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OPTIMAL REPLACEMENT POLICY FOR
A DETERIORATING PRODUCTION SYSTEM

by M. BRAGLIA

Communicated by Naoto KÂÏO

Abstract. — An optimal replacement policy for a deteriorating production System is considérée.
A minimal repair model is defined which assumes the System to be replaced after a specified time,
during which a numher offailures may occur. The probability offaiture can be given any arbitrary
(increasing) form. The model is based on a technique which permits to deal with large repair
tintes (non-negligible with respect to the replacement time and the interval time) and to calculate
the probability of k breakdowns over the replacement interval rigorously. The average downtime
relevant to k minimal repairs is obtained, on the contrary, from a semiempirical formula that appears
in good agreement with the results of Monte Carlo simulations. The theory permits an accurate
analysis of the error that is introduced when more conventional and approximate models are used.

Keywords; Maintenance, breakdowns, replacement, intégral équations.

Résumé, - On considère une politique optimale de substitution pour un système de production qui
va se détériorer par l'usage. Un modèle de renouvellement périodique avec réparation minimale
en cas de panne est défini où le système est replacé depuis un intervalle de temps bien spécifié
pendant lequel un certain nombre de pannes peuvent être arrivées. La probabilité de panne peut
avoir n'importe quelle forme arbitraire (croissante). Le modèle est fondé sur une technique intégrale
qui permet de considérer de grands temps de réparation (c 'est-à-dire qui ne sont pas trascurables
par rapport au temps de remplacement et à Vintervalle de temps) et de calculer rigoureusement
la probabilité de k pannes sur l'intervalle de renouvellement. Le temps moyen dépensé pour k
réparations est fondé au contraire sur une formule semi-empirique qui présente un bon accord avec
les résultats de simulations Monte Carlo. La théorie permet une analyse détaillée de l'erreur qu'on
introduit quand des modèles plus conventionnels et approximés sont utilisés.

Mots clés : Entretien, pannes, remplacement, équations intégrales.

1. INTRODUCTION

Production Systems undergo détérioration with usage and âge. In case
of breakdown, production is temporarely interrupted until machines are
repaired or replaced. This implies higher costs and lower productivity and
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quality. Therefore, it becomes important to define an optimal scheduling of
préventive maintenance in order to reduce the time-intervals in which the
system is out-of-service. For this reason, various papers on the development
of such policies have appeared in the literature. The différences between
contributions of different authors may concern the mathematical approach
(queueing theory, renewal theory, dynamic programming,...), the degree of
knowledge of the system state (préventive maintenance model, preparedness
model, inspection model) or different aspects of the problem (minimal repair
model, shock model, miscellaneous replacement model). Références can be
found in three major surveys which cover the last forty years of scientific
production: MeCall [1] (up to 1964), Pierskalla and Voelker [2] (up to 1975),
Valdez-Flores and Feldman [3] (up to 1989).

In this paper we consider a minimal repair model [4] relevant to a single-
unit system. In our model: (1) the system failure rate (Le,, the probability
of failure per unit time) 7 (t) is an arbitrarily increasing function of i,
(2) minimal repairs (or unscheduled maintenances) do not affect 7 (t) while
a replacement (or préventive maintenance) makes the probability to vanish,
(3) system failures are immediately detected and, finally, (4) the wasted time
r per single minimal repair is less than the time 6 required for replacing the
entire system (Le., per single ordinary maintenance). The model permits to
calculate the (optimal) interval between successive préventive maintenances
which minimizes the waste of time. In fact, our treatment is relevant to times
rather than costs of the two different types of maintenances. Generally, it
has been preferred to associate a cost Cf to each minimal repair and a cost
cr < Cf to the replacement and also to neglect the waste of time caused
by minimal repairs, as the assumption drastically simplifies the calculations
of the relevant (renewal) theory [5], Our model, on the contrary, permits a
rigorous calculation of the probabiity of k breakdowns over the replacement
interval in situations in which the latter approximation becomes invalid. In
fact, the time required by each minimal (unscheduled) repair may be large
(even comparable with the same replacement interval). As mentioned, our
only requirement is that r < 9. The calculation of the average downtime
relevant to k minimal repairs is based on a convenient semiempirical formula
which is found in very good agreement with corresponding Monte Carlo
simulations. Thus, the theory permits an accurate analysis of the error that is
introduced when more conventional and approximate models are used. As far
as possible, we try to find an analytical solution to the problem of calculating
the optimal interval of real (or total) time between successive ordinary
maintenances, even in the gênerai case in which 7 (t) is arbitrary. Numerical

Recherche opérationnelle/Opérations Research
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applications are considérée! in the special (linear) case 7 (t) = a + 2 /3t for
various values of the parameters a and /3,

2. OPTIMAL TIME OF EFFECTIVE SERVICE BETWEEN ORDINARY MAINTE-
NANCES

Consider a production system which, at any instant of time, has a certain
probability to undergo breakdowns. Let

r = (average) downtime per minimal repair (or extraordinary mainte-
nance);

0 = (average) downtime per ordinary maintenance;

T$ =time of effective service between successive ordinary maintenances;

Tw — waste of time caused by (ordinary and extraordinary) maintenances
in the interval between complétions of consécutive ordinary maintenances;

Tr = Ts + Tw — 9 — time interval between completion of an ordinary
maintenance and beginning of the successive one.

To take account of production-system détérioration, we will abandon the
common assumption of constant failure rate. We will assume this probability
to increase with time according to the law 7 = 7 (t). When 7 (t) is known, the
problem becomes that of calculating the probability p (k, T) of k breakdowns
in (0, T). Let Tbe the effective-service time. We are then able to détermine
immediately the optimal interval To which minimizes the ratio between time
Tw in which the system is out-of-service and total time Tw + Ts between
successive ordinary maintenances. In fact,

with

Tw = 0 + r ] T kp (fc, T) = $ + r {k)T (2)
k-l

Note that, as 7 (t) is an increasing function of the service time, substantial
différence exists between the two kinds of maintenances. While the ordinary
maintenance implies a complete revision of the production system with a
consequent réduction of j(t) to the (initial) value 7(0), a minimal repair
does not change the value of 7(£).

vol 30, n° 2, 1996



146 M. BRAGLIA

2.1. Probability p (fc, T) and analytical solution of the problem

As the waste of time due to minimal repairs is not included in T, the
breakdowns may be treated as instantaneous events. As a conséquence
p (fc, T) is a generalized Poisson distribution with mean and variance

r ( r ) = / !{t)dt (3)

Of course, we do not intend to dwell on this well known resuit. However,
in view of the theoretical developments of the successive sections, it may
be useful to mention how the calculation of p(k) T), usually based on the
solution of differential équations, can also be based on less familiar solutions
of intégral équations.

A dérivation of p(k, T) which in our context assumes special interest
may be that of starting from the following evident intégral form

, T) = f dÇ f dr]... f
Jo Je, Jx

T

x
times)

T) (4)

where

Qo {t\ t) = e-<r W-r(f )} _ _ , Qo ( 0 , t) = p(0, t) = e- rW (5)

is the probability of no breakdown in (t', t), given that the System has not
failed until t1. In f act,

T PT

o Je

To return to our problem, as the average number of breakdowns in (0, T)
is (k)x = r ( T ) , eq. (1) can be given the form

TT(T) + T K)
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Therefore, the optimal interval To between successive ordinary maintenances
is easily seen to satisfy the équation

For 7 (t) = a + 2 j317 it follows that To = ^/ÏÏJJfir) in correspondence of
which ratio (7) assumes the (minimum) value

2.2, Generalization

We can also assume that the minimal-repair time, say tf, is distributed
according to a given law g(#). For instance, if q{$) = jue~^, then
(<$) = ^ - 1 = r, and the time spent for fc minimal repairs will be distributed
according to the fc-th convolution of q (#), that is the fc-Erlang(r) distribution.
In any case the probability of k breakdowns in (0, T) is independent of the
successive values of ê as the clock is stopped when a breakdown occurs.
Therefore, p (fc, T) maintains form (6) and the mean waste of time caused
by minimal repairs in (0, I) is still given by {k)x r — Y (T) r.

2.3. A numerical case

Most results obtained so far are well known (e.g., [6] and [7]). They
have been mentioned mainly for comparison with corresponding ones of
successive sections. With the same aim, we now consider a numerical
application. To this end, in figure 1 we represent the behavior of the ratio
R(T) given by (7) in the particular case a = 0.3, 0 = 2 and r = 0.2 for
(3 = 0.0, 0.1, 0.2 and 03.

The curves of figure 1 report R (T) as a function of time of effective
service T ^T$. From this point of view, it is not even necessary to specify
the distribution of the repair times. However, if this law is known, in principle
it is possible to obtain R (T) as a function of the total time Tr really elapsed

vol 30, n° 25 1996



148 M. BRAGLIA

Figure 1. - Behavior of ratio (7) as a function of the time of effective service T = Ts for
a = 0.3» 9 — 2 and r = 0.2. The curves are characterized by the corresponding values of 0.

from the beginning of service. In figure 2 we report the same curves of
figure 1 in this alternative time scale under the assumption that the minimal
repair time r is constant, The time-scale expansion is performed according
to the équation T = Ts + {k)Tr = Ts + (aTs + 0T^)r. As one can
see the curves are now flatter than the corresponding ones of figure 1. For
sufficiently elevated values of T the ratio R (T) becomes almost independent
of T. We will return to this question, for comparisons, in section 3.3.

Figure 2. - Behavior of ratio (7) as a function of the real (ie. total) time T = Tr for
a = 0.3, $I = 2 and r = 0.2 (continuous curves). The curves are marked with the
corresponding values of 0. The dashed curves report the corresponding waste of time
caused by breakdowns.
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3. OPTIMAL INTERVAL OF REAL TIME BETWEEN SUCCESSIVE ORDINARY
MAINTENANCES

Now we consider the case in which the optimal interval between successive
ordinary maintenances is calculated on the real (Le., total) time Tr, This
case is of special value when considering that, in the majority of practical
situations, the scheduling of maintenances must be planned on a temporal
horizon (weekly, monthly...). In fact, one must define exactly when ordinary
maintenances have to be made. But the approach of section 2.1 permits
only approximate évaluations, that is for r <C Tr, and the intervals between
ordinary maintenances cannot be defined exactly.

As donc in section 2.1, hère also we are interested to détermine the time
T which minimizes the ratio R (T) defined by (1). But now T - Tw + Ts is
the total time elapsed since the completion of the last ordinary maintenance.

Therefore, if rk (T) = (fc - 1) T + T£ (T) with r0 (T) = 0 is the waste of
time caused by minimal repairs in (0, T), eq. (1) assumes the new form

R {T) = ^ ^ (T = TS + Tw) (10)

where

Tw = 6 + J2 rk (T) p(k,T) = 8 + {(k)T - (1 -p(0, T))}r

t 1 dl)

k=l

Note that we permit the fc-th breakdown to terminate in ordinary maintenance.
In fact, r^ (T) represents the waste of time caused by the last breakdown.
Of course, the problem requires again to give explicit form to the probability
p (fc, T) of k breakdowns in (0, T). But with the new meaning of T the
problem becomes a bit more complicated than that considered in section 2.1,
even if still amenable to analytical solution.

3.1. Probability p (fc, T) of k breakdowns in the interval of time T = Tr

We pass now to the calculation of the probability of k interruptions, each
one lasting r, in the interval of time T. In this case we must take into
account that: 1) if a breakdown occurs at t a successive breakdown can only

vol. 30, n° 2, 1996
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occur in (t + r, T), 2) there is no détérioration in (t, t + r) and 3) the last
breakdown may terminate in ordinary maintenance.

As regards the probability j>(0, T) of absence of interruptions in (0, T),
again it is given by eq. (5) of the preceding case. On the contrary, for
k — 1, 2,..., it becomes necessary to distinguish different situations which
can occur dependently on the values of T and r. First it must be considered
that k interruptions cannot occur in a time-interval lower than (k — l ) r .
Thus, one must distinguish the case T > k r (in which k interruptions may
be entirely contained within 7) from the case (k - 1) r < T < k T (in which
this cannot occur). The two situations are different from the analytical point
of view. In fact, for (k — 1) r < T < k r, we will write that

T ) = / d£ / dr,... / dX

çT—kr />t—(fc-l)r

= / 7 (0^ / 7fa- )dV

whereas for T > kr the équation for p (fe, T) becomes

pT-k

7(0 « /,T)= / 7(0 « /
T-2r

/
T-T
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•T-(fe- l )T

7
T-kr
>T-2T

Despite the apparent complexity of these équations, it is easy to give
p (fe, T) explicit forms. The intégrations are performed without difficulty.
The calculations are reported in Appendix A. The result is the following:

X) F o r T < {k - 1) r , Vfc = 1, 2,..., T > 0, r > 0 :

j?(fc,T) = 0 (13)i

2) For (A:- l ) r <T <kr, V A; = 1, 2,..., r > 0 :

0 ' J '

3) For r > fer, V fc = 1, 2,..., r > 0:

0 ^

_^P( r - ( f c - i ) r ) e . r ( r . ( f c _ 1 ) T ) ( 1 3 ) 3

Note that in the limit r —» 0 we reobtain distribution (6).

One of the référées has suggested a rearrangement of these équations
and an alternative proof that deserves to be reported for its simplicity. The
rearrangement is the following. Let kr < T < (k + 1) r . Then

(14)!

vol. 30, n° 2, 1996
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for j = l ,2, . . . , fc (14)2

*T) (14)3

0 "

r ) = O for j>k + 2 (14)4

To prove these équations, let Xi be the failure time from the completion of
n

the (i — l)-th minimal repair, where XQ = 0. Let Y = Y^Xf. Then
2 = 1

ï ^ (15)
o *•

Equations (14)i and (14)4 are evident. Concerning (14)2 we have

<T<(X1+T) + ... + {X3 + T) + XJ+l}
+ Pr {(Xi + r) + ... + (Xj_i + T) + X,-

< T < (Xi + r) + ... + (Aj-_i + r) + (X, + r)}

(16)

which, in virtue of (15) agrées with (14)2. Similarly, eq. (14)3 is obtained
when noting that

p (k + 1, T) = Pr {Yfc+1 < T - (fc + l ) r < Yk+2}

+ Pr {T - (k + 1) r < yfc+1 < T - fc r }

= P r { y f c + 1 < T - f c r } (17)

Recherche opérationnelle/Opérations Research
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To give a numerical example, in figure 3 we represent the p(k, T)9s for
k = 0,..., 4 in the special case a = 0 and 0 = 0.3 for r = 2.

Figure 3. - Distributions p(k,T) for a = 0.0, /3 = 0.3 and r = 2. The curves are characterized
by the value of k. The points are résulte of corresponding Monte Carlo simulations.

For comparison, the corresponding distributions obtained by Monte Carlo
simulations are also reported. As one can see5 analytical and Monte Carlo
results are in perfect agreement

3,2. Mean downtime relevant to k breakdowns

At this point we must calculate the average waste of time caused by k
(minimal) repairs. The problem is particularly difficult when considering that
the last interruption may terminate beyond T (ie. between F and T + 9).
This happens whenever the breakdown occurs in (T — T,T). In that case,
only a fraction of r must be included in the calculation of the mean time.
The remaining part is treated as ordinary maintenance. (We have assumed
T < 0 to avoid to terminate beyond T + ff in the successive service interval.)

As shown in Appendix B, the analytical calculation of the mean waste of
time caused by breakdowns becomes heavy even for k = 1. The calculation
becomes impracticable for k > 1. However, the behavior of the rk (T)'s
as a function of T can be represented with good approximation by simple
expressions, Some approximate analytical représentations of the rigorous
équations are derived in Appendix B. The results can be briefly recapitulated
as follows.

vol. 30, n° 2, 1996
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For 7 (t) = a (constant), if we write that rk (T) = (k - 1) T+T^ (T), then

T-(k-ï)r

kr
(* + l)

rexp - ;V 2(T-(*-l)r

being the (itérative) solution of the équation

for (k - 1) r < T <

for T > tf*

= exp -2(T-(fc-l)r)

that is (18)2

Note that the Î?^'S appear to be independent of a. But (18)2 has only
solution for k < 2. For k > 2 various expédients can be used to joint
the curve relevant to high values of T to the linear behavior obtained for
T -* (k — 1) r . However, a good choice is that of assuming the exponential
form found for T > ûk to be valid for T > (k - 1) r.

Monte Carlo simulations with différent values of r have confirmed that (18)
represent very well the behavior of rk (T) for any T > (k - 1) r. Examples
of comparisons for k = 1, 2 and 3 are reported in figures 4a-c for three
different values of a and r = 0.5 for which $1 = 0.70 and $2 = 1*31. (For

(a)
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Figure 4. - (a) Behavior of r£ (T)/r (full curve) and p(fc, T) (dashed curves) for k = 1,
/3 = 0 and three different values of a. The points are results of Monte Carlo simulations;
(b) same quantités of figure 4a but for k = 2; (c) same quantities of figure 4a and 4b but
for k = 3. An identical resuit has been obtained also for k = 4.

convenience, in the same figures the corresponding distributions p (k, T)
are also reported.) As one can see, the agreement between Monte Carlo
and theory is remarkable. Of course, as the approach is approximate, the
anaîytical représentation will require that a and r are sufficiently small.
However, even for the extreme condition a — 1 and r — 1 the anaîytical
représentation remains good. This is shown in figure 5.
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Figure 5. - Behavior of T{ (T)/T for fi = 0» r = 1 and a = 1. The points are results of
Monte Carlo simulations, The dashed curves represent the corresponding distributions
p(0 ,T) and p ( l , T ) .

For 7 (t) = 2 jS i, on the contrary, it is found that a good représentation
of ri (T) is given by the (semi-empirical) formula

(2A + 1)
rexp(2/3)

for

exp"< - (19)!

xexp

for T>$k

2T-(4fe-l)r
10

where

and (19)2

C (0) = [1 + (2 fc/9) (/? - 0.3) exp (-T/15)]

Various simulations have been made to assess the accuracy of this
approximation. Some typieal results are given in figure 6 for fc = 1 and
various values of 0. Identical results have been obtained also for Jk = 2,
3 and 4 [9].
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Figure 6. - Behavïor of T£ (T)/T (full curves) and p (fc, T) (dashed curves) for A; = 1, a = 0
and three different values of J3. The points are results of Monte Carlo simulations. Identical
results have been obtained also for k = 2, 3 and 4.

For 7 (t) = a + 2 (31 the value of r^ (T) can be obtained by weighting the
two preceding values obtained for a = 0 and /3 = 0. Weights are required to
satisfy certain asymptotic behaviors, e.g. the behavior of ri (T) for T -> 0.

In this way it is found that [cf. Appendix B, le. (B.l) and (B.2)]

(20)

Figure 7 reports a comparison between theory and Monte Carlo simulations

relevant to this gênerai situation in which both a ^ 0 and {3^0. Identical

results have been obtained also for k = 2, 3 and 4 [9].

The results of figures 4-7 are interesting as they reveal the good agreement
between analytical représentations of T& (T) and Monte Carlo results.
However, there are various considérations that can be drawn from the
data reported in these figures. First of all it is evident that T& (T) differs
from kr mainly in the neighborhood of T — kr. This was an expected
resuit as T* (T) = 0 for T < (fc - 1) r . On the other hand, the more
the interval (0, T) is restricted the more the event corresponding to the
occurrence ofk breakdowns becomes improbable. (It becomes impossible for
T < (k — 1 ) T ) . Then, the event becomes scarcely probable for values ofT
for which the différence between r^ (T) and k r becomes more pronounced,
that is for T -> (k-l)r.
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Figure 7. - Behavior of T£ (T)/T (full curve) and p {k, T) (dashed curve) for k = 1, a = 0.1,
j3 = 0.1 and r = 0,5. The points are résulte of Monte Carlo simulations. The dotted curve
and the dot-dashed curve report the behaviours of r£ (T)/r for a = 0.1, /? - 0 and a = 0,
/? = 0.1, respectively. Identical résulte have been obtained also for fc = 2, 3 and 4.

These considérations can lead to conclude that the assumption rk (T) = k r
is quite reasonable. In fact, it is good in many cases. But this is not true
when rjT is not sufficiently small or, as the above figures reveal» when
the failure rate 7 (t) (Le. a and (3) is not sufficiently small. In that case the
assumption rk (T) = kr can lead to considérable error in the calculation of
the optimal interval To between ordinary maintenances.

3 3 . Optimal interval between ordinary maintenances. Numerical
examples

At this point we have the éléments to détermine the optimal time-interval
between ordinary maintenances, Unfortunately, contrary to the case treated
in section 2.1, it becomes difficult (if not impossible) to proceed analytically.
But there is no difficulty to continue our analysis numerically. In fact this
has been done under various conditions. Some typical results are reported
in figure 8 where the ratio R(T) is given as a fonction of T = Tr. We
have considered different cases in which r*. (T) = kr (full curve) and
Tk (T) = (& - 1) T + 7j£ (T) (dotted curve). In the same figures we also
report the behavior of R (t) as obtained for rk(T) = (fc - 1) r (dashed
curve). As one can see, the dotted curve is always in the area delinüted by
the two other curves which fix the upper and lower limite, respectively. As
expected, if r is sufficiently small there is no appréciable distinction between
the two cases rk{T) = (fc - 1)r + r* (T) and rk (T) - fer. That is, full
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Figure 8. - (a) Behaviour of the ratio R as a fonction of Tr for a = 0.3, 0 = 0.3, r - 1

and 0 = 2 under the assumptions that the loss of time produced by k breakdowns is
kr (full curve), (k — l)r (dashed curve) and (k — l ) r + r^ (dotted curve). The mark
indicates the position of the minimum; (b) same quantities as in figure 8a but for a = 0.1,
(S = 0.3, r = 1 and 0 = 1.

curve and dotted curve are coincident. We have verified this conclusion for
r = 0.2 with the indicated values of the other parameters [9]. In this case
the optimal time-interval between ordinary maintenances agrées with that
evaluated with the technique of section 2. (Cf., in particular, fig. 2). On the
contrary, when r is increased the différences between dotted and full curves
become more and more pronounced and, as a conséquence, the différence
between the corresponding values of the optimal time between ordinary
maintenances becomes pronounced. Figures 8 a-b report some examples
which show the entity of the différences when varying the parameters of the
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problem. Note that, in all of the cases, the value of T = TQ relevant to the
minimum of the dotted curve is lower than that given by the Ml curve. Of
course, the différence between the two values of To dépends on the failure
rate. It tends to increase when a and 0 (Le, 7(£)) are increased and vice
versa. A 23 Factorial-design analysis shows that this différence dépends
mainly on r and, in order of importance, on j3 and a.

3.4. Discussion and conclusions

We have calculated the optimal time-interval between successive ordinary
maintenances, This interval can be relevant to the time of effective service
or the total time really elapsed, including in this latter case the time
spent for (minimal or extraordinary) repairs. In particular we have worked
under conditions in which the conventional assumptions of: 1) very short
interruptions (with respect to the effective service time between ordinary
maintenances) and/or 2) sufficiently small breakdown probability, are not
satisfied. Some analytical expressions that have been derived [e.g. eqs. (13),
or (14), for p(k,t)] have a gênerai validity. They can be applied to
any function 7 (t) which can be treated as probability of beakdown per
unit time. Other expressions (e.g., those of T£ (T)) are semi-empirical and
necessarily approximate, even if in good agreement with results of Monte
Carlo simulations. In fact, they permit a good évaluation of the optimal
time-interval between successive maintenances even in situations in which
the time spent per single extraordinary maintenance is not small with respect
to the interval between ordinary maintenances. Our analysis shows that the
error influencing the optimal time-interval can become large when evaluated
under the conventional condition r —> 0, the correct value being generally
lower than the approximate one.

APPENDIX A

Probability of k breakdowns in (0, T)

Since (fe — 1) r may be considered the lower limit for T and k complete
breakdowns can only occur in a time T > fer, we distinguish two cases.
[8, 9].
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1) (k — 1)T < T < kr. In this case we have

p ( l , T ) = ƒ

p ( 2 , T ) = / '

•T

Qo (O, O 7 ( 0 ^ = 1~ e ~ r ^ ... 0 < T < r
0
•r-T

T - r

T ) _ r ( T _ T ) e - i ( J - r ) ... r < T < 2 r

where we have paid attention to write: 1) Qo (£, rç - T) instead of
Qo (£ + T, ??) for the probability of no breakdowns between £ + r and 77 (as
the system does not work between £ and £ + r and 7 (t) cannot change) and
2) Qo (77 — r, T — 2 r ) = 1 as it is certain that further breakdowns are not
possible if one of them occurs in (T — r, T). Analogously,

pT-2r

p ( 3 , r ) = / d
JO J£,+T Jrf+T

x 7 fa - T ) Qo (*? - T, C - 2 r ) 7 (?7 - 2 r )
rT-2r ÇT-T

JO JÇ+T

Qo(O, C -

- r (T - 2 r)

2!

In the same way one finds that, in the gênerai case,

k—1

p (fc, T) = 1 - £ \ P(r~(f"1)T) «
0 J '

... ( f c - l ) r < T < k r
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2) T > kr. In this case we have

[T-T pT

p(l,T)=j dtQo(0,Ol(OQo(t,T-T)+j Qo(O,

T

= r (T - r)

T-2r

f fT~T f
X W Qo(O,T-2T)-f(r)-T)dï}+ Qo(O,

UÇ+T JT-T
fT-T rT

+ l(Od£ <2o (O, V -
r 2 ^7 2 T V^l) + r ( T _ 2 r ) ,
- {r (T - r) e-r(r-T>.+ e"r(T-^} ... T > 2r

PT-2T

p(3,T) = / /

x i ƒ Qo(O; T-3r)7(C-2r)dC+/ Qo (O, C~2 r) 7 {Ç-2 r) d(

f Q0(0, C-
/T-3r

X

r (T —3r) _ r (T_3 T) r ( r - 3T) r (^-3 r)
3! + 2!

r ( T - 3r) r(T~3r) , r(T-3r)( 3 ) r (T-3r ) ,
1!

t2!
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In the gênerai case,

k

0

L[2e-r(T-(*-l)r)
O

As regards the normalizaton of p(k, T), it is not difficult to show that

0

APPENDIX B

Mean waste of time caused by k breakdowns

The simplest situation is that of single breakdown, Le. k — 1. If r\ (T) is
the average time that is lost in (0, T), then

1) For T < r:

For 7(4) = a (constant) [8, 9]

T-. (T1} T \ l v T /O
/ j l _L J J_ '— Tp ^ J. f £d

while for 7(4) = a + 2 (3t with aT -> 0 and /3T2 -> 0, to the first order
with respect to a and /3,

n(T)*T-

_a(T/2) + (3T(T/3) f T/2 for ^ = 0 , ,
\ T / 3 for a = 0 ^ ;
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2) For T>r:

M. BRAGLIA

T
Jo

71 (T) =

r (T - r) e + {e-r (T-r) _ e - r (r)}

where

= /
Jo

In strict analogy with the preceding case, it can be proved that for a t —> 0
and /3 T2 —> 0, to the first order with respect to a and /?,

n(T)
ar(l-r/(2T))+/3rr(l-r/r

-{ r{l-r/(2T)}
T{1-T/T + T2/(3T2)}

for /3 = 0
for a = 0

(B.2)

As expected, for T = r we find again (B.l). However, this resuit does
not represent well ri (T) for r < T and elevated T. For r < T, we can
approximate ri (T) as follows

for 7 (t) = a

for <y(t)

A being the average waste of time relevant to the breakdowns that occur
in (T — r, T). In fact, T\ (T) has not the same asymptotic behavior of
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the preceding représentation. A différent more appropriate analysis of the
problem is then necessary, possibly valid for any k. In practice, it is
important to find an approximate handy forai of T& (T) which permits a
more précise calculation of Rm and To than that provided by the simple
choice 7]fc (T) = kr.

To this end, suppose first that (k-l)r<T<kr and let

7* (T) = ( * - I ) T + (T-<£>*)

{Ok being the average time at which the k-th breakdown occurs. The rigorous
explicit form of (£)& is not simple to be obtained even for k — 2, but not
even convenient. The rigorous expression of (£}i is already too complicated
for practical use. Appropriate forms can be easily obtained for small T. In
partieular, for 7 (£) = a we have found [see (BA)] that (£}i = T/2 while for
7 (£) = 2 ƒ?£ we have found (£)i = 2 T/3. Analogously, for 7 (£) = a we
are then led to assume that {^2 = 2 (T - r ) /3 and, for 7 (t) = 2/3t, that
(£)2 = 4(T — T ) / 5 . In fact, if a single breakdown occurs, on the average,
at T/2 (or 2 T/3), in case of two breakdowns the second one occurs, on
the average, at 2(T - r ) /3 [or 4(T — r)/5)). In gênerai, we are then led
to assume that

v J ' (* + l)

= (A; — 1) r H ~ lor '

_ , , , ^ t r r 2fc(T-(fe-l)r)

i1) ) T for ^ W

For T > kr a convenient procedure can be the following. Suppose first
that j(t) = a and write that

Such an équation takes account that: 1) only the last breakdown may be
incomplete and 2) only a part T* of T must be considered in the average
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reported in braces. Thus, the problem becomes that of giving an appropriate
explicit form to T*. For k = 1 there is no problem as T* = T. That is,
in accord with (B.2),

T — T T T

For k = 2 we have, with good approximation, T* = (T - r ) / 2 , that is

T-T rexp

Analogously, it is expected that for arbitrary fc, a good approximation is that
of assuming T* = (T - (k — 1) r)/k since, on the average, we assign the
same fraction 1/fe of service time T — (k — l)r to each breakdown. Thus,

2(T-(k-l)r)

[k — 1) T + T exp —
2(r-(fc-l)r)

From this resuit we could be Jed to write that

for (fc-l)T<r <kr

However, the choice would be inappropriate since the connection of the
two behaviours of r& (T) at T = k r is not continuous. More correctly we
impose that
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and obtain (iteratively) the value of T = #& in correspondence of which the
two behaviors are connected with continuity. Finally, we assume

+ ^itiil fcr(k-I)T<T<

rexp I - ;

Note that: 1) the values of $k do not depend on a and 2) only two solutions
exist in correspondence of X (1) = 0.3574 and X (2) = 0.6191. For k > 2
there are various ways to have a satisfactory connection at T = kr. Much
more simply, we may assume the exponential behavior to be valid for any
T > (k - 1) r . Generally the approximation is quite good. Various Monte
Carlo simulations for different values of r have revealed that these results
represent very well the rigorous behavior of r^ (T) for any permitted value
of T (Le,, T > (k — l ) r ) and reasonable values of a and r . Comparisons
between Monte Carlo and theory are reported in figure 4 of the text.

To extend these results to more gênerai forms of 7(£), suppose first
that 7 (t) = 2 p t. The main différence with the case treated above is that
the distribution in time of the breakdowns is no longer uniform which
complicates the évaluation of quantities such as T*.

In considération of these difficulties and with the purpose to give the
best représentation to r | (T) we will adopt the following semiempirical
approach. First we observe that the linear behavior adopted in the interval
{{k — l ) r , kr) represents well r^ (T)/r up to values greater than about
1/2. This is clearly shown by Monte Carlo simulations. Assume then that

is the behavior of the mean time that is lost in the fe-th breakdown in the
indicated interval of time. Note that the upper limit (2k — 1/2) r corresponds
to the value of T for which r^ (T) — r / 2 . At this point, we can use the
above considérations to say that r^ (T) is reasonably represented by the form

= CTexp (-A T ( f e
T

1 )
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Placed that <f>^ {{2 k — 1/2) r ) = 1, we must fix the constants A and C in
order to satisfy the condition of passage for the point {{2 k.— 1/2) r, 1/2)
of the ratio r£ {T)/r. This request can be satisfied with A = (2 k + l ) / 3
and C = ( l / 2 ) exp (2 /3 ) , le. when writing that

For fc = 1 and <pk (T) = 1 this form has the expected asymptotic behavior.
Thus, it remains only to define the function 4>k {T). We have already assumed
that <t>k (T) = 1 for T = (2 k - 1/2) r . Then, we may start by assuming that
(f)k {T) = 1 for any T. But in this case it is found that r^ (T) tends to r when
increasing T less rapidly than indicated by Monte Carlo simulations. In other
words, contrary to the case 7 {t) = a, it is no longer possible to represent
the correct behavior of rj: (T) only with linear ternis in r/{T — (fc — 1) r )
in the exponential. Having ascertained that 4>k{T) must be a decreasing
function of T not so different from one in the time interval of interest, we
may assume that

Bk being an appropriate constant. In order to agree with the Monte Carlo
data we must write that B^ « B = 1/5 independently of k. Thus, we can
finally assume that

This équation, permits to represent r£ (T) very well. The accuracy of the
approximation dépends on the parameters f3 and r . In f act the dependence of
Tj* (T) on (3 becomes weak if j3 is sufficiently small. But it is not difficult to
introducé an appropriate dependence on f3 of the factor C to further improve
the analytical représentation of r^ (T). Taking into account that the constants
reported above optimize the représentation of r^ (T) for (3 — 0.3, from an
examination of the Monte Carlo behaviors we deduce that the form

is appropriate. As required, C (/?) = 1 for /? = 0.3, C (/3) -* 1 for T -> 00
and, finally, C (/3) increases (linearly) with A; as revealed by the simulations.
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On the other hand, even the constants appearing in the expression of C (ƒ?)

have been deduced by Monte Carlo simulations. Comparisons between

analytical (semi-empirical) behaviors and Monte Carlo results are reported

in figure 6 of the text.

The extension of these results to the gênerai case in which the form of

7 (t) is not specified is difficult but not necessary to our ends. For this

reason, we will assume as final case that j(t) = a + 2 (31. We must find a

suitable procedure to weight (T£ (T))a-o and (T£ (T) )^ = O- An appropriate

way seems that of imposing that (B.l) and (B.2) obtained for k = 1 are

satisfied. Thus we write that

for any k. Note that the case 7 (t) = a is dominant for small T while, for

large T, it is the case 7 (t) = 2 /31 that is more important. This is expected

as 7 ( t ) -» a for t —> 0 while *y(t) —> 2/51 for t —» 00. Of course, we

must still prove that the choice we have done for r£ (T) when both a and

(3 are différent from zero is appropriate for any k, not just for k = 1.

This has been verified by various Monte Carlo simulations, as indicated in

figure 7 of the text.
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