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ON LOCATING A SINGLE PATH-LIKE FACILITY
IN A GENERAL GRAPH (*)

by Abraham P. PUNNEN (l)

Communicated by Jacques A. FERLAND

Abstract. - The problem of locating a path-like facility offixed length in a tree can be solved
in polynomial time. However, this problem is NP-complete even on very sparse graphs such
as outerplanar graphs. We show that if the length of the facility to be located is small then the
corresponding path location problem can be solved efficiently. We suggest O (n4 log n) and O (n4)
algorithms to solve the problem of locating small paths with minmax and minsum criteria on a
gênerai g rap h. We als o give a method to solve small path location problems with a gene al nonlinear
objective function. If the path-like facility to be located is knownto be contained in some path with at
most r nodes then we show that, forfixed r, the path location problem is solvable in polynomial time.

Keywords: Location, networks, computational complexity, polynomial algorithms.

Résumé. - Le problème consistant à localiser un simili-chemin d'installations, de longueur fixée,
sur un arbre peut être résolu en un temps polynomial. Cependant, ce problème est NP-complet,
même sur un graphe très creux. Nous montrons que si la longueur des installations à localiser est
petite, alors le problème de localisation de chemin peut être résolu efficacement. Nous suggérons
des algorithmes en O (n4 log n) et en O (n4) pour résoudre le problème consistant à localiser
un chemin court avec des critères de « minmax » et « minisomme » sur un graphe général. Nous
présentons aussi une méthode pour résoudre les petits problèmes de localisation de chemins avec
une fonction objectif non-linéaire générale. Si le simili-chemin d'installations à localiser est réputé
être contenu dans un chemin d'au plus r sommets, alors nous montrons que, pour r fixé, le problème
de localisation du chemin peut être résolu en un temps polynomial.

Mots dés : Localisation, réseaux, complexité de calcul, algorithmes pol y normaux.

1. INTRODUCTION

Let G be a graph with vertex set V (G) and edge set E (G) such that
| V(G) | — n and | E (G) \ = m. Let ers be the edge joining vertices
r and s. For each ers -G E (G), a positive weight crs is prescribed. Let
L > 0 be a given real number and PL be a path on the graph G of length L.
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It may be noted that the end points of P& need not be vertices of G, but can
be any point on the graph. Let dj (PL) be the distance of vertex j from the
nearest point in Pi and d%3 be the distance between vertices % and j . Then
the path location problem considered in this paper is

PLP : Minimize ƒ (dx (PL), d2 (PL), . . . , dn (PL))

Subject to

where ƒ : %\n —> ÎH and V (G) = {1, 2, . . . , n}. Location problems similar
to PLP has been studied by several researchers in various contexts [4, 5,
10, 12-17]. In [10, 12, 14], it is pointed out that, problems of the type PLP
arise in real life situations such as location of pipe lines, building express
lanes in urban interstate highways, location of routes in automated guided
vehicles, etc. Minieka [12] and Kincaid et ai [10] suggested polynomial
time algorithms to solve PLP when the underlying graph is a tree and ƒ is
of the form ƒ ( • ) = max (•) or ƒ ( • ) = £ ( . ) .

However, networks with cycles occur more frequently in practice than
trees. Unfortunately, there is no exact or heuristic algorithm available to
solve these problems on a gênerai network. Recently, Richey [14] showed
that PLP is NP-complete even on outerplanar graphs. Once a graph theoretic
optimization problem is shown to be NP-complete, a natural attempt is to
identify special classes of graphs on which it is solvable in polynomial
time. The results of Richey [14] give some indication of the nonexistence
(unless P = NP) of nontrivial classes of graphs with cycles on which PLP
is solvable in polynomial time.

Another line of reasoning shows that it is not just the structure of the
graph that is responsible for the NP-completeness of PLP. The length of
the facility to be located also plays a rôle in this undesirable property. So,
the question is: can we construct a polynomial time algorithm to solve PLP
by restricting the length of Pil The present work is an attempt to answer
this question. We show that if L is "small" then PLP can be solved in
polynomial time whenever the problem;

RPLP : Min ƒ (a\x + &i, a^x + 62, • • •, a>n% + bn)

Subject to

a < x < b

(where ai, bu a, and b are real liumbers) can be solved in polynomial time.
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We also show that for "small" L, PLP can be solved in O (n4) time when
ƒ ( • ) = £ ( • ) and in O (n4 log n) time when ƒ ( • ) = max ( • ). Further,
we observe that when ƒ ( • ) = £ ( • ) , there always exists an optimal solution
of PLP in which one end of the optimal path coincides with a vertex. This
can be viewed as an extension of Hakimi's node optimality theorem for
point médian problems. This resuit was independently obtained by Hakimi,
Schmeichel and Labbe [4]. Further, we show that PLP can be solved in
polynomial time whenever the optimal facility is known to contain at most r
interior vertices, for some fixed r.

2. SOLUTION STRATEGY

We first assume that the length L of the path-like facility to be located is
less than or equal to the smallest edge length of G Le.

L < Min {crs : (r, s) G E (G)}. (Al)

Even under assumption Al, we cannot conclude that an optimal facility
will be contained in an edge of G. To observe this, consider the example in
Figure 1. Let L = 0.8, crs = cst = 1, and ƒ ( • ) = max ( • ). Then an optimal
path will be the one through 5 with 0.4 units on (r, s) and 0.4 units on (s, t).

r s- t
Figure 1.

A 1-path of a graph is a path joining two fixed vertices such that it contains
exactly one interior vertex. Let (r, 5, t) be the 1-path joining the vertices r
and t with s as its interior vertex. The length of (r, 5, t) is crs + cst- The
following theorem allows us to solve PLP efficiently whenever assumption
Al is satisfied.

THEOREM 1: If Al is satisfied, then there exists an optimal solution to PLP
which is completely contained in some l-path.

Proof: If possible let an optimal path be not contained in any of the
1-paths of G. Then at least two nodes of the graph must be interior
vertices of this path. Thus the length of the path must be greater than
min{cij : (i, j) G E (G)}. This contradicts Al and hence the resuit.
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Let PLP (r, s, t) dénote the problem PLP when Pi is restricted to the
1-path (r, s, t). The corresponding optimal solution is called a local location
on (r, s, £) and the objective fonction value corresponding to a local location
on (r, 5, t) is called the local distance on (r, s7 £}.

The 1-path (r, 5, t} which is of length crs + cst can be identified by the
interval [0, crs +• cst] with a distinguished point at a distance crs units from 0.
Thus the point 0 represents r, cr5 represents s and c rs + c5* represents t.
The path-like facility P& restricted to (r, s, t) can be considered as the sub
interval [a, a + L] of [0, cr5 + cst] where a < cTS + c$t — L. Let x = crs — L,
y = c r s , and z = c r s + c5̂  — L. Clearly 0 < x < y < z. Now for each
j G F (G), rfj (PL) = dj- (a), where ^ : [0, z] -> ÎH such that

min {dTJ + a, dSJ + crs ~ (a -

if O <a<x

min {dTj +• a, d5J, dtj + Cr$ + c5* - (a + £)}

ï-f x- < a < y

m i n {d5<7- - h a - ct r5) cfcj + e r 5 + cst - ( a + L ) }

if y < a < z.

Thus for a: G [0, z], dj (a) is a continuous piecewise linear function. It can
be seen that the linear pièces of dj (a) have slopes +1, - 1 or 0 and there
are at most five such pièces for every j . Further, it is concave on [0, x],
[xf y] and [y, z] but not necessarily concave on [0, 'z].

Let û!ji, a?2, . . . , ajp(j) be the break points (including end points 0
and z) of d3 (a), a G [0, z). Note that p(j) < 6 for ail j G V (G). Let,
0 = /3i < /3-2 . . . < . . . ^UJ = ^ be an ascending arrangement of distinct aJt,
1 < i < p (j), 1 < j < n. Clearly w < 4 n + 2. It is easy to see that each of
the dj (a) is linear in [/%, A:+i] anci thus can be represented as 7^ a + ̂ y
for some 7^ and 5^. Consider the problem:

RPLP (i) : Min ƒ (7,1a + 6tl, 7^a-

Subject to

Let Oi be the optimal objective function value of RPLP {%) and ai* be
the corresponding optimal solution. Choose k such that 9^ = Min{öx : 1 <
i < w — 1}. Then it can be seen that the path [a&*, a^* + L] is an optimal
solution of PLP(r, s, t).
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Using équation (1), 67J
rs and 7^'s can be obtained in O (n) time.

(We assume that the distance matrix D — {dij) is available). Let
Q(Pi) = {j : ®jh = A: for some h}. Then using 7(i+i)j a n d *(*+i)j>
j G Q (A+i) t h e problem RPLP (i -h 1) can be generated from RPLP (i) in
O ( \Q(f3i+i) | ) time. Further, the computation of'/%'s a nd its arrangement

can be done in O ( n l o g n ) time [11 and ^ |Q(A)|- = O(n). Thus
2 = 1

PLP (r, s, t) can be solved in Ö (ng (n)' + n log n) = O{ng\n)) time
where O (5 (n)) is the complexity of RPLP ( • ).

In a graph the number of 1-paths is O (n-3). Now sol ving PLP (r, s, t)
for each of these î-paths and choosing that local location with smallest
local distance gives an optimal solution of PLP. Thus in view of the above
observations PLP can be solved in O {n4" g{nj) time.

3. SPECIAL CASES

In this section we consider two special cases of PLP called the path-
centre problem (PCP) (when ƒ ( • ) = max ( • )) and the path-median
problem (PMP) (when ƒ ( • ) = £ ( • ) ) . We show that these special cases
can be solved more efficiently by exploiting the special nature of the
fonction ƒ.

(a) The path centre probïem (PCP)

In this case RPLP (i) reduces to a minmax linear programming problem
which can be solved in O (n) time [11]. Thus the gênerai algorithm given
in section 2 can be used to solve PCP in O (n5) time. We now show that
PCP can be solved in O (n4 log n) time.

Let PC"P(r, s, t) dénote the restriction of PCP to the 1-path (r, 5, t).
The corresponding optimal solution is called a local path centre on (r, s, t)
and its objective funetion value is called the local path radius on (r, s> t).
PCP (r, 5, t) can be decomposed into two subproblems:

PCP! (r, sy t) : Min Max {dj (a) : j eV(G)}

Subject to

a G [0, x] U [yy z]

vol. 31,. n° 2, 1997
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a n d

P C P 2 ( r , 5, t) : M i n M a x {d3 ( a ) :jeV (G)}

S u b j e c t t o

a G [x, y]

Now, for a G [0, x] and for a e [y, z], dj (a) is a piecewise linear concave
function with at most two linear pièces having slopes ±1 only. Thus PCP1
can be solved using any algorithm to find a local absolute centre on an
edge of a graph (with appropriate modifications). If we use the algorithm
of Cunninghame-Green [2], or Kariv and Hakimi [9], PCP1 (r, s, t) can
be solved in O (n log n) time.

The problem PCP2 (r, s, t) is essentially that of Computing the lowest
point on the upper envelope of linear segments with slope +1, - 1 , or 0.
It can be solved in O (n log n) time with appropriate modifications of the
methods discussed in [5, 8].

A local path centre on (r. 5, t) can be obtained from the optimal solutions
of PCP1 (r, 5, t) and PCP2 (r, s, t) whichever gives the least objective
funciton value. Thus PCP (r, s, t) can be solved in O (n log n) time.
Repeating the same process for each 1-path and choosing the "best" local
path centre obtained, gives an optimal solution to PCP. Thus we have
an O (n4 log n) algorithm to solve PCP.

As in the case of point location problems, the average performance of the
algorithm can be improved by using some upper and lower bounds for the
path radius (optimal function value). Since d3 (a) is concave in each of the
interval [0, x] and [#, z],

LB (r, s, t) = Max {Min (dj (0), d3 (x), d3 (z)) : j e V (G)}

is a valid lower bound for the local path radius on (r, s, t). If UB is an
upper bound for path radius, then any 1-path in which LB (r, 5, t) > UB
cannot contain a path centre of the network. Thus a local path centre on
(r, s, t) need not be computed for such 1-paths and can be discarded. The
upper bound UB can be set initially as the local path radius of the first 1-path
examined. Later, if we encounter a local path radius having lesser value than
the current UB, the UB can be replaced by the new improved value.

(b) Path Médian Problem (PMP)

PMP can be solved in O (n5) time using the algorithm in section 2. We
now show that PMP can be solved in O (n4) time.

Recherche opérationnelle/Opérations Research
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Let PMP (r, s, t) be the restriction of PMP to the 1-path (r, s, t). The
corresponding optimal solution is called a local path médian on (r, 5, t) and
its objective function value is called the local path distance on (r, s, t).

Since dj (a) is concave in [0, x] and [x, z]9 J2jev(G) 4/ ( a) i
concave in these intervals. Thus

Min E d3(a)=Mm{ E ^ (0), E rfi(4 E
€ [ Z jev(G)

Using the above expression, a local path médian on (r, s, t) can be easily
identified in O (n) time. Repeating this for each 1-path, an optimal solution
to PMP can be identified as the "best" local path médian obtained. Hence
PMP can be solved in O (n4) time.

The above discussion shows that there exists a local path médian on
(r, s, t) which will be of the form [0, L], [x, x + L]9 or [z, z + L]. Thus
we have

THEOREM 2: There exists an optimal path solution for PMP whose one end
point is at a vertex.

It may be noted that we have proved the above theorem under the
assumption (Al). However, the theorem remains true even if we drop (Al)
and allow L to be of arbitrary length. This resuit was obtained independently
by Hakimi, Schmeichel, and Labbe [4], Hooker et al [8] presented a unifying
approach for a class of point network location problems by introducing the
concept of a flnite dominating set (FDS) - a set of points on the network
which contains an optimal solution. In the case of single facility point location
problems, the identification of FDS is closely related to the identification of
linear arc segments (also known as tree-like segments [7]). Our algorithm
for path location problems may be considered as an extension of the ideas
discussed in [7, 8] for point location problems to path location problems.
For more details, we refer to [7, 8].

Suppose that in the path location problem, it is known a priori that
an optimal facility will contain at most r interior vertices. (For example,
when L is less than or equal to the length of the smallest (r - l)-path (path
containing r interior vertices) this condition holds), then also PLP can be
solved in polynomial time whenever RPLP can be solved in polynomial time.
What is to be done in this case is to generate relevant fc-paths for k < r and
solve PLP restricted to each of these paths to obtain "local" solutions. The
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1 1 4 A. P. PUNNEN

"best" solution amongst these local solutions is an optimal to PLP. It can be
verified that for fixed r, this method is polynomially bounded.

4. CONCLUSION

The main purpose of this paper is twofold. On one hand, we show that
the complexity of the path location problem is not only dependent on the
structure of the graph on which it is considered, but the length of the facility
to be located also. On the other hand, we show how known methods from
point location theory can be extended to path location problems. As a resuit,
we have an O (n4 log n) algorithm for the path centre problem and an
O (n4) algorithm for the path médian problem whenever the length of the
path to be located is "small". It may be noted that for PCP, PCP1 (r, s, t)
can be solved in O (n) time by a modification of the algorithm of [9]
for the unweighted absolute centre problem. So the bottleneck complexity
is in solving PCP2 (r, s, t). We believe that a careful modification of
the algorithm of [9] will provided an O (n) algorithm for PCP2(r, 5, t)
also and consequently we can have an O (n4) algorithm for PCP. It is
also observed that if the facility to be located is known to be contained
in some r-path, then for fixed r, PLP can be solved in polynomial time
whenever RPLP can be solved in polynomial time. Another way to solve the
genera! PLP is to restrict PL to spanning trees of G. Since the number of
spanning trees of G can be at most nn~2, we get a fini te algorithm to solve
PLP whenever its restriction on trees can be solved by a finite algorithm.
(Note that the number of feasible solutions of PLP are infinité). Ho we ver
these are just enumeration schemes and can take an enormous amount
of computer time for larger values of n. There is no efficient algorithm
available to solve PLP optimally even for specially structured ƒ such as
ƒ (. ) = Max ( • ) or ƒ ( • ) = E ( • ). We hope that the remarks made in this
paper will be helpful in developing exact or heuristic algorithms to solve
PLP without any restriction on L. In particular, for PMP with arbitrary L,
the observation that one end of an optimal path will be at a vertex seems
promising.
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