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OPTIMAL GARBAGE COLLECTION POLICIES
FOR A DATABASE IN A COMPUTER SYSTEM (*)

by T. Satow (!), K. Yasui (1) and T. Nakacawa (1)

Communicated by Naoto Kaio

Abstract. — It has recently become necessary to maintain a database periodically and economically
for the requirements of continuous cperation of a computer system. To use memory areas effectively
and to improve the processing efficiency, garbage collections for a database are made at suitable
times according to the number of updates and the amount of garbages. This paper considers that
additive garbages arise according to Cdf G (x) when a database is updated, and that a database is
useless if total garbages exceed a threshold level K. To prevent this, we make a garbage collection at
periodic time T or at N-th update, whichever occurs first. Using the theory of cumulative processes,
the expected cost is obtained, and the optimal T* and N* which minimize it are discussed. Finally,
numerical examples are given when G (x) is exponential.

Keywords: Garbage collection, Database, Expected cost, Optimal policy.

Résumé. — Il est apparu récemment nécessaire de mettre a jour périodiquement une base de
données de facon économe. Pour utiliser efficacement les zones de mémoires et pour améliorer
Uefficacité du processus, des ramassages de déchets d’une base de données sont effectuées a des
instants appropriés selon le nombre de mises a jour et la quantité de déchets. On considére dans cet
article que les déchets s’accumulent selon une loi de probabilité cumulée G (x) lorsque la base de
donnée est mise a jour, et que celle-ci est inutilisable si les déchets accumulés dépassent un seuil
K. Pour prévenir cela, nous effectuons un ramassage de déchets soit avec une période de temps
T, soit a la N-iéme mise a jour, en choisissant la méthode qui se présente en premier. Utilisant la
théorie des processus cumulatifs, nous obtenons le coiit moyen, et nous examinons T* et N* qui le
minimise. Nous terminons avec un exemple numérique oit G (x) représente la loi exponentielle.

Mots clés : Ramassage des déchets, base données, colit moyen, politique optimale.

1. INTRODUCTION

A database is in optimal storage according to the schema defined in the
data structures. However, after some operations, storage areas are not in good
order due to additions and deletions of data. Such updating procedures reduce
the size of continuous memory areas and make processing efficiency worse.
To use storage areas effectively and to improve processing efficiently, garbage
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collections have to be made at suitable times. Many garbage collections to
reclaim the storage and rearrange a database are used in most large list
processing systems [1], [2]. Cohen [3] reviewed algorithms for performing
garbage collection of linked data structures. Recently, several authors [4],
{51, [6] have studied “real” time garbage collections to avoid suspension
of the application program in its execution. Almost all problems have been
concerning with how to introduce garbage collection methods.

When a database is updated from several online terminals, it would be
necessary to set up a desired response time. If response times become
comparatively long, processing efficiency becomes worse, and at last, it
would be impossible to update data. Response times may depend on the
amount of garbages.

This paper proposes when to make garbage collection for a database with
a threshold level K of total garbages. An amount of garbages with Cdf G (x)
arises from each update and is additive. A cost and a time for a garbage
collection are higher if total garbages are greater than K. To prevent such
an event, a garbage collection is made at periodic time T or at N-th update,
whichever occurs first.

Each garbage collection restores computer resources such as response
time, storage arca and throughput to an initial state. This corresponds to
one modification of replacements of shock models [7], replacing “update”
by “shock” and “garbage” by “damage”. Using the theory of cumulative
processes [8], the expected cost is derived and optimal policies which
minimize it are discussed. It is shown that optimal time 7% and number
N* exist uniquely in reasonable cases when the system is updated at a
Poisson process. Numerical examples are given when an amount of damages
is exponential.

2. EXPECTED COST
Suppose that the database is updated at a nonhomogeneous Poisson process
with an intensity function A(¢) and a mean-value function R (%), ie.,
t

R(t) = / A (u) du. Then, the probability of j updates of the database
0
during (0, t] is

Hi(t)={[R@OV/ite *®  (j=0,1,2,.).

Further, an amount W; of garbages arises from the j-th update and has
a probability distribution G (z), independent of the number of updates. It is
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J
assumed that these garbages are additive. Then, total garbages Z; = Z W;
=
up to the j-th update have z

Pr{Z;<z}=GV () (j=0,1,2..),
where GU) (z) is the j-fold convolution of G (x) with itself, and GO (z) = 0
for z < 0, =1 for > 0. If total garbages exceed an upper limit level
K, then the database becomes useless for lack of storage areas or due to
long response times.

A garbage collection is made, before the database is useless, at time 7" or
at N-th update, whichever occurs first. For the above model, we introduce
the following costs: let ¢1 and cs be fixed costs for the respective garbage
collections at time 7 and at N-th update, and ¢z be a fixed cost for garbage
collection when total garbages exceed a level K, where ¢1 < ¢ and ¢3 < c3.
Further, let ¢ (z) be a variable cost for collections of an amount z of
garbages.

The expected cost when a garbage collection is made at time T or N-th
update is

N-1

K )
> @) [+ @)]d6? @)
=0 0

T K
+ /0 Hy_1 (6) A (1) dt /0 3+ o ()] dG™ (z), (1)

and the expected cost when total garbages exceed a level X is
N-1 ‘ T
ez + 0 (K)] 3 [GY) (K) — GU*D (K] / H (A0 d ()
j=0 0
The mean time to a garbage collection is
N-1 . T
T H(T)GY (K) + ¢ (K) / tHy 1 (8) ) (£) dt
§=0 0

N—-1 ) T
+ 369 (K) - GUHD (k) / LH; (8) A (t) dt

N-1 ' T
=Y GY (k) /0 H; (t)dt. 3
=0
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Therefore, the expected cost rate is

N-—

o1, N) = {Z ) [ e+ @1469 @)
T
+ /0 Hy_1 (t) A (1) dt/o [e3 + o ()] dGY) (2)

N-1 ‘ T
+les + a0 (K] DGV (K) = GUAY (K] / Hi () A (t) dt}
=0 0
N-1

/ Z G (K) / H; (t) dt. (4)

3. OPTIMAL GARBAGE COLLECTION TIME

Suppose that a garbage collection is made at only time 7. Then, from (4),
the expected cost is given by

St K )
Ci1(T) = lim C(T, N)= {; H;(T) /O [c1 + co (z)] dGY) (z)
(o o] _ ) T
+Hez + eo (F)] D [GY) (k) — GUH (K)] / H; (t) A (t) dt}
7=0

/ZG’)(K)/ H; (t)dt. (5)

We seek an optimal time T which minimizes C1 (T') in (5). Differentiating
Ci (T') with respect to T and setting it equal to zero imply

(c2—c1) {A(T)lez GUN(K) /O Hj(t)dt—zHj(T)[l—G(”(K)l}
1=0 7=0

A(T) f} H; (T) / ' [GY) (z) = GUFY (2)) deo (2)
3=0 0

+ o0
Y H; (T)GY) (K)

J=0
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oo ‘ T o0 K .
x Z G(])(K)/ Hj(t)dt — ZHJ' (T)/ [1 = GU)(z)]deo(z) = c1, (6)
j=0 0 =0 0

where

S ()69 (K) — GY*1) (k)
0. (T) = =2

i H; (T) GO (K)
7=0

It is very difficult to discuss an optimal T* analytically. In particular,
we assume that the database is updated at a Poisson process with rate A
and ¢p (z) is proportional to an amount of garbages, i.e., A(f) = A and
¢o () = co . Then, equations (5) and (6) are rewritten as, respectively,

011 ={a-(a-a) 3 16 &)
=0

o0 K
WS H G0 (@) ds
+0]§=%HJ(T>/O e <)1d}

0 T
/¥ [ e ™
7=0

oo}

) T
(2 — ¢1) {/\Ql )Y GY (k) /0 H; (t)dt

j=0
-y H;(T)[1 —G<f'><K)1}
7=0

J

% ) T
+Co{)\ Q (1) > GY) (k) /0 H;j (t)dt

j=0

e K )
@ [Cn-6D @l —a, ®

j=0
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where

K A
> m(@) [ 169 (@) - 69 (@) do
=0 0

QZ (T) = [o%S) ’
> H; (1) GY) (K)

3=0

=2 e 2019,

If cg = 0 then (8) is

) ) T
AQ1(T) > GO)(K)/O Hj (t)dt

=0

=3 Hy(1)1-GY(K) =

J=0

C1

©)

cg—c1

If Q1 (T) is strictly increasing, then the left-hand side in (9) is also strictly
increasing from 0 to Q1 (c0) (14 M (K)]—1, where @1 (00) = Tlim Q1 (T)
— 0

o0 .
and M (K) = 3. GUY) (K) which represents the mean number of updates

Jj=1
until total garbages exceed a level K. Thus, if

Q1 (c0) [1+ M (K)] > ca/(c2 — c1)

then there exists a finite and unique T which satisfies (9).

Further, if Q9 (T) is strictly decreasing, then the second bracket~0f the
left-hand side in (8) is strictly decreasing from 0, and hence, T* > T.

4. OPTIMAL UPDATE NUMBER

The expected cost rate when a garbage collection is made at only N-th
update is, from (4),
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C2(N) = lim C(T, N)

K
[e2 + co (K] [1 = G (K)] + / [e3 + co (2)] dGI) (=)

= " (10)

Z G (k) / H, (t) dt

Jj=

Forming the inequality C (N +1) — C3 (IN) > 0 to seek an optimal
number N* which minimizes Cs (N) in (10), we have

GY) (K)

{G(N) (K) - G+ (k) =

(co —c3) =

G(V) (K)/ Hy (t)dt 5=0
0

X /m H; (t)dt — [1 - G (K)]}
0

/f (G (z) — GNHD) (2)] deg (x)
+

o
G (K) / Hy (t) dt
0
1

= 00 K
X jgo ) (K)/O Hj(t)dt —-/0 [ -6™ (@)]dey (z) > e3. (1)

Suppose that A (¢) = A and ¢ (z) = cp . Then, equations (10) and (11)
are, respectively,

K ,
e — (e — ¢3) G (K) + ¢ / [1—G™ (2)] dz
0

Cy (N) = o (12
1/ > GU(K)
j=0
(V) (N+1)
(2 — 63){(; (f;)(N ((;K (K) Z el (K) -1 - gW) (K)]}
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[ 16 @ -6 @)
0

+ ¢y o™ (K)

N—1 ) K
x ¥ GU) (K - /0 (1= GW) (z)]dz > c3. (13)

J=0
If ¢cg = 0 then (13) is

GN) (K) — W+ (k) =
™) (K) Z G (K)

[~ e (K)] > 2. (14)

Denote the left-hand side in (14) by U (V). Then, we have

G (K)y WD (k)] &
v - -1 = G(N—lg(lz') o ;Q) ZG(])(K

Thus, if GUtY (2)/GU) (z) is strictly decreasing in j, then U () is also
strictly increasing, and

U(oo) = lim U (N)=Qs (o) [1+M(K) - 1.

where

_ G(N) (K) — G(N+1) (K)
Qs (00) = lim ™ (K)

Therefore, if Q3 (00) (1 + M (K)] > c2/(c2 — c3) then there exists a unique
minimum N which satisfies (14).

K
Further, if {/ (G (z) — GIVHD) ()] dx}/G(N) (K) is strictly

0
decreasing in N, then the second bracket of the left-hand ~side in (13) is
strictly decreasing from O when N = 0, and hence N* > N.
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5. NUMERICAL EXAMPLE

We compute the optimal policies numerically when ¢ (z) = cpz,
A(t) = A and G(z) =1 — e™#*. In this case, equation (8) is

o0 ) T
(ca —c1) {)\Ql (1) > GV (K)/O H;(t)dt
j=0

SN AGIEECI)

7=0
+2 {/\ - Qi)Y 69 () /TH» (t) dt
7 = o
-y Hj(T) )y aY (K)} = a1, (15)
j=1 1=1
where GU) (K) = i (wK) /i e= B, Hj(t) = [(At) /5] e~ ™,
1=y

i H; (T) GUHY (K)
7=0

fj H; (T)GY) (K) |
7=0

Denote the left-hand side in (15) by Ly (T'). Then, it is evident that

h(T)=1-

o T
c :
L@ =3 (a-a-2)em Y e [ o
L; (0) =0,
Li(co)= lim L1 (T)=uK (cz —c1 — EQ)

T—oo I
Note that GUTY (z)/GU) (g) is strictly decreasing in j when G (z) =
1 — e™#* Thus, from Appendix, @1 (T) is strictly increasing, and hence,

L1 (T) is also strictly increasing for ¢; — ¢1 — cg/u > 0. Therefore, if

vol. 30, n°® 4, 1996



368 T. SATOW et al.

ca —c1 —co/pu > c1/(u K) then there exists a finite and unique 7* which
satisfies (15), and the resulting expected cost is

Ci(T*) = A % +(c2 — 1) Q1 (T*)]. (16)

Conversely, if ¢ —c1 —co/p < c1/(pK) then T* — oo, i.e., a garbage
collection should not be made before total garbages exceed X, and

a7

Next, we compute an optimal number N* which minimizes Cz (N) in
(10). In this case, equation (13) is

(2 *Cs){

co G(N_H) (K) N-1 ) N _
o {—Gm—@* 2 OO = 2, GV K) 20 (18

G (K) | 5~ o ()
1_—5@7@(7] ]Ezjo GY) (K) -1 - GW) (K

Denote the left-hand side in (18) by Lz (N). Then,

Ly (NYy—Ly(N -1)
(N) (N+1) it
= (Cz —c3 — @) { GV (K) G (K)} Z GO (K), (19)

n) | GVD(K)  GW(K) | =

L (0) =0,
Ly(c0)= lim Ly (N)=uK (cz —c3— EQ).
N—oo 12
Therefore, if cg—c3—cop/p > c3/(p K) then there exists a unique minimum
N* which satisfies (18), and conversely, if c2 —c3 — co/p < ¢3/(1 K) then

N* — oo, since GUHD) (2)/GU) (z) is strictly decreasing in j.
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Table I gives the optimal times 7* for x K = 150, 300, 500, 700 and
ca/c1 = 100, 200, 500, 1000 when ¢g K/c; = 1. For example, when A = 5,
c2/c1 = 100 and 4 K = 700, the optimal time AT™ is about 572. That
is, when the database is updated at 5 times an hour and becomes useless
after 700 updates on the average, a garbage collection should be made at
572/5 = 114.4 hours, i.e., at about 114.4/24 ~ 4.8 days. Taking another
view point, when total garbages exceed (572/700) x 100 =~ 81.7% of the
upper limit K, a garbage collection should be made.

TABLE I
Optimal times AT* and Cy (T*)/\ when co K[c; = 1

c2/a wK
150 300 . 500 700
AT |CL(TOA| AT |CL(T*)/3| AT* [CL (T)/N] AT | Gy (T%)/A
100 98.1 0.017152 | 221.5 | 0.007904 | 394.5 | 0.004576 | 572.1 0.003191
200 95.3 | 0.017340 | 217.5 | 0.008026 | 389.2 | 0.004614 | 565.8 | 0.003213
500 92.0 | 0.017903 | 212.5 | 0.008115 | 382.6 | 0.004643 | 558.0 | 0.003244
1000 89.6 | 0.018084 | 209.0 | 0.008223 | 377.9 | 0.004663 | 552.4 | 0.003259

Similarly, Table II gives the optimal numbers N* for pK =
150, 300, 500, 700 and cy/c3 = 100, 200, 500, 1000 when p = 1.0
and ¢p K/c3 = 1. For example, when c¢3/c3 = 100 and p K = 700,
the optimal number N* is 605. That is, a garbage collection is made at
(605/700) x 100 = 86.4% of the upper limit K, the value of which is greater
than that of the previous case when ¢; = cj.

TaBLE 11
Optimal number N* and Co (N*)/\ when p = 1.0 and co K/cs = 1

c2/c3 uK
150 300 500 700
N ey N eyl N [ ] N e v/
100 110 | 0.016000 | 241 | 0.007562 | 421 | 0.004406 | 605 0.003100
200 108 | 0.016175 | 238 | 0.007613 | 417 | 0.004428 | 600 0.003112
500 105 | 0.016403 | 234 | 0.007678 | 412 | 0.004455 | 594 0.003127
1000 103 | 0.016575 | 231 | 0.007727 | 409 | 0.004475 | 590 0.003139
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In general, a garbage collection policy at /V-th update is more economical
than that at time 7, however, they have almost the same values in case of
c1 = c3. Further, it is of interest that both 7% and N* depend little on costs
cz/c1 and cy/c3, and are given approximately by u K.

6. CONCLUSIONS

We have studied when to make garbage collections in the operation of
a database which is useless at an upper limit K of total garbages. When a
database is updated at a nonhomogeneous Poisson process, and an amount
of garbage due to each update can be estimated and has Cdf G (z), we
have considered the model where a garbage collection is made at time T
or at IN-th update.

Applying the theory of cumulative processes to this model, we have
obtained the expected cost and have discussed the optimal 7* and N* which
minimize the expected cost. From numerical examples, it has been shown
that the optimal policies are determined approximately by an upper limit X.

In this paper, we adopt the time 7 and the update number N as indicators of
operation of a database. If total garbages or remaining storage and memory
areas would be estimated from some methods, we could consider similar
models where garbage collections are made at total garbages or remaining
areas.
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APPENDIX
When GUTD (2)/GU) (z) is strictly decreasing in j, we prove that

1-Q1(T) = Z (AJT) GU+ ( /Z (AT) GY) (),
7=0

3=0

is also strictly decreasing in T for any = > 0.
Differentiating 1 — @1 (T') with respect to 7,

b
{Z ALY 46) ()

Z ()‘]T) G(J+1)( )Z ’\T) G(z+1)( )} (A.1)

7=0 ’ i=0

The numerator is rewritten as

Z ()‘ Z ()‘T) G(])( )G(z+1 (z)

i AT)J s (ATY ; G (z)  GUHD ()
Z Z il (IL') G( +1) (37) l:G(i_+_1) (I) - G(j) (l‘)

GGt (z) GO (z)

G+ (z)  GUHD) (m)]

j=0 ' =0
o0

Jj= =51

G2 () GUFD ()
Gt (z) GO (z)

(A2)

Note that the second term in (A.2) is negative since GU+1) (z)/GU) (z)
is strictly decreasing.
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Changing the summation of ¢ and j, the first term in (A.2) is

(/\T)' ATy i ) (2)  GUHY (2)
Z p -;1 7 GV (2) GUHY) (¢ )[G(wl @ @ |

(A.3)

Changing 7 into 7 with each other, (A.3) is

i a1y i (A;f) GO (2) GUHD ()

!
=0 7 isn

GO (z) GO (a)

o~ (ATY 1 S (AT ;
:]2:; (4 _)1 Z (('l, +)1)! GU+h (x)G( )(37)

GU+D (z) GO+ (m)]

+1) i+2)
y [G(Hl (z) GU+ (m)} Ad)

GO (z) G ()|

Consequently, (A.2) is

o0

Z (AT)J Z (AT)* G(j) (z) GUHY) (2)
— o

(74 1)!

: G<’+2)(x) GUHY ()
NG () GO ()

which completes the proof.

(i+1-4) <0,
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