ( 10.0, 10.0)
*y Y * 4 4 (-15.0,-7.5) | 12 ( 15.0,7.5)
*3 % * 15 5 (-10.0,-10.0) | 13 ( 18.0, 3.4)
® 4 % . 6 (-5.0,-7.5) { 14 (20.0,0.0)
* 5% 7 (-2.0,-34) |15 (22.0,-4.4)

8 {0.0,0.0)

Figure 2. - A Demindenko point set.

Figure 1 gives an illustration for Kalmanson point sequences. Note the
depicted point set is “almost convex” and that the numbering gollows the
“almost convex hull”. All Kalmanson point sets that we constructed in our
computation experiments had a similar shape. Figure 2 depicts a Demidenko
point sequence. The optimum TSP tour for this point set is (1, 2, 3, 4, 5,
6, 7, 8, 15, 14, 13, 12, 11, 10, 9).

A point set P is called degenerate if all points in P lie on a common
line and non-degenerate otherwise. A point set P is called convex if each of
its points lies on the boundary of the convex hull. A sequence of points is
called cyclically ordered, if its points form a convex set and if the numbering
corresponds to the clockwise or counterclockwise order along the convex
hull. In the case of a degenerated set, a cyclic ordering is one of the two
orderings along the line.

OBSERVATION 3.3: Assume that the points v1, vy, v3 and v4 (in this order)
form a non-degenerate convex quadrangle. Then

(@) d(vi, v3) + d(v2, va) > d(v1, v2) + d(vs, va) and d(v1, v3) +
d (v2, v4) > d(va, v3) + d(v1, va) (i.e. the total length of the diagonals
is greater than the total length of two opposite sides).

(ii) Up to cyclic shifts, (v1, v2, v3, v4) and (vs, v3, vz, v1) are the only
permutations that yield Kalmanson sequences. M.

The following proposition is an easy consequence of Observation 3.3(i)
above.

ProrosiTioN 3.4: (Kalmanson [71, folklore). If P = (v1,..., vp) C R?
is a non-degenerate, convex, cyclically ordered sequence of points, then its
distance matrix is a Kalmanson matrix. Moreover, up to cyclic shifts, this
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and its reverse permutation are the only orderings for the points in P that
vield Kalmanson sequences. W

In case the Euclidean coordinates of all n points of a convex set are
explicitly given, a cyclic ordering (and thus a numbering that makes the point
set a Kalmanson sequence) can be found in O (nlogn) time by applying
a standard convex hull algorithm (see e.g. Preparata and Shamos [10]). In
case the coordinates of the points are not given explicitly, but only implicitly
via the distance matrix, numerical and computational difficulties arise: In
order to compute the exact coordinates from the distances, computations
with irrational numbers are to be performed. This will lead to rounding
errors and to numerical instabilities. Moreover, the computational standard
models (Turing machine, random access machine) cannot cope with irrational
numbers. For these reasons, all algorithms in this paper will be designed
in such a way that they work directly with the distance matrix and without
intermediate computation of Euclidean coordinates.

LeMMA 3.5: For the Euclidean distance matrix of a convex point set P, the
index sequence of a cyclic ordering of the points in P can be computed in
O (nlogn) time without intermediate computation of Euclidean coordinates.

Proof: The cyclic ordering is easy to find if one has two adjacent points
z and y on the convex hull. One can check that d(z,v) — d(y,v) must not
decrease as we visit the points v by walking on the hull from z to y (the
difference may remain constant for some time, for points in P on the line
through z and y, but else it increases). Therefore, the correct ordering can be
found by sorting. In order to find x and y, we start with two arbitrary points z
and z and select y € P\{z} so that d(z,y) — d(z, y) becomes minimum. M

Lemma 3.6: If all points of a Euclidean point set P lie on a common line,
then the distance matrix of P is a permuted Demidenko, Kalmanson and
Supnick matrix.

Proof: Verify that if the points are sorted along the line, then the resulting
distance matrix fulfills all conditions (1), (2), and (3). M

4. PERMUTED EUCLIDEAN KALMANSON MATRICES

This section deals with the problem of recognizing permuted Euclidean
Kalmanson matrices. For our purposes, the most important case of Kalmanson
point sequences consists of two points v; and v, and n — 2 points lying

vol. 31, n® 4, 1997
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on some hyperbola branch A (v1, vy, A). The following two lemmas deal
with this case.

Lemma 4.1: Let P = (v, v2, ..., Un) be a Kalmanson sequence for which
all points, v;, 2 < i <n —1, lie on h(v1, vn, A). If A > 0, then the points
in P\{v1} form a convex set and if A < 0, the points in P\{v,} form a
convex set.

Proof: We only deal with A > 0, since the other case is symmetric. Hence,
let A > 0 and suppose that P\{vi} is not a convex set. Let V; contain
those points of P which lie above or on the line L through v, and v,, and
let V5 contain those points below L. Since P\{v;} is not convex, Vi # 0.
Let v, € V1 and v, € V3 be the points at minimum distance to L. The line
through v, and v, crosses the line segment connecting v to v, (otherwise
P\{v1} would be convex). This yields that v, vy, v, and v, (in this order)
form a convex quadrangle and contradict Observation 3.3 (ii). W

Lemma 4.2: Let P = {v1, vy, ..., Un} be a point set for which all points v;,
2<i<n—1,lieon h(vi, vy, A). Then there exist at most two Kalmanson
permutations for P that have v as first point and vy, as last point. These two
permutations can be computed in O (nlogn) time.

Proof: Lemma 4.1 yields that in case a Kalmanson permutation with the
stated properties exists, then {vg,..., v,—1} forms a convex set together
with, say, point v1. By Proposition 3.4, the only orderings that turn a convex
set into a Kalmanson sequence, are the clockwise and counterclockwise
orderings along the convex hull and cyclic shifts of these permutations.
Since v; is the first point in the sequence, the cyclical ordering is anchored
at v1 and thus fixed up to orientation. Lemma 3.5 yields the time bound. W

Next, a polynomial time recognition algorithm for permuted Euclidean
Kalmanson matrices will be designed in two phases. In the first phase, we
investigate the special case where the index p of the first point and the index
g of the last point in the Kalmanson permutation are a priori known. The
second phase treats the general problem without any restrictions.

Lemma 4.3: Let C' be the Euclidean distance matrix of some planar point
set P = {v1,..., v,} and let vy and vy be two points in P. Then it can be
decided in O(n?) time whether there is a Kalmanson permutation that has
vp as first point and vy as last point.
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Proof: The algorithm is mainly based on the above Lemmata 4.1 and 4.2,
and it uses the fact that every cyclic shift of a Kalmanson sequence again is
a Kalmanson sequence (¢f. Observation 2.2). The algorithm consists of the
following five Steps (A1)-(AS).

(A1) Compute A (v) = d(vp, v) — d(vg, v) for all points v in P\{vp, vy},
and sort them by increasing A (v) values. By grouping points with
identical A-values together, a partition of the set into m < n — 2
subsets P; obtained, 1 < ¢ < m, such that all points in F; have the
same A (v) value A; and A; < Ay for 1 <4< m —1.

Since v, and v, are the first and the last point in the Kalmanson point
sequence, d(vp, v) — d(vg, v) < d(vp, w) — d(vg, w) must hold for all
points v preceding point w just to fulfill condition (1). Hence, each set I
must precede set F;41 in a Kalmanson sequence, and the set of potentially
feasible permutations is described by Str ({p}, ¢P1,..., OPm, {¢})

(A2) For every set P; with s = |P;| > 1,1 <4 <mdo: if A; <0, construct

" a cyclic ordering o/ of the points P; U {v,}, otherwise construct a

cyclic ordering o) of the points P; U {vg}. This yields a permutation

o = (p,x1,..., xs) or o, = (z1,..., Zs, q) of the indices of the
points in P;. Set o) = (z1,..., Zs).

If m = 1, compute two permutations according to Lemma 4.2. Check
whether one of them indeed yields a Kalmanson sequence. Stop.

Note that every set F; is located on the branch of a hyperbola. Lemma 4.1
yields that for every i, P; U {vp} or P;U{v,} is a convex set (depending on
the sign of A;. Similarly as in Lemma 4.2 this implies that for every such
convex set the only orderings that turn the set into a Kalmanson sequence, are
the clockwise and counterclockwise orderings along the convex hull. These
orderings are computed (up to orientation) in Step (A.2), and it remains to
determine the right orientation for every ordering.

(A3) For every permutation o) = (z1, ..., zs) of aset P; with |P;| =s > 1
do: compute the value U; = d(vp, vy,) — d(vp, Vs, ).

If d(v,vy,) — d(v,ve,) = ¥; for all v € P\PF;, then find two
permutations for P\P, U {v,,, v,} as ‘in Lemma 4.2. In ‘both
permutations, replace the sequence zi, zs by o) (respectively, zs,
z1 by (0))7). Check whether one of them indeed yields a Kalmanson
sequence and whether it (or one of its cyclic shifts) has v, and v, as
first and last point. Stop.
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Consider the branch h (vg,, vy,, ¥;). It contains v, by definition and it
is not hard to see that it also contains v,. In case this branch also covers
all other points in P\P;. Lemma 4.1 applies to the set P\ P; U {v,,, Vg, }-
We know that in any feasible Kalmanson sequence, P; is a contignous
subsequence and hence we may replace the two indices z7 and zs by an
appropriate cyclic ordering of F;.

(A4) Otherwise, there exists some point v with d (v, vy, ) — d (v, ve,) # V5.
" If v e PPU...UP_y and d(v, vy,) — d(v, v;,) < ¥; or if
vE€ Py1U...UP,y, and d (v, vy, ) — d (v, vy,) > ¥, then z1 < x5 in
o; and otherwise =, < z1 in 0;. Set 0; = o) or o; = (0])~, depending

on the relative placement of z1 and x;.

(A5) For every P; of cardinality one, P; = {v.}, define o; = (z). Compute
o by glueing together p, o1,..., om, ¢. Test if C, € K. Stop.

If the algorithm branches into (A4), then there exists some points
v & h(vg,, vz, U;). Assume without loss of generality that v € Py U
... U P, and that d{v, vg,) — d(v, v,) < ¥; (all other cases are
symmetric). The problem boils down to deciding whether the ordering
(vp, v, Vay, Ux,, Uq) OF whether (vp, v, Ve, Vs, , Vq) 1S the correct ordering.
Since d (v, ve,) — d (v, ve,) < V3 = d(vp, Ug,) — d(vp, Ve, ), the second
ordering contradicts condition (2). Thus, it is infeasible and v,, must precede
vy, . Exactly this check is performed in Step (A4).

Finally, in Step (A5) the orderings for the scts P; are composed to a
potential solution permutation ¢. Since o was coimputed just by investigating
necessary conditions, we must verify in the end whether it indeed yields
a Kalmanson sequence. '

The correctness of the algorithm is clear by the above arguments, and it
remains to prove the claimed time complexity. The sorting and grouping in
Step (A1) is done in O (nlogn) time. Computing the orderings along the
convex hulls of all m sets P; in Step (A2) is done in overall time O (nlogn)
by applying the algorithm described in Lemma 3.5. The case m = 1 is
handled according to Lemma 4.2 in O (nlogn) time. Steps (A3) and (A4)-
together cos at most O(n) time per set P, and thus are performed in O(n?)
time. By Observation 2.6, testing permutation o in Step (AS) takes O(n?)
time. Summarizing, this yields an overall time complexity of O(n?) and the
proof of Lemma 4.3 is complete. W

THEOREM 4.4: For the n X n distance matrix C of a Euclidean point set P,
it can be decided in O(n?) time whether C is a permuted Kalmanson matrix.
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Proof: Applying the algorithm in Lemma 4.3 to each of the O(nz) pairs of
indices (p, ¢) yields a naive O(n*) time algorithm for recognizing permuted
Euclidean Kalmanson matrices. To improve on this, we generate a small
(constant size) set S of candidate pairs with the following property: in case
C'is a permuted Euclidean Kalmanson matrix, then there exists a Kalmanson
sequence of P in which at least one of the pairs in § is adjacent. Then we
call the algorithm designed in Lemma 4.3 for every index pair (p, ¢) € S.
By the definition of &, the procedure will succeed for at least one pair and
yield a permutation that transforms C into a Kalmanson matrix.

Hence, it remains to explain how to generate the constant size set S in at
most O(n?) time: choose two arbitrary indices 7 and j and compute the set
M (3, §). If M (3, 7)| < 2, then let S contain all pairs over M (¢, 5) U {i}.
If M (i, )] > 3, observe that all points with index in M (3, j) lie on
h (v;, vy, A) for some appropriate A and thus form a convex set. Compute
the indices k, [ and m of three consecutive points on the hull and let &
contain all pairs over {k,l,m}.

By Lemma 2.3, there exists a cyclic shift that makes the points
corresponding to M (7, ) U {i} a prefix of some Kalmanson sequence. This
justifies the definition of S in case | M (¢, j)| < 2 holds. If |[M (7, 5)] > 3

“ holds, then the ordering of this convex set within a Kalmanson sequence
must follow the convex hull (¢f Observation 3.4) and thus is fixed up to
orientation and up to cyclic shifts. By Lemma 2.3, there exists a Kalmanson
permutation that has a prefix this convex set with the point v; somewhere
inbetween. Out of three consecutive points on the hull, at most one pair can
be separated by the point v; in the Kalmanson sequence. WM

5. PERMUTED EUCLIDEAN DEMIDENKO MATRICES

This section deals with the recognition of permuted Euclidean Demidenko
matrices. Our approach is conceptually similar to the approach for Euclidean
Kalmanson matrices described in the preceding section. The main difference
(and main difficulty) arises from the fact that condition (2) need not be
fulfilled by Demidenko matrices. Hence, less combinatorial structure is
imposed. e.g. Lemmata 4.1 and 4.2 are not necessarily true for Demidenko
point sequences and (worst of all!) cyclic shifts of Demidenko permutations
do not necessarily yield Demidenko permutations.

For an Euclidean point set P two points f1, fo € P are called a pair
of focal points for P, if there exists a real A such that all other points
in P\{f1, fo} lie on h(f1, f2, A). We will make use of the following
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two observations (where the first observation is elementary and the second
observation is an easy consequence of the first one).

OBSERVATION 5.1: Two branches of two not-identical hyperbolas intersect
in at most four points. W

OBSERVATION 5.2: A set P of n > 9 points in the Euclidean plane possesses
at most one pair {f1, f2} of focal points for P. R

The polynomial time recognition algorithm is designed in three phases. In
the first phase, we deal with the special case where (i) the index p of the
first point and the index g of the last point in the Demidenko permutation
are a priori known and where (ii) v, and v, are not a pair of focal points
for the underlying point set P. This forms the main part of this section. The
second phase treats the complementary case where v, and v, are a pair of
focal points for PP. Finally, in the third phase the general problem without
any restrictions is solved.

LemMma 5.3: Let C be the Euclidean distance matrix of some planar point
set P = {v1,..., vn}, let v, and vy be two points in P that are not a pair of
focal points for P. Then it can be decided in O(n?) time whether there is a
Demidenko permutation that has vy, as first point and vy as last point.

Proof: We will call a Demidenko permutation that has v, as first point
and v, as last point an appropriate Demidenko permutation. The algorithm
consists of three STEPS (B1), (B2), and (B3). Recall that Step (A1) in the
preceding section only exploited the Demidenko condition (1). Hence, we
may start the same way and have (B1) identical to (Al).

(B1) Compute A (v) = d (vp, v) — d(vg, v) for all points v in P\{v, vy},
and sort them by increasing A (v) values. By grouping points with
identical A-values together, a partition of the set into m < n — 2
subsets F; is obtained, 1 < ¢ < m, such that all points in P; have the
same A (v) value A; and A; < Ajpq for 1 <7< m—1.

Again in any appropriate Demidenko permutation, set P; must precede
set I’11. Hence all appropriate Demidenko permutations are contained in
Str, = STR ({P}, OP1,..., OPnm, {q}). Moreover, subset P; is situated on
the hyperbola branch h (vp, v¢, A;) with A; = A (v) for v € P;. Note that
m > 2, since vp and v, are not focal points for P. Consequently, P, # Py,.

Next, select two arbitrary points v, € P; and vs € F,;,. In any appropriate
Demidenko permutation, point v, precedes all points in PyU. ..U Py U{v,}.
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Analogously to Step (B1), sort the differences d (v, v,) — d (v, vq) for
v € |Ji=, P; increasingly and obtain another partition Ri,..., R, by
grouping points with identical values together. Symmetrically, point wvg
comes after all points in {v,} U Py U...U P,_1. Sorting the differences

d (v, vp) — d (v, vs) increasingly for all v € | J77' P; results in a third
partition S1,..., S, of U;’;}l P;. The way we derived the three partitions

implies that any appropriate Demidenko is contained in

Str, NSTR ({P}, OP1, OR1,..., ORy, {q})
ﬂ STR ({p}7 OS]: cr ey SV; OP"ITH {q})

These explanations clarify and justify the next Step (B2).

(B2) Select v, € Py and vs € Py,. Compute Al (v) = d (v, v:) — d (v, vq)
for all points v in (J/-, P; and construct the partition Rj,..., R,
by sorting and grouping the points according to their Al-values. Set
STR2 = STRr ({p}, &P, ORy, ..., ORN? {q}) Compute Al (’U) =
d (v, vp) — d (v, vs) for all points v in ;' P; and construct the
partition S1,..., S, by sorting and grouping the points according to
their A%-values. Set Str, = Str ({p}, OP1, $S1,..., Sy, {q}).

Compute STr = STR, N STR, N STR,. In case Str is empty, stop with
the answer “NO APPROPRIATE PERMUTATION EXISTS”. Otherwise, there is
a partition T4, ..., Ty, of P with T1 = {v,}, Tx = {vg}, and |T;| < 4
for all 2 < t < k — 1 such that St = Str (OT1, ..., OTk).
Intersecting STR,, STR, and Stgr, is done according to Proposition 2.1 ‘
(this proposition also guarantees the existence of stripes 73). Since the points
of every T; are intersection points of at least two non-identical hyperbola
branches (the hyperbolas habe distinct focal points), Observation 5.1 yields
|Tj] < 4 for all 1 < j < k. Hence, all that remains to do is to determine
the internal orderings in every set 7;. Recall that by condition (5) for two
neighboring points p; and p;j41 in a Demidenko sequence

yex {ey —cigpab < min {ejn— ¢y (8)
must holds. Conversely, if (8) for all neighboring points p; and pjy1 with
2 < 7 < n — 2 than this ordering indeed is a Demidenko ordering.

Now consider some fixed permutation 7 of the elements of some set T;
with |T;| > 2. We test for every pair of neighboring indices z and y in
this permutation (where x comes before y) whether they fulfill the inequality
corresponding to (8) as follows: let Q; contain all numbers in 73 U...UT;_1
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together with all numbers in 7; that precede z and y in 7 (if any exist). Let
(2 contain all numbers in 7541 U ... U T} together with all numbers in T;
that succeed = and y in 7. The necessary condition to hold is

;?é%g’i{c’“‘” —Cry} < ;géﬁ{cxz —cyi}
The permutation = is called a nice permutation for T; if all of its pairs
of neighboring indices pass this test. For sets 7; with |7;| = 1, the unique
possible (trivial) permutation is nice by definition.
A similar test is performed for every index z in T;_; and every index y
in T (with Q1 = (MU ...UT;-)\{z}) and @2 = (Th U ... U T)\{y})-
In cases the indices z and y pass this test, they are called nicely adjacent.

(B3) Construct a directed auxiliary graph G = (V, E): for any nice
permutation for any set 7; with |T;| > 2, there is a corresponding
vertex in V. If w1 is nice for T;_1, 7o is nice for T; and if the last
element in 7y is nicely adjacent to the first element in 73, then there is
an edge in £ going from the vertex corresponding to 71 to the vertex
corresponding to ms.

Test whether in ( there is a directed path going from the (unique)
vertex corresponding to 77 to the (unique)vertex corresponding to 7.
C is a permuted Demidenko matrix if an only if such a path exists.
In case the path exists, a solution permutation can be computed by
concatenating all nice permutations along this path.

It is easy to see that the existence of appropriate Demidenko is equivalent
to the existence of a connecting path in the auxiliary graph G: in G there are
only edges going from permutations corresponding to 7;_j to permutations
corresponding to ;. Because of this leveled structure, any path connecting
Ty to T, in G must visit exactly one nice permutation for every 7;. Hence,
it spans the whole set P. By the definition of “nice” and “nicely adjacent”,
every pair of adjacent indices along this path fulfills condition (8) and
hence, by Proposition 2.5, the corresponding permutation is a Demidenko
permutation. On the other hand any Demidenko permutation trivially gives
rise to a path connecting 77 to T.

It remains to analyze the time complexity of the above algorithm. The
sorting in Step (B1) costs O(nlogn) time, the grouping operations are
done in O(n) time. Analogously, computing Str, and Str, in (B2) costs
O (nlogn) time. According to Proposition 2.1, intersecting the three sets of
permutations is performed in linear time. The auxiliary graph in Step (B3)
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has at most 24« vertices and it is easy to verify that the number of edges is
also O (k). Testing whether a permutation is nice for some 7; and whether
two indices are nicely adjacent amounts to computing the minimum and
maximum of two sets with O(n) elements according to (8). Hence, G can
be constructed in O (nx) time. Testing for the existence of a connecting
path is solved e.g. by Depth-First-Search in time linear in the number of
edges and vertices in a graph. Hence, O(n) time is sufficient for this. Since
# < m, the overall time complexity is O(n?). This completes the proof of
Lemma 53. W

LemMa 5.4: Let C be the Euclidean distance matrix of some planar point
set P = {v1,..., vn}, let vy and vy be a pair of focal points for P. Then
it can be decided in O(n3) time whether there is a Demidenko permutation
that has v, as first point and v, as last point.

Proof: There are n — 2 candidates for the second point p, in a Demidenko
permutation. For a fixed candidate point p,, all appropriate Demidenko
permutations are in Stgr ({p}, {z}, I\{p, =, ¢}, {¢}). Hence, we are in
a situation analogous to that one after Step (B1) in the algorithm in the
preceding Lemma 5.3 (i.e. m > 2 holds and P; # P,,). Performing Steps
(B2) and (B3) in O(n?) time per candidate results in O(n?) overall time
as claimed above. W

s
THEOREM 5.5: For the distance matrix C' of some Euclidean point set, it
can be decided in O(n*) time whether C is a permuted Demidenko matrix.

Proof: For n < 8 check all possible permutations of C' in constant time.
For n > 9, test for every pair vy, v, € P whether there is an appropriate
Demidenko permutation with v, as first point and v, as last point. By
Lemmata 5.3 and 5.4, this takes O(n?) time for every non-focal pair of
points and O(n3) for focal pairs of points. Since by Observation 5.2, there
is at most one pair of focal points for P the claimed overall time complexity
O(n*) follows. M

6. PERMUTED EUCLIDEAN SUPNIK MATRICES

In this section, it will be shown that the combinatorial structure of Supnick
point sets is rather primitive: in case a Supnick set contains n > 9 points,
all these points must lie on a common straight line. Hence, Supnick point
sets are trivial to recognize. This result was also mentioned without proof
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in a paper by Quintas and Supnick [11] in 1965. The proof combines the
following two propositions.

PrOPOSITION 6.1: Any non-degenerate point set P in the Euclidean plane
with |P| > 9 contains a non-degenerate subset P* such that (i) |P*| = 5
and (ii) P* is a convex set. M

ProrosITION 6.2: Let C be a 5 X 5 Supnick matrix. Then the our
(1, 3, 5, 4, 2) yields a shortest travelling salesman tour. B

A proof for Proposition 6.1 can be found in the book by Lovasz [9]
(solution to problem 15.31). Proposition 6.2(b) follows from Supnick’s result
[12] as described in the introduction section.

Lemma 6.3: Let P be a Supnick point set with |P| > 9. Then all points
in P lie on a common line.

Proof: Suppose the contrary and let (v1,..., v,) be a numbering of
P such that the corresponding distance matrix is a Supnick matrix. P’
fulfills the conditions of Proposition 6.1 and hence contains a convex
non-degenerate subsets P* on five points, without loss of generality
P* = (v, v, v3, v4, vs). By Proposition 6.2, the induced ordering
(v1, vs, vs, va, v2) of the points in P* yields a shortest tour and obviouly,
this tour must follow the convex hull. This in turn implies that the points
vs, U4, U2, v1 (in this order) form a convex quadrangle and also fulfill the
Supnick condition d(v1, va) + d(v2, v5) < d(v1, v5) + d(v2, v4). This is
a contradiction to Observation 3.3(G). W

THeoREM 6.4: For the distance matrix C of some Euclidean point set, it
can be decided in O(n?) time whether C is a permuted Supnick matrix.

Proof: For n < 8, check all possible permutations whether they yield a
Supnick matrix. For n > 9, check whether C is the distance matrix of a
point set on a line and apply Lemma 3.6. W

7. CONCLUSION AND OPEN PROBLEMS

In this paper we have shown how to recognize in polynomial time
Euclidean point sets whose distance matrices fulfill the Demidenko,
Kalmanson, or Supnick condition for an appropriate numbering of the points.
The applied methods heavily relied on geometric features of the problems
and strongly exploited geometric properties like convexity.
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Several related questions remain open: for which other “nice” classes of
matrices is it polynomial time decidable whether the distance matrix of some
given Euclidean point set belongs to this class? One potential candidate for
such a nice class are the symmetric Van der Veen matrices [13] defined by

cjteu<citer forl<i<j<k<i<n.

There is a geometric characterization of Euclidean Van der Veen point
sequences via hyperbolas analogous to the characterization in Theorems 3.1
and 3.2 for Demidenko and Kalmanson point sequences. However, we did
not succeed in finding a polynomial time recognition algorithm for Van der
Veen point sets.

Another problem consists in deriving polynomial time algorithms for
recognizing arbitrary permuted Demidenko, Kalmanson, and Supnick
matrices (that do not necessarily result from Euclidean point sets). Without
the geometric structures, such recognition problems clearly become much
harder. A first step towards a solution was taken by Deineko, Rudolf and
Woeginger [2] who showed how to recognize permuted n x n Supnick
matrices in O (n% logn) time. Note that compared to the geometric case, this
running time is a O (nlogn) factor slower.
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