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A CONTINUOUS-TIME SEARCH MODEL
WITH FINITE HORIZON (*)

by W. STADJE ( J )

Communicated by Shungi OSAKI

Abstract. —A variant ofthe continuons-time search model ofZuckerman is studied. Afixed number
ofidentical items are for sale over afinite time horizon. Offers ofi.i.d. random sizes arrive at time
instances forming a renewal process; every time the salesperson décides to wait for a new offer, a
fixed amount has to be paid. Search with or without recall is considered. We dérive optimal stratégies
(maximizing the expected gain) for both cases. In the situation with recall the optimal strategy is seen
to be of the form "sell ail iff the maximum offer so far is greater than or equal to some threshold
value ", which is a non-decreasing function of the remaining selling-time. This function is given
explicitly. In the case without recall the optimal strategy is ofa similar, but more complicaîed form.

Keywords: Search model, continuous time, renewal process, finite horizon, optimal strategy.

Résumé. - Nous étudions une variante du modèle d'exploration à temps continu de Zuckerman.
Un nombre fixé d'objets identiques est mis en vente sur un horizon de temps fini. Les offres de tailles
indépendantes identiquement distribuées arrivent au hasard à des temps formant un processus de
renouvellement; chaque fois que le vendeur décide d'attendre une nouvelle offre, un montant fixé
doit être payé. On considère l'exploration avec ou sans rappel. Nous trouvons la stratégie optimale
(maximisant le gain moyen) dans ces deux cas. Dans le cas « avec rappel », on voit que la stratégie
est de la forme « vendre tout si et seulement si Voffre maximum jusqu'à présent est supérieure ou
égale à un certain seuil », seuil qui est une fonction non-décroissante du temps de vente restant à
courir. Cette fonction est donnée explicitement. Dans le cas « sans rappel » la stratégie optimale
a une forme semblable, mais plus compliquée.

Mots clés : Modèle de recherche, temps continu, processus de renouvellement, horizon fini,
stratégie optimale.

1. INTRODUCTION

This paper is concernée! with a variant of the continuous-time search
model first studied by Zuckerman [10, 11, 12]. A fixed number k of identical
commodities are for sale over a prespecified finite horizon. Offers arrive
at random times forming a renewal process, Le. the inter-arrival times are
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2 3 4 W. STADJE

independent positive random variables with a common distribution function
A (t). The offer sizes are also i.i.d. positive random variables; their common
distribution function will be denoted by F (x). Selling only takes place upon
the arrivai of an offer; at any such time the décision to look for a new offer
costs a fixed amount of c > 0 monetary units, even if the next offer does
not appear before the deadline. Past offers are either lost (search without
recall) or can be retained (search with recall). In the second case we assume
that any offer extends to all still available commodities so that it is up to
the salesperson to décide how many of them he/she is willing to sell at the
best current price. The objective is to find a strategy ensuring the maximum
expected again.

The différences of this model to the one investigated by Zuckerman are:

(à) There is a finite deadline so that offers can be accepted at the latest
at time T > 0.

(b) The case of several commodities is treated.

(c) At any time, setting out to look for a new offer causes a fixed cost
c > 0, while in Zuckerman's model cost is proportional to time.

Apparently the first version of the problem at hand was solved by
Elfving [3] and Siegmund [4] (see also Chow et al [2]). They considered a
Poisson arrivai stream, only one commodity (k — 1) and a gênerai discount
function instead of costs for keeping the offer stream going. This model
was generalized to the case k > 1 by Stadje [6]. Zuckerman [10] studied
the search problem with Poisson arrivais and time-proportional observation
costs over an infinité time horizon. A related optimal pricing model with a
finite deadline is discussed in Stadje [7].

In two subséquent papers Zuckerman [11, 12] dealt with NBU and NBUE
inter-arrival distributions. He was primarily interested in finding conditions to
ensure the optimality of some control-limit policy, Le. a strategy for which
the first offer exceeding a critical value is selected. Recently, Boshuizen
and Gouweleeuw [1] extended Zuckerman's original model to the case of
arbitrary (absolutely continuous) renewal arrivai streams. They derived non-
explicit expressions for the optimal stopping rules and showed that it can
be optimal to stop strictly in bet ween two arrivais. Further generalizations
can be found in Stadje [8, 9]. In both papers the offer size distribution is
allowed to be time-dependent. In [9] the arrivai stream is assumed to be
the superposition of several renewal processes (with the distribution of the
offer sizes also depending on which process the corresponding arrivai time
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A CONTINUOUS-TIME SEARCH MODEL WITH FINITE HORIZON 235

belongs to), while in [8] it is a point process whose intensity at any time t
dépends on t and the number of offers received up to t.

For simplicity we assume throughout that A and F are continuous and that
/»OO

0 < m - / xdF{x) < oo.
Jo

2. SEARCH WITH RECALL

In this Section we suppose that at any arrivai time of an offer the
salesperson is allowed to sell an arbitrary subset of his/her remaining
commodities at the highest price offered so far. In this case the problem
of selling k commodities can be reduced to that of selling only one, since
the selling décisions regarding any of the commodities will be the same.
If we dénote by V& (t, x) the maximum expected gain achievable from k
commodities for sale over a time horizon of t time units, given that the
current maximal offer is equal to x, then we have Vju (t, x) — k V\ (t, x).
Thus it suffices to consider V (t, x) — V\ (t, x).

If k — 1, a strategy can be described as a function <$:(0,oo)x(0,oo)—>
{0, 1}, where ê (t, x) — 1 (0) means that the commodity is (not) sold if the
maximum previous offer size is x and there are still t more time units to go.

The dynamic programming équation for V (t, x) reads as follows:

V(t, x) =max \x, -c + x(l - A(t))

+ f V(t-s, u)dF (u) J dA (s)l. (2.1)

To see (2.1), note that either the item is sold at the price of x monetary
units or a new offer is looked for, causing a cost of c monetary units. In
the later case the item is sold at the price x after t time units if no offer
has appeared before. Otherwise, the next offer arrives after time s < t. Then
with probability F (x) it does not exceed x, leaving us with the residual
expected gain V (t — 5, x) or the new offer is greater than rr, say equal to
u > x (which happens with probability dF (u)), in which case the residual
expected gain is given by V (t - s, u). Summing over all these possibilities
yields (2.1).
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In order to find V (£, x) and an optimal strategy, we introducé the set
of all measurable functions ƒ (£, x) on [0, T] x [0, oo) satisfying

= sup { IJ V7 X'\ \x > 0. 0 < t < T\ < oo. (2.2)
lmax(l , x) ' ~ - ƒ

Endowed with the norm defined in (2.2), XT becomes a Banach space. For
a strategy 6 we define the operator 1$ : XT —> -Xr by

(/«/)(t,x) =
/o

if £ (£, re) = 1
x ( l - A ( * ) )

f°° 1
+ / f{t-s,u)dF (u) dA (s), if 5 (t, rr) = 0

where ƒ G X T - Further we need the operator / : XT —• ̂ T given by

(//)(t,x) = max x, -c + x(l-A(*))

™ f(t-s,u)dF(u)]dA(s)\.

Obviously we have IV = V. Let us show that V, considered as an element of
Xx, is uniquely determined by this relation and that it can be approximated
uniformly by iterating I.

THEOREM 1: The value function V is the only fixed point of I and
lim \\In f - V\\ = 0 for every f E XT.

Proof: Banach's fixed point theorem cannot be applied directy because / is
not necessarily a contraction operator on X?> Let ƒ, g E XT and fix t} x > 0.
Let 6Q be a strategy for which (I6Q f) (£, x) = (If) (t, x). If 60 (t, x) = 1
then (ƒ ƒ) (£, ar) - (/p) (t, x) < 0, because (Jp) (£, x) > ar. Setting

/3(x) = max(x, 1), Po = $(x)dF{x)
Jo
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A CONTINUOUS-TIME SEARCH MODEL WITH FINITE HORIZON 237

we can now conclude that

(ƒ ƒ) (t, x) - (Ig) (t, x) < max [0, (I6o ƒ) (t, x) - (ISo g) (t, x)}

F(x)(f(t-s,x)-g(t-s,x))

+ f ( ƒ (t - s, u) -g(t-s, u)) dF (u)l dA (s)

< || ƒ - g\\ J* F (x) fi (x) M dF (u)] dA (s)

<\\f-g\\(P(x)+po)A(t). (2.3)

Interchanging ƒ and g, we see that

\(I f)(t, x) - (I g)(t, x)\ <\\f - g\\(P(x) + po)A(t)

\\If-Ig\\<\\f-g\\(l + l3o)A(T). (2.4)

By (2.4), it follows as in (2.3) that

(I2mt,x)-(I2g)(t,x)

(*)[(ƒ ƒ)(*- a, x) - (/ g)(t- s, x)}

[(I f) (t - * , « ) - U5) (* - s, u)} dF (u)} dA (s)

<\\f-9\\ ft\F(x)(p(x) + p0)A(t-s)

+ f (P («) + /3b) A (t - s) dF (u)l <M (s)

where An(-) dénotes the n fold convolution of A with itself. Carrying out a
straightforward complete induction (and using symmetry) we obtain

\(Inf)(t,x)-(Ing)(t,x)\<\\f-g\\(l3(x) + npo)An(T) (2.5)
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238 W. STADJE

for all n E N. (2.5) entails

Choose e > 0 and 6 > 0 such that 1 - A (e) > 6. It is easy to see that

An

for some C > 0 and q e (0, 1), where [•] hère dénotes the integer part
function (Stein's lemma; see Siegmund [5; p. 12]). Indeed, if Z\, Z2,... are
i.i.d. random variables with distribution function A and m = [T/e] + 1,
then obviously,

[n/m]

In particular, \\(In f)-(In g)\\ < a || ƒ—g|| for some a < 1 if n is sufficiently
large, say n > UQ. Thus 7n° is a contraction on X^ and has exactly one
fixed point. The relation If = ƒ implies /n° ƒ — ƒ, and consequently,
f = V. Further we have

\\Ijno f - V\\ < ai \\f - y | | / ( 1 - a) - 0, a s ; -> oo,

so that for every ƒ E X p̂

| | /n f~V\\< max y/["/"ol «o (ƒ ƒ ) _ y y _, 0 , as n -> 00.
0</<n

The Theorem is proved.
Note that

V(t,x) = x + max [0, A (t, x% (2.6)

where

A(t,x) = -c-xA(t)+ f \F(x)V(t-s,x)

+ [°° V(t-s, u) dF (u)] dA (u).
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THEOREM 2: Thefunction A (£, x) is non-decreasing in t and non-increasing

in x.

Proof: Since t \—> V (£, x) is obviously non-decreasing, so is t i—>• A (£, x).

Let yW (t, x) = x and W») (t, a:) = (In V^) (t, x), n > 1. It is easily
seen that (ƒƒ)(£, x) is non-decreasing in x if f (t, x) has this property.
Thus, ail V(n) (£, x) are non-decreasing in x. V^ (t, x) is the maximum
expected gain if at most n future offers are allowed, given that the initial offer
size is x and the horizon is t. Therefore n i—> V^ (t, x) is non-decreasing.
By Theorem 1,

sup V(n)(t, x) = V(t,x). (2.7)

Let r*
= -c-xA(t)+ \F(x) V^"1) (t - 5, x)

Jo L

+ ƒ v^'1) (t - s, tt) rfF (n) dA (s), n > 1. (2.8)

By (2.7), (2.8) and monotone convergence, it follows that A^ (t, x) —»
A (£, x), as n —• oo. Thus it suffices to prove that every function A^ is
non-increasing in x. This can be shown by induction.

For n = 1 we have

(t,x) = -c + A (t) / (u - x) rfiï1 (n), (2.9)

and the right-hand side of (2.9) is clearly non-increasing in x. For the
induction step from n to n + 1 we note that

F ( u ) (t, x)-x = max [A(7l) (t, x), 0],

We can now write
pt r /»oo

A ( n + 1 ) ( t , ar) = - c + ƒ / (TAra> (t - s , u ) - F ( n ) ( i - 5, ar)) rfF (u )
Jo Ux

1
+ F ( u ) ( £ - 5 , x) -x\ dA(s)

—ai:
+ max [AW (i - s, a;), 0] | dA (s). (2.10)
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The two summands in the intégral over s on the right-hand side of (2.10) are

non-increasing in x. To see this, note that the inner intégral / is equal to
J

E {[VW {t - s, U)-VW(t-*,*)]+),

where U is a random variable distributed according to F, and that
x \-> V^ (t—SyX) is non-decreasing. Further, the function x i—>
max [A^ (t — s, #) , 0] is non-decreasing by the induction hypothesis. This
yields the assertion for A^ n + 1 ) . The Theorem is proved.

Theorem 2 implies that there is a non-decreasing function h (t) such that
A (t, x) < 0 iff x > h (£). Since V (t, x) = x iff A (t, x) < 0 [see (2.6)],
the strategy 5* defined by

5* (£, x) = 1 iff x > h (t)

is optimal. The function h (t) can be given explicitly as follows. Let

R(a) = (u- a)+ dF{u), a e R. Note that R is strictly decreasing
Jo

on the interval {a\R(a) > 0} and continuous everywhere. One has
(0, m] C R(R) C [0, m], and 0 G i2(R) iff F is concentrated on a
bounded interval.

THEOREM 3: The function h(t) is given by

f rv (t\ if A (i\ ^ O r < m A (i\

\ 0, otherwise,

where a — a (t) is the unique solution of the équation R(a) = c/A(t).

Proof: If A (t) = 0, there will be no offer within the next t time units
so that h(t) = 0. Thus let A(t) > 0. Clearly, V (t, x) = a; for x > h(t).
Since h is non-decreasing, it follows that V (t — s, u) = u for $ e [0, t]
and ii > h(t). From the définition of A (t, x) we can conclude that for
every x > h(t)

[t r yoo i
A (t, x) = -c - x 4 (f) + / \F(x)x+ udF(u) dA (s)

Jo L Jx J
= -c + A(t)R(x). (2.11)
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If c < m A (t), the right-hand side of (2.11) is non-positive iff x > a (£); if
c > mA(t), it is négative for ail x > 0. This proves the Theorem.

The optimal strategy has the following myopie property: An offer is
accepted if it is at least as large as the expected value of the reward obtained
by stopping at the next offer, if there is any, or at the end of the horizon
if there is no more offer.

3. SEARCH WITHOUT RECALL

In this Section every offer is valid for only one item and cannot be
retained after being rejected. We assign the value zero to items which are not
sold before the deadline. Once an offer has anived, there are three possible
décisions: (a) sell one item and look for a new offer, (b) sell one item and
stop the process, (c) reject the offer and look for the next one. For k — 1
one will clearly ne ver décide for option (a).

Let W (k. t, x) be the maximum expected gain, given that k commodities
are for sale over a time horizon t and an offer of size x has just arrived.
The dynamic programming équation for W (k, t, x) is given by

W (M, s) = max LE - c + / / W (k - 1, t - s, u) dF (u) dA(s),
L Jo Jo

x,-c+ ƒ W(k,t~s,u)dF(u)dA(s)\i fc>l
Jo Jo J

W(0,t,x) = 0. (3.1)

A strategy is now a function 6 : {0, 1,..., k} x (0, oo) x [0, oo) —> {0, 1, 2},
where 8 (j, t, x) = 0 (or 1 or 2) means that in state (j, t, x) décision
(à) [or (b) or (c)] is made. Proceeding along the same lines as in
Section 2, we introducé the Banach space YT or ail measurable functions
ƒ : {0, 1,..., k} x [0, T] x [0, oo) ^ R satisfying ƒ (0, t, x) = 0 and

je{l,...,k},

0 < t < T x > 0 > < o o (3 2)
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242 W. STADJE

where Yr is of course endowed with the norm defined by (3.2). The operators
J<5 : YT —» Yjr (for a given strategy S) and J :Yr —>Yr are given by

•-c+ / / / ( j -M-a.u)
Jo Jo

rr,

dF{u)dA{s)) if6(j, t, x) = 0
if <5(j, i, s) = 1

dF(u)dA{s),

ƒ
[ f f(j,t-s,u)dF(u)dA{s)\.
o Jo J

THEOREM 4: Ju° f51 a contraction operator on Yp for some UQ E N.
value function W is its only fixedpoint For every ƒ G YT, || J71 ƒ — W||
/o zera exponentially fast, as n —>> 00.

Proof: We only have to show the contraction property of Jn° for
some no G N, the other assertions then being obvious. Let ƒ, 5 G
Yr, (j, t, x) G {1,..., k} x (0, 00) x [0, 00) and let <So be a strategy
satisfying (J<$0 ƒ) (j, t, x) = (J ƒ) (j, t, x). Further recall the constant

/.oo
/?o = ƒ ïïiax (u, 1) di71 (u). As in the proof of Theorem 1 we obtain

J
( J ƒ) (j, i, a:) -

< max

, t, or) = (J^o ƒ) (j, t, a;) - (Jg) (j, t, x)

- 1, t - s ,/ / (ƒ (j

rt /-oo
/ / (f(j,t-s,u)
Jo Jo

- g {j, t - s, u)) dF («) dA (s)

<\\f-g\\A(t)p0.
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A CONTINUOUS-TIME SEARCH MODEL WITH FINITE HORIZON 243

It follows that

ht, x)\

m a x ( X j i )
(r).

By induction, it is seen that

Since A^ (T) —> 0, as n —> oo, J n is a contraction operator for n sufficiently
large.

Now let A~x (x) = sup{s > 0|A(s) < x}, x > 0, and define the
fonction g (j, t) by

THEOREM 5: The following strategy is optimal:

{0, if x>g{j,t),t>A~l{c/m)

1, if t < A-1 (c/m) \ (3.3)

2, if x<g(j,t), t> A~l{c/m) )
Proof: From the définition of W it is obvious that j \-> W (j, t, a?) is

non-decreasing. Thus, in state (j, t, rr) it is optimal to sell one item and
then stop the process iff

-c+ / / W(j,t-s}u)dF(u)dA(s)<0. (3.4)
Jo Jo

Let us show that (3.4) is equivalent to t < A~x (c/m) (which in turn is
tantamount to A(t) < c/m). As W( j , t, u) > u, we have

ft pOO

/ / W (j, t - 5, u) dF (u) dA (s)>mA (t).
Jo Jo

Hence, (3.4) does not hold if A(t) > c/m.
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Now assume that A (t) < c/m. Let W^ (j, t, x) be the maximum
expected gain achievable when starting at (j, i, x) under the condition that at
most n future offers are permitted. Clearly, W^ (j, t, x) in non-decreasing
in n and satisfies

[ ft ƒ00

x-c+ / W(n-V (j - 1, t - s, u)
Jo Jo

dF(u)dA(s),x,-c+ f f dF(u)dA(s)\,
Jo Jo J

n > 1, j > 1
WW (O, t, ar) = O

W<® (j, t, x) = x , j>\.
(3.5)

By Theorem 3,

W^ (j, t,x)yw (j, t, x), as n -> oo. (3.6)

We prove by induction on n that A (t) < c/m implies that

- c + / / WW (j, t-s,u) dF (u) dA (5) < O, n e Z+. (3.7)
Jo Jo

Using the monotone convergence theorem, we conclude (3.4) from (3.6) and
(3.7). (3.7) is trivial for j = 0. So let j > 1. Then

/ / W (0) O', t-3,u)dF (u) dA (3) = m A {t),
Jo Jo

so that the assertion holds for n = 0. Now suppose (3.7) is true for n — 1
instead of n for some n G N. Then (3.5) yields W^ (j, t — 5, w) = u for
all u > O and s < t. Therefore,

ft pCO

/ / W^ (j, t - 5, u) dF (u) dA (s)=mA (t) < c,
Jo Jo

and the induction is complete.
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A CONTINUOUS-TIME SEARCH MODEL WITH FINÏTE HORIZON 245

It remains to consider the case t > A~l (c/m). Then the décision to sell
and stop is not taken, and it follows from (3.1) that it is optimal to sell one
item and look for further offers iff

rt POO

x-c+ / W(k-l}t-s,u)dF(u)dA (s)
Jo Jo

pt POO

> - c + / / W (Jk, t - s, u) dF (u) dA (s).
Jo Jo

It is now easily seen that the strategy given by (3.3) is optimal.

REFERENCES

1. F. A. BOSHUIZEN and J. M. GOUWELEEUW, A continuous-time job search model: gênerai
renewal processes, Technical Report 9247/A, Econometrics Institute, Erasmus
University Rotterdam, 1992.

2. Y. S. CHOW, H. ROBBINS and D. SIEGMUND, Great Expectations. The Theory of Optimal
Stopping, Houghton Mifflin, Boston, 1971.

3. G. ELFVING» A persistence problem connected with a point process, / . Appl Prob.,
1967, 4, pp. 77-89.

4.-D. SIEGMUND, Some problems in the theory of optimal stopping, Ann. Math. Statist,
1967, 30, pp. 1627-1640.

5. D. SIEGMUND, Sequential Analysis, Springer, New York, 1985.
6. W. STADJE, An optimal fc-stopping problem for the Poisson process. Proceedings

of the 6th Pannonian Symposium on Mathematical Statistics (P. BAUER, F. KONECNY
and W. WETZ Eds.), Vol. J5, 1987, pp. 231-244.

7. W. STADJE, A M l information pricing problem for the sale of several identical
commodities, Z Oper. Res., 1990, 34t pp. 161-181.

8. W. STADJE, A new continuous-time search model, i . Appl. Prob., 1991, 28,
pp. 771-778.

9. W. STADJE, A note on a continuous-time search model with several offer streams,
Oper. Res., 1992, 40, pp. S346-S352.

10. D. ZUCKERMAN, Job search: the continuous case, J. Appl Prob., 1983, 20, pp. 637-648.
11. D. ZUCKERMAN, On preserving the réservation wage property in a continuous job

search model, J. Econom. Theory, 1984, 34, pp. 175-179.
12. D. ZUCKERMAN, Optimal stopping in a continuous search model, J. Appl. Prob., 1986,

23, pp. 514-518.

vol. 30, n° 3, 1996


