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SOLUTION BEHAVIOUR FOR PARAMETER-DEPENDENT
QUASI-VARIATIONAL INEQUALITIES t (*)

by J. V. OUTRATA (*)

Communieated by J.-P. CROUZEIX

Abstract. - In the paper the solution behaviour of a class of parameter-dependent quasi-
variational inequalities is analysed. By using sensitivity and stability resultsfor monotone variational
inequalities and the împlicit Function Theorem of F, H. Clarke, we dérive conditions under which
the perturbed solution of a parametric quasi-variational inequality is locally unique, lipschitzian
and directionalîy differentiable. These results are particularized in the case of parametric implicit
complementary problems.

Keywords: Quasi-variational inequalities, sensitivity and stability analysis.

Résumé. - Dans cet article, nous analysons le comportement en fonction des paramètres, de
ta solution d'un problème d'inéquation quasi-variationnelle. En utilisant les résultats de stabilité
et sensibilité sur les inéquations variationnelles monotones et le théorème des fonctions implicites
de F, H. Clarke, nous obtenons les conditions sous lesquelles la solution de l'inéquation quasi-
variationnelle paramétrée est localement unique, lipschitzienne et directionnellement differentiable.
Nous spécialisons ces résultats au cas du problème de complémentarité implicite paramétré.

Mots clés : Inéquations quasi-variationnelles, analyse de sensibilité et de stabilité.

INTRODUCTION

The quasi-variational inequalities (QVFs) or, in particular, the implicit
complementarity problems (ICP's) represent a very useful framework for
modelling of various complicated equilibria, encountered e.g. in mechanics
[13, 2, 7] or in mathematical économies [5, 6]. At present there is a
considérable literature dealing with this subject, preferably with the existence
and uniqueness questions both in the finite- as well as in the infinite-
dimensional setting (e.g. [13, 17, 3, 2]). A substantially less number of works
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4 0 0 J. V. OUTRÂTA

is devoted to their numerical solution [185 16] and, as to our knowledge,
in only few papers the solution behaviour of a parameter-dependent ICP is
analysed [12, 8]. However, such results are important not only from the point
of view of stability analysis, but also with respect to optimization problems
in which parameter-dependent ICP's arise as side constraints.

The aim of this paper is
(i) to dérive conditions under which the map, assigning to the parameter

the (set of) solutions of a QVI, is locally unique and lipschitzian in a
neighbourhood of a fixed value of the parameter, and

(ii) to show that, under these conditions, the considered sélection of the
mentioned map is even directionally differentiable and to provide formulae
for the évaluation of the* directional derivative.

To this purpose we will utilize some strong results concerning monotone
variational inequalities (VI's) [19, 20, 14] and some results from the
nonsmooth analysis [4, 10]. The obtained results may be directly used in
the a posteriori analysis of the solved QVFs. Further, they have important
implications for the numeical solution of optimization problems with QVI
constraints [8]. In the case of ICP's these results could be somewhat
simplified.

Throughout the paper we do not pay any attention to the existence
questions; it is assumed that the considered QVFs or ICP5s possess solutions
for the examined values of the parameter.

The reading requires a certain basic knowledge of the theory of variational
inequalities and of the lipschitzian analysis. For the reader's convenience
we state here at least the définitions of the generalized Jacobian and the
contingent derivative.

DÉFINITION 1 [4]: Let the operator H[Rn -> RTO] be lipschitzian near
XQ E Rn and let UH dénote the set of points at which H fails to be
differentiable. The generalized Jacobian of H at XQ is the set of [m x n)
matrices, given by

dH (XQ) = conv { lim V H (xi)\xi —• XQ} xi qL <?H}«

For m — 1, dH (XQ) is termed the generalized gradient of H at XQ.

DÉFINITION 2 [1]: Let H be an operator mapping Rn into R"\ XQ eKn,
and h € Rn be a given direction. The contingent derivative of H at XQ in
the direction h, denoted DH (XQ: h), is the set of all limits of the différence
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QUASI-VARIATIONAL INEQUALITIES 401

H{xo + \ihi)H(xo) u r , . . . . .
quotient , where {/^j is a séquence or directions

Ai
tending to h and {Xi} is a séquence of positive numbers tending to 0.

It is clear that for H being lipschitzian near xç, ail vectors from the
contingent derivative of H at xo in the direction h can be obtained as the
limits of H(xo + ^h)-H(xo) fof ^ s e q u e n c e s A . i Q I f DH(XQ] ^

X%
reduces to a singleton for each direction h, we say that H is directionally
differentiatie at aso. Instead of DE (xo; h) we write then H' (XQ\ h).

Throughout the paper R£ is the nonnegative orthant of Rn, A% is the i-th
row of a matrix A and x% is the i-th component of a vector x G Rn. E is the
unit matrix and e% is the z-th vector of the canonical basis in Rn.

1. PROBLEM FORMULATION AND PRELIMINARIES

Let .4 be an open set in R?\ F [ i x iRm —• Rm] be a continuously
differentiable operator and gi [A x Rm x Rm -^ R], i = 1, 2,..., 5, be twice
continuously differentiable functions, convex in the third variable. Functions
g1 define the closed- and convex-valued multifunction

r ( x , y) = {z E R " V fa V>z) < 0 , i = 1, 2 , . . . , s } . ( 1 . 1 )
Consider now the parameter-dependent QVI:

For a given x € A find a vector y E F (rr, y) such that

(F(x , y), yf-y) > 0 for ail y; G F (a, y). (1.2)

It is well-known [2] that (1.2) may be equivalently written as the nonsmooth
équation

V = P r o j r ( X ï y ) (y-F (x, y)). (1.3)

In what follows, we dénote P r o j w ^ ) (y — F(x^ y)) = Z ( x , y) and
y — Z (x, y) = H (ar, y) so that (1.3) can be written as H (rc, y) = 0. To be
able to analyse the properties of the implicit map, defined by this équation,
we use the directional differentiability of Z [11], an upper estimate of the
generalized Jacobian of H as provided by [14] and the Implicit Function
Theorem of Clarke [4].

Let xo G A and y$ be a solution of (1.2) for x — XQ. We dénote by

i > o , m) = {i£ {1. 2,..., s}\gl (x0, i/o, Vo) = 0} (1.4)

the set of "active" indices, and impose the standard "linear independence
constraint qualification", known from mathematical programming:

vol 30, n° 4, 1996



402 J. V. OUTRATA

(LI) The partial gradients Vzg
l(xo3 yo, yo), ^ € /(a?o, yo), are linearly

independent.

If (LI) holds, then the Karush-Kuhn-Tucker theory implies the existence
of a unique multiplier vector AQ G R̂ _ such that

0 e
F (zo, yo) + (V* G (a?o, yo, yo)) r Ao

- G(a;o, yo, yo)

0

; (AO)
(1.5)

where

G(x,y,z) =

r9l O , y> z)
g2 (x, y} z)

and

ƒ normal cone to
+ \ 0 otherwise.

at A, provided A G

Ap is the Karush-Kuhn-Tucker (K.K.T.) vector associated to the constraints
g% (a?0) 2/0» I/o) < 0, i = 1, 2,..., 5. The uniqueness of Ao enables us to
define another index set

h yo) = 0} (1.6)

which plays an important role in further considération. Indices from
(1.6) specify so-called strongly active inequality constraints, whereas the
inequalities for i E I (XQ, yo)\J(xQ, t/o) are sometimes termed semiactive.
We dénote the single subsets of J(a;o, yo)\J(xQ^ yo) by Tt (#o, yo)^ where
i runs through a suitably chosen index set K(#o, yo)- It will also be
convenient to work with the Lagrangian

L (ar, , y) + (V, G (x, y,

corresponding to the projection operator Z.

For an index set K c {1. 2,..., 5} and a vector d E Rs, we dénote by
d/f the subvector composed from the components d\ i E K. Analogously,
for a matrix D with s rows, DR dénotes the submatrix composed from the
rows D\ i E K. To shorten the notation, we will also sometimes drop the
arguments at ƒ, / and T%.

The following assertion relies on results of Robinson [19, 20].

Recherche opérationnelle/Opérations Research



QUASI-VARIATIONAL INEQUALITIES 403

PROPOSITION 1.1: Under (LI) the operator Z is lipschitzian near (xo, yo)
and directionally differentiatie at (xo, yo)- For a pair of directions (h, k) G
Rn x Rm, the directional derivative Zf (xo, yo; h-> k) — v, where (u, u) is
the unique pair satisfying the System of equalities and inequalities

VzL(x0, yo, yo, Ao)^ + (V* G/(x0 , yo, yo))Tuj

= ~VxL(xo, yo, yo, Xo)h- VyL(xo, yo, yo, Ao)fc

VzGj(x0, yo, yo)v

= - V T Gj (xo, yo, yo) h-Vy G3 (x0, yo, yo) k

VZGJ\J(XO, yo, yo)v

< -Vx G / y (xo, yo, yo) ̂  - Vy G / y (xo, yo, yo) *

w' = O for i ^ I(xo, yo)

UI\J > O

9% (xo, yo, yo), h) + (Vyp* (x0) yo, yo), k)

+ ( V . ^ (xo, yo, yo), v))nl = O

for i e /(xo, yo)\J(xo, yo). (1.7)

Proof: The operator #
uniformly with respect to
functions g% (x, y, •) and
équation, corresponding
Condition (SRC) [9, 11]
(#0) yo)* The directional
the computation of the
Theorem 2.1] (also based

For i e K (xo, yo) we

i—> z — y -h F (x, y) is strongly monotone in z
x and y [5], This, together with the convexity of
the (LI) condition, imply that the generalized

to operator Z, satisfies the Strong Regularity
at (xo, yo, yo, Ao). Thus Z is lipschitzian near
differentiability of Z and the System (1.7) for
directional derivative follow either from [11,

on the results of Robinson) or directly from [20],
introducé now the matrices

*GjUTi (xo, yo, yo)) r

0

DjuTi (#0) yo, yo, Ao)
_ j" VzL(xo, yo, yo,

|_-V2 GjuTi (xo, yo, yo)

- V x L ( x o , yo, yo, Ao)

T% (xo, yo, yo)

zo, yo, yo, Ao)

r£ (^o, yo, yo)

, yo, yo,

, yo, yo,

vol. 30, n° 4, 1996



4 0 4 J. V. OUTRATA

It can easily be shown [15] that under the imposed assumptions all matrices
i (zo, yo, yo, Ao), i e K (zo, t/o). are nonsingular.

PROPOSITION 1.2: Let the condition (LI) befulfilled and assume that for each
i E K (zo, yo)> ÛW [m- x n] matrix Pi together with a matrix Qj (uniquely)
solve the matrix linear équation

L pi 1
DjuTt (zo, 2/o, z/o5 Ao) \ Qi = B)UTi (ZO, yo, yo, Ao)

an<i the [ra x m] matrix P^ together with a matrix QJ (uniquely) solve the
matrix linear équation

[ E — P-2 1
2 * = B j U T . (zOï yo, yo, Ao). (1.8)

V; J

dH(xo, yo) C conv{[P^ i^2]|i G K ( I O I yo)}- (1.9)

Prcqf: On the basis of the main resuit from [14] one easily deduces that

dZ(xQ> yo) C conv{[- i^\ E - Pf\\i E K (z0, yo)}.

As Jï (z, y) ~ y ~ Z (z, y), the assertion follows. D
Remark: In the case of strict complementarity (/(zo, yo) = «/(̂ O

one easily concludes that / / is (strictly) differentiable at (zo, yo) and

where P 1 , P 2 are the unique matrices solving (together with some matrices
Q1, Q2) the équations

[ - P 1 !,2/o, yo, Ao) \ QI \=Bj (zo, yo, yo, A

ÏE — P 2 1
yo, yo, Ao) \ Q2 •= s / (^o, yo, yo,

respectively.

Remark: Equation (1.8) can equivalently be written as

p?
(zo, yo, yo, Ao)

r V^L(xo, yo, yo, Ao) + V y L(x 0 , yo, yo, Ao) 1 n
[-Vz GjuTi (zo, yo, yo) - Vy G/UTi (zo, yo, yo) J *

Recherche opérationnelle/Opérations Research



QUASI-VARIATIONAL INEQUALITIES 405

2. THE DIRECTIONAL DIFFERENTIABILITY

Throughout this section it is assumed that #o £ A Vö solves the nonsmooth
équation H (xo, y) — 0 and ÀQ is the corresponding K.K.T. vector in the
sense of (1.5). Further, we suppose that the assumption (LI) holds.

THEOREM 2.1: Suppose that all matrices from

conv{i^2|i G K(#o, yo)}

are nonsingular. Then there exists a neighbourhood O of XQ and a unique
lipschitzian operator S [ö —> Rm] such that yo = S (xo) and, for every
x e O,

H(x, S(x)) = 0.

The above assertion is a direct conséquence of the Implicit Function
Theorem of Clarke [4] and Prop. 1.2. In the following simple example the
appropriate assumptions may be easily verified.

EXAMPLE 2.1: Consider the QVI (1.2) with m = 2, n = 1,

100 ^ , o ,

F (x, y) - 5

4'
and

(2.1)

(2.2)r (x, y) = {z G R V < 15 - Î/2, z2 < 20 - y1}

at xo = 1 and at its solution yo — (10,5). Evidently, the (LI) condition
is satisfied, 7 (a?o, 3/0) = {1} an(i J(%0i yo) = 0- After the appropriate
computations one gets

conv{if
1+QL

5

L 4

a G [0, 1]

Therefore, the nonsingularity assumption of Theorem 2.1 holds and so the
QVI, given by (2.1) (2.2), defines on a neighbourhood of xo = 1 a unique
implicit operator S for which S (xo) — (10,5).

We turn now our attention to the directional differentiability of S. Thereby
we employ another Lagrangian

£ (x, y,\) = F (x, y) + (Vz G (xy y, y)f X

vol. 30, n° 4, 1996



4 0 6 J. V. OUTRATA

which may be related directly to the QVI (1.2). Evidently

£(x . y, A) = L{x, y, y, A)

and for the derivatives at (#o, yo, Ao) one has

VxL(xo, 2/0) 2/0) Ao) = VX£(XQ, yo, Ao),

VzL(x0, yo, yo, Ao) + Vy L(XQ, yo, yo, Ao) = V y £(xo ï yo, yo)- (2.3)

THEOREM 2.2: Under the assumption of Theorem 2.1 the map S is
directionally differentiable at XQ. For h G Rn the directional derivative
v = S! (XQ] h) satisfies with a vector uj the System of équations and
inequalities

yo, Xö)v + (VzGI(x0, yo,

x£(rro, yo, Ao)fr

, yo, yo) + VyGj(xQ, yo, yo)]v

= -VxGj(xo, yo, yo)^

[V^ G A / (zo, yo, yo) + Vy G^j (ar0) yo, yo)] v

< -Va? G/\ j (xo, yo, yo) h

ul = 0 for % ^ / ( x o , yo)

s* (xo, yo, yo), h) + (Vy^ (xo, yo, yo)

+ Vzs* (xo, yo, yo), v ) ) ^ = o

/or i G ƒ (xo, yo)\^(^o, yo). (2.4)

Proof In the proof we essentially follow the ideas used in the proof of
Lemma 1 in [10].

Consider a séquence of positive numbers tj | 0 which générâtes a vector
from DS(XQ] h), i.e.

lim S(X0

tj

(As S is lipschitzian near xo due to Theorem 2.1, such a séquence exists.)
Evidently, by (1.3) for j sufficiently large

5 (XQ + tj h) = Z {xo + tj h, S (x0 + tj h)).

Recherche opérationnelle/Opérations Research
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The operator Z is directionally differentiable due to Proposition 1.1 and thus

S{xo + tjh) =Z{x0, S{x0))

(xo); h,

again due to the lipschitzian nature of S. However Z (XQ, S (xo)) = S
and so one gets

S(xQ+tjh)-S{x0)

= Z [xo, S(xo)\ h, +o{tj).

By letting j —> oo and using the fact that the directional derivative of a
lipschitzian map is continuous in the direction variable, we obtain that

v = Z' (xo, yo] K v)- (2*5)

Thus, we have just to modify the system (1.7) accordingly. The introduction
of the Lagrangian C enables to simplify the first équation due to
relations (2.3).

To prove the directional differentiability of S, it remains to show that (2.4)
admits a unique solution v for each direction /i. Assume by contradiction
that (2.5) possesses for a given h two different solutions v\, V2- Evidently,
(2.5) may be rewritten to the form

v - Z1 Ozn, J7O; U, V)~\ [Ol rn ,v
(2.6)

and thus we assume that Equation (2.6) possesses two different pairs of
solutions (m, v\) and (112, ̂ ) - As Z is directionally differentiable, it
implies that

<o(t). (2.7)yo +tvi - Z (XQ + tu\ ,yo+tvi)- (yo + tv2) + Z (x0 -f tu2i yo +
XQ -h tU\ — (XQ + tU2 )

Equation (1.3) may also be written in the "inverse function" form

\y-Z(w,y)] _ \Q'

vol. 30, n° 4, 1996
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The Clarke Inverse Function Theorem implies the existence of a
lipschitzian inverse function G defined on a neighbourhood of (0, XQ) such
that for i = 1, 2

'yo + tvi - Z (XQ + tui, yo + tvi)
xo +.tu%

for t sufficiently small. Therefore

G

Vo + tvi tv2

tu2

+ tUi - tU2)

where L is the Lipschitz modulus of G. By combining the last inequality
with (2.7) we get

which is the needed contradiction. Thus DS(xo; h) shrinks to a singleton
for each direction h and we are done. •

As Z is in fact Bouligand-differentiable (B-differentiable) (cf. [20]), we
could also apply Theorem 3.2.3 from [21]. According to this theorem,
roughly speaking, the local inverse to a local Lipschitz B-differentiable
homeomorphism ƒ is B-differentiable and its jB-derivative is the inverse of
the B-derivative of ƒ. In our case it would imply the our implicit map S
is even B-differentiable.

It can easily be shown that the system (2.3) is equivalent to the linear QVI:
Find v E O (v) such that

(Vy C (XQ, yo, Ao) v + Vx C (XQ, y0, Ao) h , v - v } > 0

for all v' GÜ{v),
(2.8)

where

fori G J(xo, yo),

(Vxö* (xo, yo, yo)j h) + (Vyg
l

+ {Vzg
l(xoy yoj yo), w) < 0

fori E /(xo, yo)\/(^o, yo)}-

Oi yo, yo), ^> = 0

yo, yo), y)

Recherche opérationnelle/Opérations Research
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Indeed, by writing the QVI (2.8) in the form (1.5), we get exactly the
System (2.4).

We illustrate now the application of Theorem 2.2 by a simple QVI of
Ex. 2.1.

EXAMPLE 2.2: Consider the QVI of Example 2.1 at a?o = 1 and at its
solution yo = (10,5). The system (2.4) attains the form

n i 8 o i 100 ,
ó ó

-v1 + 2v2 = 22.5h
4

v1+v2 <0 (2.9)

u2 = 0

u1 > 0

[v1 + v2)ul =0 .

One easily computes that for h = 1 and h — — 1 system (2.9) possesses
the (unique) solutions (v1, v2) = (-30, 30) and (v1, v2) = (-10, -5 ) ,
respectively. Thus, as Sf (XQ\ 1) / S1 (XQ\ —1), the map S is nonsmooth
at xo.

In gênerai, solving (2.4) amounts (similarly as in the case of the System
(1.7)) to finding an index set Ti (xo, yo), i E K (xo, yo), such that

i y
GjuTi {xoi yo, yo) + Vy GjvTi {xo> yo, yo)

h yo, Ao) 1 h

{xo, yo, yo)J

, yo, yo) + V y G / ^ / u ^ ) (x0, yo, yo)] v

r . ) (x0 , yo, yo)h<O

uJun > 0. (2.10)

If the cardinality of K (xo, yo) is not too large, one has just to solve a few
linear Systems and check the remaining strict inequalities.

The resuit of Theorem 2.2 plays an important rôle in optimization
problems with QVI constraints because it essentially enables to apply

vol. 30, n° 4, 1996
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some effective nondifferentiable optimization methods to composite functions
6 (x) := ƒ (x, S (x)), where ƒ [Rn x Rm -> R] is a given (smooth) objective.
This approach is particularly advisable, if for all admissible values of x the
corresponding QVI's possess unique solutions, cf. [8],

Alternatively to the approach presented in this section one could apply
the stability theory of Robinson [19, 20] directly to the generalized équation
(1.5) which is under a suitable constraint qualification equivalent to the
QVI (1.2), In this way the assumption of Theorem 2.1 would be replaced
by a different one, but we would get exactly the same formulae for the
directional derivative Sf (XQ: h).

3. IMPLICIT COMPLEMENTARITY PROBLEMS

Consider the QVI given by (1.1), (1.2), where in (1.1) one has s — m and

g% (z, y, z) = (f1 (x, y) - z\ i = 1, 2,..., m.

We dénote

D (s, y) -

and observe that the equivalent nonsmooth Equation (1.3) attains now the
form

H(x, y) = mm{F(x, y)} y-D(x, y)} = 05 (3.1)

where the minimum is taken componentwise.

Remark: In (3.1) one easily recognizes the standard form of a parameter-

dependent ICP:

For a given x E A, find a vector y E Rm such that

F(x,y)>0J y>D{x,y), (F (x, y), y - D(x, y)) = 0.

Let XQ € A be fixed and assume that yo solves the équation H (XQ, y) — 0.
We introducé the index sets

M(XQ, yo) : = {i e {1,2,..., m } | F ( s 0 , yo) < y*- tf (z0, I/o)}

N(xOj yo) : = {i E {1, 2,..., m}|F* (XQ, yo) > » * - V ( z 0 , I/o)}

L(xo, î/o) : = {i E {1, 2,..., m}|F l (a;o, 2/o) = y% -<P%(x§,

Recherche opérationnelle/Operatioos Research
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and similarly as in Section 1 we dénote by T{ (xo, yo) the single subsets of
L (xo, yo), where i runs through a suitably chosen index set K (xo, yo)- Let
P/ , Pf be the matrices, defined for i G K (xo) by

VXFJ (xo, yo)

/ i\ ' / if J ^ M (xo, yo) U Ti (xo, yo)

\ -Vx(f? (xo,yo)
if j G N (xo, yo) U (L (xo, yo)\T% (a?o, yo))

_ / if j G M ( X 0 , yo)UTz(xo, yo)

\ ej ~ ^y93 (ZOÏ yo)

iï j eN (xo, yo) U (L (xo, yo)\Ti (xo, yo)), J

j = 1, 2,..., m. From the définition of the generalized Jacobian it is clear that

dH(xo, yo) C conv{[j^\ Pf]\i G K(x0, yo)}-

Hence, due to the Implicit Function Theorem of Clarke, Theorem 1.2 with
matrices Pf given by (3.2) holds true and ensures thus the existence of the
implicit operator S possessing the mentioned properties.

Remark: Observe that in this case the (LI) condition automatically holds.

In the sequel we will assume that all matrices from conv {Pf\i G
K(xo,yo)} are nonsingular and turn our attention to the directional
derivatives of the implicit map S at xo.

PROPOSITION 3.1: The map S is directionally differentiable at x$. For h G Rn

the directional derivative v — S1 (xo; h) satisfies the system of équations

Vx FM (xo, yo) h + Vy FM (xo, yo) v = 0, ï
-Va; DN (xo, yo) h + vN - Vy DN (x0, yo) v = 0 I ,3 3

mm{VxFL(xo,yo)h + VyFL(xo,yo)vy f
-Va; DL (xo, yo) h + vL'- Vy DL (x0, yo) v} = 0. J

Proof: Due to Theorem 2.2 we need just to show that the directional
derivative is given by (3.3). To be able to proceed in the same way as in the
proof of Theorem 2.2, we rewrite the Equation (3.1) in the form

H (x, y) = y - Z (x, y) = y - max {y - F (x, y), D (x, y)} = 0.
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It is well-known that

-Va F1 (zo, yo) ft + v% - Vy F1 (zo, yo) v
if i e M ( z o , yo)

Vx D
% (zo, yo) h + VyD

% (zo, yo) ̂

max {-Va F1 (zo, yo) ft + v* - Vy F* (zo, yo) i>,
Vx £)1 (zo, yo) h-\-VyD

l (XQ, yo) ^}
if i E L(zo, yo).

Thus, it remains to use the above expression in the équation v =
Zf (zo, yo; ft) v) and we arrive immediately at system (3.3). D

Remark: In [8] a different way is used to ensure the single-valuedness,
the lipschitzian behaviour and the directional differentiability of the implicit
map, defined by Equation (3.1). It relies on a transformation of the ICP to
a strongly monotone variational inequality and then it suffices to apply the
results from [19, 11].

We again illustrate the application of the above statement by a simple
example.

EXAMPLE 3.1 : Consider the Equation (3.1) with m = 4, n — 1,

2
- 1
0
0

- 1
2

- 1
0

0
- 1
2

- 1

0
0

- 1
2

y +

l-x
l-x
l-x
l-x

(3.4)

and

i\2<pl {x, y) = - 3 . 9 + x + 0.1 (y1)2, = 1, 2,..., 4, (3.5)

at xo = 0 and at its solution yo = (-2, - 3 , - 3 , -2 ) . One easily computes
that Af(x0, W>) = {1,4}, N(xQ,yo) = 0 and L(xo,yo) = {2,3}.
Therefore, to verify the assumption of the Implicit Function Theorem of
Clarke, we have to check the nonsingularity of the matrices

2 - 1 0 0
- 1 2 - 1 0
0 - 1 2 - 1
0 0 - 1 2

"2
0
0
0

- 1
l -0 .2yg-

— 1
0

0
0
2

- 1

0
0

- 1
2
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2
-1
0
0

- 1
2
0
0

1

0
- 1

- 0 . 2 y 0
3

- 1

0
0
0
2

2
0
0
0

- 1
l - 0 . 2 y 0

2

0
0

0
0

L -0.2y'i
- 1

0
0

) °
2

and their convex combinations. All these matrices are indeed nonsingular and
so there exists an neighbourhood O of 0 (in R) and a lipschitzian operator
S [O —> R4] such that yo = S (XQ) and for each x E O, S (x) is a solution
of the ICP given by (3.4), (3.5). System (3.3) attains the form

-H + 2V1 -v2 = 0

-h-v2* + 2vé = 0

For h = ±1 its solutions are S" (soi 1) = (2, 3, 3, 2) and S1 (XQ\ -1 ) =
(-0,8125, -0,625, -0.625, -0.8125). Therefore, expectantly, S is non-
smooth at XQ.

In [12] a different approach is applied to the study of the solution behaviour
for parameter-dependent ICP's, based on the Implicit Function Theorem of
Robinson [20]. To fulfil the appropriate requirements, ho wever, one needs
to assume that

Vy F1 (x0, yo) = et - Vy <pl
 (XQ, yo) for alH e L (x0, y0).

One immediately observes that this assumption simplifies substantially
also the vérification of the nonsingularity requirement in the Implicit
Function Theorem of Cîarke, because one has to examine only one matrix.
This shows its considérable severity (in Example 3.1 for i — 2 one has
V'y F

2 {x0, yo) = ( - 1 , 2, - 1 , 0) and e2 - Vy ip2
 (XQ, yo) = (0, 1.6, 0, 0)).

Our approach is applicable in more gênerai situations, but the effort,
connected with the analysis of the solution behaviour, may be rather
considérable.

CONCLUSION

The assumptions of Theorem 2.1 could be somewhat weakened by
replacing the generalized Jacobian by the directional derivative of Kummer.
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This derivative, for a function ƒ at x in the direction h, is the set of all limits
of the différence quotient l/U [f (XJ + U h) — ƒ (xi)], where x% —> x and
U i 0. In the appropriate inverse function Theorem [9], one has to require
that this derivative does not contain the zero operator for any nonvanishing
direction h, However, as the évaluation of the appropriate limits could be
rather diffïcult in our case, we have preferred to retain the approximation by
generalized Jacobians, developed in [14, 15].

From the viewpoint of both the a posteriori solution analysis as well as
optimization with QVI constraints it would be désirable to obtain certain
stability and sensitivity results also for the case, where S does not admit
locally unique solutions. For this generalization nonsmooth analysis offers a
variety of effective tools and so we hope that these results could be obtained
in a near future.
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