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SOLUTION BEHAVIOUR FOR PARAMETER-DEPENDENT
QUASI-VARIATIONAL INEQUALITIES T (*)

by J. V. Outrata (1)

Communicated by J.-P. CROUZEIX

Abstract. — In the paper the solution behaviour of a class of parameter-dependent quasi-
variational inequalities is analysed. By using sensitivity and stability results for monotone variational
inequalities and the Implicit Function Theorem of F. H. Clarke, we derive conditions under which
the perturbed solution of a parametric quasi-variational inequality is locally unique, lipschitzian
and directionally differentiable. These results are particularized in the case of parametric implicit
complementary problems.

Keywords: Quasi-variational inequalities, sensitivity and stability analysis.

Résumé. — Dans cet article, nous analysons le comportement en fonction des paramétres, de
la solution d’un probléme d’inéquation quasi-variationnelle. En utilisant les résultats de stabilité
et sensibilité sur les inéquations variationnelles monotones et le théoréme des fonctions implicites
de F. H. Clarke, nous obtenons les conditions sous lesquelles la solution de 1’inéquation quasi-

variationnelle paramétrée est localement unique, lipschitzienne et directionnellement différentiable.
Nous spécialisons ces résultats au cas du probléme de complémentarité implicite paramétré.

Mots clés : Inéquations quasi-variationnelles, analyse de sensibilité et de stabilité.

INTRODUCTION

The quasi-variational inequalities (QVI’s) or, in particular, the implicit
complementarity problems (ICP’s) represent a very useful framework for
modelling of various complicated equilibria, encountered e.g. in mechanics
[13,2,7] or in mathematical economics [5, 6]. At present there is a
considerable literature dealing with this subject, preferably with the existence
and uniqueness questions both in the finite- as well as in the infinite-
dimensional setting (e.g. [13, 17, 3, 2]). A substantially less number of works
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400 J. V. OUTRATA

is devoted to their numerical solution [18, 16] and, as to our knowledge,
in only few papers the solution behaviour of a parameter-dependent ICP is
analysed {12, 8]. However, such results are important not only from the point
of view of stability analysis, but also with respect to optimization problems
in which parameter-dependent ICP’s arise as side constraints.

The aim of this paper is

(i) to derive conditions under which the map, assigning to the parameter
the (set of) solutions of a QVI, is locally unique and lipschitzian in a
neighbourhood of a fixed value of the parameter, and

(ii) to show that, under these conditions, the considered selection of the
mentioned map is even directionally differentiable and to provide formulae
for the evaluation of the’ directional derivative.

To this purpose we will utilize some strong results concerning monotone
variational inequalities (VI’s) [19, 20, 14} and some results from the
nonsmooth analysis [4, 10]. The obtained results may be directly used in
the a posteriori analysis of the solved QVI’s. Further, they have important
implications for the numeical solution of optimization problems with QVI
constraints [8]. In the case of ICP’s these results could be somewhat
simplified.

Throughout the paper we do not pay any attention to the existence
questions; it is assumed that the considered QVI’s or ICP’s possess solutions
for the examined values of the parameter.

The reading requires a certain basic knowledge of the theory of variational
inequalities and of the lipschitzian analysis. For the reader’s convenience
we state here at least the definitions of the generalized Jacobian and the
contingent derivative.

DermniTion 1 [4]: Let the operator H [R™ — R™] be lipschitzian near
zg € R™ and let oy denote the set of points at which H fails to be
differentiable. The generalized Jacobian of H at zg is the set of [m x n]
matrices, given by

OH (zo) = conv{lim V H (z;)|z; — zo, i € o5 }.
=00
For m = 1, OH (xg) is termed the generalized gradient of H at zg.
DermvrrionN 2 [1]: Let H be an operator mapping R™ into R™, zp € R",
and h € R™ be a given direction. The contingent derivative of H at xg in

the direction h, denoted D H (zg; h), is the set of all limits of the difference
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QUASI-VARIATIONAL INEQUALITIES 401

H (zo+ A hi) — H (z0)

A_‘
tending to h and {); }z is a sequence of positive numbers tending to 0.

quotient

, where {h;} is a sequence of directions

It is clear that for H being lipschitzian near zg, all vectors from the
contingent derivative of H at z( in the direction A can be obtained as the

H Mh)—H

(20 + .) (o) for all sequences \; | 0. If DH (zo; h)
reduces to a singletonZ for each direction h, we say that H is directionally
differentiable at . Instead of DH (zg; h) we write then H' (z0; h).

Throughout the paper R is the nonnegative orthant of R", A* is the i-th
row of a matrix A and z’ is the 4-th component of a vector x € R”. E is the
unit matrix and e; is the i-th vector of the canonical basis in R™.

limits of

1. PROBLEM FORMULATION AND PRELIMINARIES

Let A be an open set in R”, FF[4 x R™ — R™] be a continuously
differentiable operator and g¢* [AXxR™ xR™ - R],i=1,2,.., s, be twice
continuously differentiable functions, convex in the third variable. Functions
g" define the closed- and convex-valued multifunction

I'(z,y)={zeR™g'(z,y,2) <0, i=1,2,.. s} (1.1)
Consider now the parameter-dependent QVI:
For a given z € A, find a vector y € I" (z, y) such that
(F(z,y),y —y) >0 forall ¢ €T (x,v). (1.2)

It is well-known [2] that (1.2) may be equivalently written as the nonsmooth
equation

y = Projr (s,) W — F (z, ). (1.3)

In what follows, we denote Projp(, ) (y — F (2, y)) = Z (2, y) and
y—Z(z,y) = H (z, y) so that (1.3) can be written as H (z, y) = 0. To be
able to analyse the properties of the implicit map, defined by this equation,
we use the directional differentiability of Z [11], an upper estimate of the
generalized Jacobian of H as provided by [14] and the Implicit Function
Theorem of Clarke [4].

Let g € A and gy be a solution of (1.2) for z = xy. We denote by
I(zo, yo) = {i € {1,2,..., s}g" (2o, %0, %o) = 0} (1.4)

the set of “active” indices, and impose the standard “linear independence
constraint qualification”, known from mathematical programming:

vol. 30, n° 4, 1996



402 J. V. OUTRATA

(LI) The partial gradients V. g (9, yo, ¥0), ¢ € I (zg, yo), are linearly
independent.

If (LI) holds, then the Karush-Kuhn-Tucker theory implies the existence
of a unique multiplier vector A9 € RS such that

F V- G (zo, yo, yo))L A 0
0 e |F (@0 50) + (V=G (20, 50, %)) Ao N W)
— G (o, Yo, yo) Ngs (Ao)
where
g; (z, y, 2)
z, Y, 2
G(z,y,2)= o ;y )
9° (2, ¥, 2)
and
normal cone to R at A, provided A € R§
Ney () = { e to Ry ¢
+ 0 otherwise.

Ag is the Karush-Kuhn-Tucker (K.K.T.) vector associated to the constraints
9" (zo, yo, y0) < 0, 2 = 1, 2,..., s. The uniqueness of )y enables us to
define another index set

J (20, yo) = {i € I (20, y0)|A§ > 0} 1.6)

which plays an important role in further consideration. Indices from
(1.6) specify so-called strongly active inequality constraints, whereas the
inequalities for i € I (xo, yo)\J (20, yo) are sometimes termed semiactive.
We denote the single subsets of I (zg, yo)\J (z0, yo) by T; (2o, yo), where
¢ runs through a suitably chosen index set IK(zo, yo). It will also be
convenient to work with the Lagrangian

L(z,y,2 N\ =z-y+F(z,9)+(V:G(z,y, 2))" )

corresponding to the projection operator Z.

For an index set K C {1, 2,..., s} and a vector d € R®, we denote by
dx the subvector composed from the components d’, i € K. Analogously,
for a matrix D with s rows, Dy denotes the submatrix composed from the
rows D, i € K. To shorten the notation, we will also sometimes drop the
arguments at I, J and 7;.

The following assertion relies on results of Robinson [19, 20].
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QUASI-VARIATIONAL INEQUALITIES 403

ProposITION 1.1: Under (LI) the operator Z is lipschitzian near (zo, yo)
and directionally differentiable at (zo, yo). For a pair of directions (h, k) €
R™ x R™, the directional derivative Z' (xg, yo; h, k) = v, where (v, u) is
the unique pair satisfying the system of equalities and inequalities

V. L(z0, y0, %0, M) v + (V= Gr (20, %0, %)) ur
=~V L (20, y0, %0, A0) h — Vy L (z0, Yo, Y0, Ao) k
V.G (0, Y0, Yo) v
==V Gy (20, Y0, Y0) b — Vy Gj (20, Yo, o) k
V. Gn\ ;s (%0, Yo, yo) v
< =V Gp (20, Y0, yo) b — Vy G\ 7 (20, Y0, v0) k
w=0  for i¢1(zo, o)
upng 20
(V2 ¢* (20, Y0, %), k) + (Vy g' (20, Y0, ¥0), k)
+(V-g' (0, %0, %), v))u' =0
for i€ I(zo, yo)\J (w0, yo)- (1.7)

Proof: The operator z — z — y + F (z, y) is strongly monotone in z
uniformly with respect to z and y [S]. This, together with the convexity of
functions ¢’ (x, y, -) and the (LI) condition, imply that the generalized
equation, corresponding to operator Z, satisfies the Strong Regularity
Condition (SRC) [9, 11] at (xo, Yo, %0, Ao). Thus Z is lipschitzian near
(0, yo). The directional differentiability of Z and the system (1.7) for
the computation of the directional derivative follow either from [11,
Theorem 2.1] (also based on the results of Robinson) or directly from [20].

For 1 € K (zg, yo) we introduce now the matrices

DJUT'}. (ZEO, Yo, Yo, )‘0)

_ | VzL(zo, %0, %0, do)  (V:Grur, (%0, vo, yo))T]
-V. GJUTi (x()a Y0, yO) 0 ’

—V;,;L(ZL'O, yO? y07 ’\0):|
Ve GJUTi (CE(), Yo, yO) ’

—Vy L (z0, 0, ¥, /\0)]
Vy G rut, (zo, Y0, Y0)

B}UT,- (.’I)O, Yo, Yo, AO) = |:

B%UTI- (l‘(), Yo, Yo, ’\0) = [

vol. 30, n° 4, 1996



404 J. V. OUTRATA

It can easily be shown [15] that under the imposed assumptions all matrices
Djur, (%0, Y0, Y0, Ao), ¢ € K (z0, yo), are nonsingular.

ProposITION 1.2: Let the condition (LI) be fulfilled and assume that for each
i € K (20, ), an [m x n] matrix P} together with a matrix Q} (uniquely)
solve the matrix linear equation

—pl
Djur, (o, 0, Yo, Ao) [ o! ] = Blur, (0, %0, %0, Xo)

and the [m X m| matrix PZ-2 together with a matrix Q? (uniquely) solve the
matrix linear equation

E - P?
Djur, (z0, Y0, Yo, Ao) [ 0? ' ] = Biur, (%0, ¥0, Y0, Mo).  (1.8)

12

Then one has

OH (zq, yo) C conv {[P}, P]|i € K (z0, yo)}- (1.9)
Proof: On the basis of the main result from [14] one easily deduces that
8Z (20, yo) C conv{[-P}, E - P]|i € K (20, y0)}-
As H(z,y) =y — Z(z, y), the assertion follows. [J
Remark: In the case of strict complementarity (I (zo, yo) = J (o, ¥0))
one easily concludes that H is (strictly) differentiable at (z¢, yo) and
VH(:E(%, yO) = [Plv P2]:

where P!, P? are the unique matrices solving (together with some matrices
@', Q%) the equations

—p!
Dr (=0, Yo, Yo, Ao) [ o! } = B} (%0, Y0, %0, Xo),

E — P? 9
Dr (o, yo, yo, o) o |= B7 (%0, Y0, Y0, A0),

respectively.
Remark: Equation (1.8) can equivalently be written as

P2
Dur, (20, Yo, Yo, Ao) {_éz]
2
_ [ V. L(zo, yo, ¥0, M) + Vy L (20, ¥0, ¥0, M)

. (1.10
—V. Gt (%0, %0, yo) — Vy Gyut, (70, Y0, yo)] (1.10)
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QUASI-VARIATIONAL INEQUALITIES 405
2. THE DIRECTIONAL DIFFERENTIABILITY

Throughout this section it is assumed that zg € A, yo solves the nonsmooth
equation H (20, y) = 0 and )¢ is the corresponding K.K.T. vector in the
sense of (1.5). Further, we suppose that the assumption (LI) holds.

THEOREM 2.1: Suppose that all matrices from
conv {P?)i € K (o, %)}

are nonsingular. Then there exists a neighbourhood O of xg and a unique
lipschitzian operator S|O — R™] such that yo = S (zo) and, for every
z € O,

H(z, S (z)) = 0.

The above assertion is a direct consequence of the Implicit Function
Theorem of Clarke [4] and Prop. 1.2. In the following simple example the
appropriate assumptions may be easily verified.

ExampLE 2.1: Consider the QVI (1.2) with m =2, n =1,

100
F(z,y) = , 5 2.1)
-22.5z +29% + Zyl

and
T(z,y) ={z € Rz <15-19% 22 <20—-¢'} (2.2)

at zyp = 1 and at its solution yy = (10,5). Evidently, the (LI) condition
is satisfied, I (zo, yo) = {1} and J (zo, yo) = 0. After the appropriate
computations one gets

5
5 l14a 14+ -0
conv {P?|i € K (zo, vo)} = 5 3 |lac]o,1]
- 2
4

Therefore, the nonsingularity assumption of Theorem 2.1 holds and so the
QVI, given by (2.1) (2.2), defines on a neighbourhood of zp = 1 a unique
implicit operator S for which S (zg) = (10,5).

We turn now our attention to the directional differentiability of S. Thereby
we employ another Lagrangian

L(z,y,N)=F(z,y)+ (V=G (z, 5 1)) A

vol. 30, n° 4, 1996



406 J. V. OUTRATA

which may be related directly to the QVI (1.2). Evidently
L(z,y,A)=L(z,y,9, A)

and for the derivatives at (xg, yo, Ag) one has

Ve L (z0, yo, o, Xo) = Vi L (20, yo, o),
V. L (zo, yo, Y0, o) + Vy L (z0, Yo, Y0, Ao) = Vy L (20, %0, %0)- (2.3)

THEOREM 2.2: Under the assumption of Theorem 2.1 the map S is
directionally differentiable at xg. For h € R™ the directional derivative
v = S’ (zo; h) satisfies with a vector uj the system of equations and
inequalities

Vy L (20, Y0, M) v + (V2 G1 (z0, yo, %)) ur
= =V L (20, Yo, Ao) h

(V-G (z0, o, o) + Vy G (z0, %0, v0)]v
= =V Gy (20, Y0, Yo) h

[V:Gns (20, o, y0) + Vy G (20, %0, yo)]v
< =V.Gn s (2o, o, yo) h

ut=0 for i & I (zo0, yo)

upg 20

(V2 g' (20, %0, %0), h) + (Vy g* (20, Yo, Y0)
+ V- g' (20, 0, %0), v))u' =0

for i € I(xo, yo)\J (0, yo)- 24

Proof: In the proof we essentially follow the ideas used in the proof of
Lemma 1 in [10].
Consider a sequence of positive numbers £; | 0 which generates a vector
from DS (zg; h), ie.
lim S (zo +t;h) — S (x0) _
Jj—co tj

v € R™.

(As S is lipschitzian near zg due to Theorem 2.1, such a sequence exists.)
Evidently, by (1.3) for j sufficiently large
S(zo+tjh)=2Z(xzo+t;h, S(zo+t;h)).

Recherche opérationnelle/Operations Research



QUASI-VARIATIONAL INEQUALITIES 407

The operator Z is directionally differentiable due to Proposition 1.1 and thus

S (zo +t; h) =Z (20, S (z0))

S i h) —
+1; 2’ (560,5(3?0); h, (204 1) = 5 (@)

t

) + o (t;),

again due to the lipschitzian nature of S. However Z (o, S (zp)) = S (o)
and so one gets

S(xo+tjh)— S (zo)
4

=7 (azo, S (zg); h,

S(xo+tjh)—S(xo)
tj

>+o@y

By letting j — oo and using the fact that the directional derivative of a
lipschitzian map is continuous in the direction variable, we obtain that

v =2 (z0, yo; h, v). (2.5)

Thus, we have just to modify the system (1.7) accordingly. The introduction
of the Lagrangian L enables to simplify the first equation due to
relations (2.3).

To prove the directional differentiability of S, it remains to show that (2.4)
admits a unique solution v for each direction h. Assume by contradiction
that (2.5) possesses for a given h two different solutions vy, ve. Evidently,
(2.5) may be rewritten to the form

v—2Z'(zg, yo; w,v)] _ [0
il e

and thus we assume that Equation (2.6) possesses two different pairs of
solutions (w1, v1) and (ug, v2). As Z is directionally differentiable, it
implies that

Yo +tvr — Z (w0 + tur, yo + tv1) — (yo + tv2) + Z (2o + tuz, yo + tva)

Zo +tuy — (wo + tus) <o(®). (27

Equation (1.3) may also be written in the “inverse function” form
y—Z(w,y)| _ [0
w x|
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408 J. V. OUTRATA

The Clarke Inverse Function Theorem implies the existence of a
lipschitzian inverse function G defined on a neighbourhood of (0, zp) such
that for ¢ = 1, 2

G (yo +tvi — Z (zo + tug, yo + t'Uz')> _ (yo +t'0i>
for t sufficiently small. Therefore

o +.tu; zo + tu;
Yo -+ t’Ul _ Yo + tvg
zo + tu, Zo + tus
Yo —+ t'Ul — Z(Z‘Q +t'U,1, Yo +t’U1) - (yo =+ t'U-z) + Z(fl}(] =+ t.'ltz, Yo +t’U2)
Xy + t'U)_ - (IL'() + tUQ)

<L

b

where L is the Lipschitz modulus of G. By combining the last inequality

with (2.7) we get
v — V2
<ot
(2o <o,

which is the needed contradiction. Thus DS (zg; h) shrinks to a singleton
for each direction h and we are done. W

As Z is in fact Bouligand-differentiable (B-differentiable) (cf. [20]), we
could also apply Theorem 3.2.3 from [21]. According to this theorem,
roughly speaking, the local inverse to a local Lipschitz B-differentiable
homeomorphism f is B-differentiable and its B-derivative is the inverse of
the B-derivative of f. In our case it would imply the our implicit map S
is even B-differentiable.

It can easily be shown that the system (2.3) is equivalent to the linear QVI:

Find v € Q(v) such that

t

(Vy L(zo, Y0, M) v+ Vi L(z0, Y0, Ao) h, v —v) >0 28)
forallv' € Q(v), ’

where

Q(v) = {w € R™|(Vy ¢' (z0, %0, %), h)
+(Vy g' (z0, ¥0, %), v) + (V- g" (20, ¥0, %0), w) =0
fori € J(:E(), yo),
(Va g' (z0, %0, %0), h) + (Vy ' (20, Y0, %0), ¥)
+{V.g' (0, y0, %), w) <0
fori € I (zo, yo)\J (%o, yo)}.
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QUASI-VARIATIONAL INEQUALITIES 409

Indeed, by writing the QVI (2.8) in the form (1.5), we get exactly the
system (2.4).

We illustrate now the application of Theorem 2.2 by a simple QVI of
Ex. 2.1.

ExampLE 2.2: Consider the QVI of Example 2.1 at zp = 1 and at its
solution yo = (10,5). The system (2.4) attains the form

8 . 100
2U1+§1)2+U1:’?h

5
“ol 4202 =225h

4
ol 402 <0 (2.9)
w =0
ul! >0
(@ +0?)u! =0.

One easily computes that for h = 1 and A = —1 system (2.9) possesses
the (unique) solutions (v!, v?) = (=30, 30) and (v!, v?) = (=10, —5),
respectively. Thus, as S’ (zg; 1) # S’ (zp; —1), the map S is nonsmooth
at xp.

In general, solving (2.4) amounts (similarly as in the case of the system
(1.7)) to finding an index set 7; (zo, ¥0), ¢ € K (0, yo), such that

[ Vy L (0, Yo, Ao) ] v
V. G yuT, (20, Y0, ¥0) + Vy GuT, (20, %0, Y0)
+[ Vxﬁ(fvo, Y0, )‘0) ] h
Va GJUTi (x01 Y0, yO)
T
+ I:(vz GJUT, (gO’ Y0, y())) :l uguT, = 0
V> G (ruz,) (%0, %0, %0) + Vy Gp\(sur) (2o, Y0, Y0)] v
+Ve Gnur) (%0, Yo, Yo) h <0
wyur, > 0. (2.10)

If the cardinality of K (zo, yo) is not too large, one has just to solve a few
linear systems and check the remaining strict inequalities.

The result of Theorem 2.2 plays an important role in optimization
problems with QVI constraints because it essentially enables to apply

vol. 30, n°® 4, 1996



410 J. V. OUTRATA

some effective nondifferentiable optimization methods to composite functions
O (z) := f(z, S (z)), where f[R"xR™ — R] is a given (smooth) objective.
This approach is particularly advisable, if for all admissible values of x the
corresponding QVI’s possess unique solutions, cf. [8].

Alternatively to the approach presented in this section one could apply
the stability theory of Robinson [19, 20] directly to the generalized equation
(1.5) which is under a suitable constraint qualification equivalent to the
QVI (1.2). In this way the assumption of Theorem 2.1 would be replaced
by a different one, but we would get exactly the same formulae for the
directional derivative S’ (zp; h).

3. INIPLICIT COMPLEMENTARITY PROBLEMS

Consider the QVI given by (1.1), (1.2), where in (1.1) one has s = m and

g (z, 9, 2) = ' (z,9) — 2, i=1,2,..,m
We denote

and observe that the equivalent nonsmooth Equation (1.3) attains now the
form

H (z, y) = min{F (2, y), y — D (z, y)} = 0, G.h
where the minimum is taken componentwise.

Remark: In (3.1) one easily recognizes the standard form of a parameter-
dependent ICP:

For a given = € A, find a vector y € R™ such that
F(z,9)20, y2D(zy), (Flzy y-D(y)=0

Let zg € A be fixed and assume that g solves the equation H (xg, y) = 0.
We introduce the index sets

M("‘E()? yO) L= {Z € {1, 27"'a m}IFI <$07 yO) < yi - (pi (xO) yO)}
N (zo, yo) : = {i € {1, 2,..., m}|F* (0, y0) > ¥" — ¢ (20, o)}
L(zo, w):={i €{1,2,..., m}F (z0, o) =y — ¢" (0, y0)},

Recherche opérationnelle/Operations Research



QUASI-VARIATIONAL INEQUALITIES 411

and similarly as in Section 1 we denote by T; (xg, o) the single subsets of
L (zg, o), where 7 runs through a suitably chosen index set K (zo, yo). Let
Pl, P? be the matrices, defined for i € K (o) by

Vo F? (0, yo) )
(P1y = < if 4 E'M(xo, y0) U T; (zo, yo)
‘ - Va ¢! (zo0, yo)
if j €N (zo, yo) U (L (2o, yo)\Ti (z0, %0))
Vy F? (20, y0)
(P2 = < if j € M (0, yo) UT: (20, 90)
Z ej = Vy ¢’ (z0, y0)
if j € N (2o, yo) U (L (20, %0)\Ti (z0, %0)), J

3.2)

7 =1, 2,..., m. From the definition of the generalized Jacobian it is clear that
& H (z0, yo) C conv {[P}, P?]|i € K (z0, yo)}-

Hence, due to the Implicit Function Theorem of Clarke, Theorem 1.2 with
matrices Pi2 given by (3.2) holds true and ensures thus the existence of the
implicit operator S possessing the mentioned properties.

Remark: Observe that in this case the (LI) condition automatically holds.

In the sequel we will assume that all matrices from conv{PZ2|i €
IK(zo, yo)} are nonsingular and turn our attention to the directional
derivatives of the implicit map S at zg.

ProPOSITION 3.1: The map S is directionally differentiable at xy. For h € R”
the directional derivative v = S' (zg; h) satisfies the system of equations

Vo Far (0, yo) b+ Vy Far (w0, yo) v = 0,
—V.Dn (3:0, yo) h+vny —Vy Dy (zo, yo)v =20
min {Vy FL, (2o, y0) b + Vy FL (20, 30) v,
=V Dr (zo, wo) h+vp — Vy Dy (zo, yo) v} =0.

(3.3)

Proof: Due to Theorem 2.2 we need just to show that the directional
derivative is given by (3.3). To be able to proceed in the same way as in the
proof of Theorem 2.2, we rewrite the Equation (3.1) in the form

H(z,y)=y—Z(z,y) =y -max{y - F(z,y), D(z,y)} = 0.
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It 1s well-known that

( =V Fi (20, o) h+v' = Vy F' (20, %0) v
A if i€ M (xo, y())

' Va D' (29, yo) h + Vy D' (z0, yo) v

(Z*) (x0, yo; h, v) = if € N(zo, wo)

max {=V, F' (o, yo) b +v' — Vy F* (0, 30) v,
Vo D' (20, yo) h + Vy D* (20, y0) v}

\ if ’I,EL(.’L'O,yO)

Thus, it remains to use the above expression in the equation v =
Z' (zo, yo; h, v) and we arrive immediately at system (3.3). O

Remark: In [8] a different way is used to ensure the single-valuedness,
the lipschitzian behaviour and the directional differentiability of the implicit
map, defined by Equation (3.1). It relies on a transformation of the ICP to
a strongly monotone variational inequality and then it suffices to apply the
results from [19, 11].

We again illustrate the application of the above statement by a simple
example.

ExampLE 3.1 : Consider the Equation (3.1) with m =4, n =1,

2 -1 0 0 1—-=2x

-1 2 -1 0 1—z
Flz,y)=14 1 o _1|Y%t|1_4 (3.4)

0 0 -1 2 1-=z

and

© (z,y) = —3.9+z+0.1(y i=1,2,..,4, (3.5)

2
at zg = 0 and at its solution yp = (—2, —3, —3, —2). One easily computes
that M (zo, yo) = {1, 4}, N(zo, y) = @ and L(z0,30) = {2, 3}.
Therefore, to verify the assumption of the Implicit Function Theorem of
Clarke, we have to check the nonsingularity of the matrices

2 -1 0 0 2 -1 0 0
-1 2 -1 0 0 1-02y3 0 0
0 -1 2 -1 0 -1 2 -1p
0 0 -1 2 0 0 -1 2
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2 -1 0 0 2 -1 0 0
-1 2 -1 0 0 1-02y 0 0
0 0 1-02¢y 0} 0 0 1-02y8 0
0 0 -1 2 0 0 ~1 2

and their convex combinations. All these matrices are indeed nonsingular and
so there exists an neighbourhood O of 0 (in R) and a lipschitzian operator
S [0 — R*) such that yo = S () and for each z € O, S (z) is a solution
of the ICP given by (3.4), (3.5). System (3.3) attains the form

~h+2v'—? =0
—h—-v3+2v=0

min —h—v! +20% -3 —h+(1-02y3)?] _
~h—v? 4203 ~0t|]" |—h+(1-02y3)3 )

For h = +1 its solutions are S’ (zg; 1) = (2, 3, 3, 2) and S’ (zg; —1) =
(—0,8125, —0,625, —0.625, —0.8125). Therefore, expectantly, S is non-
smooth at zp.

In [12] a different approach is applied to the study of the solution behaviour
for parameter-dependent ICP’s, based on the Implicit Function Theorem of
Robinson [20]. To fulfil the appropriate requirements, however, one needs
to assume that

vai (%0, yo) = ei — Vy (pi (zo, yo) forall i € L(zo, yo)-

One immediately observes that this assumption simplifies substantially
also the verification of the nonsingularity requirement in the Implicit
Function Theorem of Clarke, because one has to examine only one matrix.
This shows its considerable severity (in Example 3.1 for 1 = 2 one has
Vy F% (29, yo) = (-1, 2, =1, 0) and e2 — V, ¢? (0, %) = (0, 1.6, 0, 0)).
Our approach is applicable in more general situations, but the effort,
connected with the analysis of the solution behaviour, may be rather
considerable.

CONCLUSION

The assumptions of Theorem 2.1 could be somewhat weakened by
replacing the generalized Jacobian by the directional derivative of Kummer.
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This derivative, for a function f at z in the direction h, is the set of all limits
of the difference quotient 1/¢; [f (z; + ti h) — f (z:)], where z; — = and
t; | 0. In the appropriate inverse function Theorem [9], one has to require
that this derivative does not contain the zero operator for any nonvanishing
direction . However, as the evaluation of the appropriate limits could be
rather difficult in our case, we have preferred to retain the approximation by
generalized Jacobians, developed in [14, 15].

From the viewpoint of both the a posteriori solution analysis as well as
optimization with QVI constraints it would be desirable to obtain certain
stability and sensitivity results also for the case, where S does not admit
locally unique solutions. For this generalization nonsmooth analysis offers a

variety of effective tools and so we hope that these results could be obtained
in a near future.

ACKNOWLEDGEMENT

The author gratefully acknowledges the valuable suggestions of both anonymous referees.

REFERENCES

1. J.-P. Ausw and 1. ExeLanp, Applied Nonlinear Analysis, Wiley, New York, 1984.

. C. Bawoccur and A. Caeeo, Variational and Quasi-Variational Inequalities,
Applications to Free Boundary Problems, Wiley, New York, 1984.

3. D. Cuan and J. S. Pang, The generalized quasi-variational problem, Math. Oper.
Res., 1982, 7, pp. 211-222.

4. F. H. Crarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

5. P. T. Harxer and J. S. Panc, Finite-dimensional variational inequality and nonlinear
complementary problems: A survey of theory, algorithms and applications, Math.
Programming, 1990, 48, pp. 161-220.

6. P. T. Harker, Generalized Nash games and quasi-variational inequalities, European
J. Oper. Res., 1991, 54, pp. 81-94.

7. J. Hasunger and P. D. Panaciororouros, The reciprocal variational approach to

the Signorini problem with friction. Approximation results, Proc. Royal Society of
Edinburg, 1984, 98A, pp. 365-383.

8. M. Kotvara and J. V. Outrara, On optimization of systems governed by implicit

complementarity problems. Numer. Funct. Analysis and Optimization, 1994, 15,
pp. 869-887.

9. B. Kummer, The inverse of a Lipschitz function in R™: Complete characterization by
directional derivatives, IIASA-Working paper WP-89-084.

10. B. Kummer, Newton’s method based on generalized derivatives for nonsmooth
functions: Convergence analysis, in Proc. 6th French-German Colloquium
on Optimization, Lambrecht, FRG, 1991, Lecture Notes in Economics and
Mathematical Systems, vol. 382, Springer, Berlin, 1992, pp. 171-194.

Recherche opérationnelle/Operations Research



11.

12

13.

14.

15.

16.

17.

18.

19.
20.

21.

QUASI-VARIATIONAL INEQUALITIES 415

J. Kyrarisis, Solution differentiability for variational inequalities, Math. Program-
ming, 1990, 48, pp. 285-301.

J. Kyrarsis, Ch. M. Ir, Solution behaviour for parametric implicit complementarity
problems, Math. Programming, 1992, 56, pp. 65-70.

U. Mosco, Implicit variational problems and quasi-variational inequalities, in Proc.
Summer School “Nonlinear operators and the Calculus of Variations”, Bruxelles,
Belgium, 1975, Lecture Notes in Mathematics, Vol. 543, Springer, Berlin, 1976,
pp. 83-156.

J. V. Ourrata, On optimization problems with variational inequality constraints,
SIAM J. Optim., 1994, 4, pp. 340-357.

J. V. Ourtrara and J. Zowe, A numerical approach to optimization problems with
variational inequality constraints, Math. Programming, 1995, 68, pp. 105-130.

J. V. Ourrata and J. Zowe, A Newton method for a class of quasi-variational
inequalities, Comp. Optimization and Applications, 1995, 4, pp. 5-21.

J. S. Pang, The implicit complementarity problem, in Proc. Symp. on Nonlinear
Programming, Madison, Wisc.,, 1980, Academic Press, New York, 1981,
pp. 487-518.

J.S. Pang, On the convergence of a basic iterative method for the implicit
complementarity problems, J. of Optimiz. Theory and Applications, 1982, 37,
pp- 149-162.

S. M. Rosmvson, Strongly regular generalized equations, Math. Oper. Res., 1980, 5,
pp. 43-62.

S. M. Rosivson, An implicit-function theorem for a class of nonsmooth functions,
Math. Oper. Res., 1991, 16, pp. 282-309.

S. Schotrss, Introduction to piecewise differentiable equations, Preprint No. 53/1994,
Inst. Fiir Statistik und Math. Wirtschaftstheorie, Universitat Karlsruhe.

vol. 30, n°® 4, 1996



