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POLYNOMIAL TIME ALGORITHMS FOR SPECIAL
OPEN SHOP PROBLEMS WITH PRECEDENCE
CONSTRAINTS AND UNIT PROCESSING TIMES (*) ()

by Heidemarie BrASEL M, Dagmar Kruce (1) and Frank Werner (1)

Abstract. — In this paper we consider different open shop problems with unit processing times.
For the problem with two machines and arbitrary precedence constraints among the jobs, we give a
polynomial time algorithm for the minimization of the makespan with a better worst case complexity
than a previous algorithm known from the literature if the number of arcs is of linear order. The
complexity of the open shop problem with unit processing times and intree constraints among the
Jjobs was open up to now if the sum of completion times of the jobs has to be minimized. By means
of the first result we give a polynomial time algorithm for this problem with two machines.

Keywords: Open shop scheduling, unit processing times, polynomial time algorithms.

Résumé. — Le but de cet article est de proposer des algorithmes polynomiaux pour deux probléemes
d’ordonnancement de type open shop a deux machines avec contraintes de précédence et temps
opératoires unitaires. Le premier algorithme qui permet d’optimiser la durée totale a une meilleure
complexité que le meilleur algorithme connu de la littérature lorsque le nombre de contraintes est
proportionnel au nombre de jobs. Le deuxiéme algorithme, qui est basé sur le premier, permet de

résoudre un probléme ouvert qui est celui de la minimisation de la durée moyenne d’achévement
des jobs quand les contraintes de précédences forment une anti-arborescence.

Mots clés : Ordonnancement, open shop, temps opératoires unitaires, algorithmes polynomiaux.

1. INTRODUCTION

In an open shop problem we have m machines 1, 2, ..., m, and n jobs
1,2, ..., n. Each job 7 consists of m operations O;; where O;; has to be
performed on machine j for p;; time units without preemption. We assume
that each machine can process at most one operation at a time and each
job can be processed by at most one machine at a time. Both, the machine
and the job orders, can be chosen arbitrarily. In this paper we consider
problems where precedence constraints among the jobs are given. Such a
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66 H. BRASEL, D. KLUGE, F. WERNER

constraint 4 — k means that the first operation of job & can only start with
processig when the last operation of job ¢ has been completed. The problem
is to determine a feasible combination of the machine and job orders which
minimizes a certain criterion.

We follow the classification scheme «|B|y of scheduling problems
suggested by Graham ez al. [7] where « describes the machine environment,
[ gives some job characteristics and additional requirements and <y is the
optimality criterion.

In the case of arbitrary processing times most of the open shop problems
are NP-hard. If the makespan Cp,x has to be minimized, the 2-machine
problem O 2||Cpax can be solved in polynomial time. However, the problem

O 2|tree|Cmax (i.e. the precedence constraints form a tree) is already
NP-hard.

A variety of polynomial algorithms has been given for the special case
of unit processing times indicated by p;; = 1. (¢f. Gonzalez and Sahni [8],
Liu and Bulfin [10], Tanaev et al. [12], Brasel [1], Brisel and Kleinau [2],
Tautenhahn [13] and Brucker et al. [5] and so on). Complexity results are
given in [9]. In [5] and [13] it has been proven, that in order to solve
open shop problems with unit processing times, it is sufficient to solve a
corresponding preemptive problem on m identical parallel machines where
all jobs have the processing time m and preemptions are allowed at integer
times. If a schedule for this parallel machine problem has been determined,
a machine assignment procedure constructs a schedule for the open shop
problem.

Because this assignment procedure has in the case of a fixed number of
machines a complexity of O (n?) or in a more refined version, where ideas
from edge coloring are used, a complexity of O (n log n), each algorithm
for a unit time open shop problem which uses a known algorithm for
the preemptive parallel machine problem mentioned above has at least
this complexity. A survey is given in [5]. However, by determining an
optimal schedule for special unit time open shop problems directly, we can
possibly obtain algorithms with a lower complexity. For instance, in [3]
and [4] algorithms are given for the problems O[p;; = 1, tree|Cpax and
Olpi; = 1, outtreelz C;, which have a complexity of O (nm).

In this paper we consider special open shop problems with unit processing
times and precedence constraints among the jobs. The paper is organized
as follows. In Section 2 we consider the problem O 2|p;; = 1, prec|Crax.
For this problem we derive an algorithm without solving the corresponding
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parallel machine problem and, consequently, we do not need the above
mentioned machine assignment procedure. The complexity of problem
Olpi; = 1, intreelz C; was open up to now. In Section 3 we give a
polynomial time algorithm for this problem with two machines. However, the
complexity status of the general O|p;; = 1, intree|z C; problem remains
open.

2. THE PROBLEM O2[p;; = 1, prec|Cmax

We consider the open shop problem with n jobs, 2 machines and unit
processing times. Let the graph G = [I', E'] of precedence constraints
between the jobs be given. The set of vertices I’ is the set of jobs and each
arc (i, k) € E' corresponds to a precedence constraint ; — k. We introduce
a sink s representing a fictitious job which leads to the graph

GP =[I'u{s}, E'U{(i, s) : iisasinkin G}] = [I, E].
Hence, all jobs are ancestors of the fictitious job s which also consists of

2 unit time operations. Let C% ., (I) denote the optimal objective function
value for the set I of jobs. Then we have

Cx’;la.x (I) -2= C:;la,x (II)' (2~1)

We denote by rk (¢) and rk* (i) the ranks of vertex %, i.e. the number of
vertices on a longest path from a source to the vertex ¢ and from the vertex
i to the sink s, respectively. Let rkmax := rk(s). Now we form sets Sy
and L, that contain the jobs with the same rank, i.e.

S = {3 € Ilrk (i) = k} and Ly = {i € Ilrkmaz—rk* (3)+1 = k}

for k =1, ..., rkmaz. These sets have the following properties:

PropeRTY 1: For each ¢ € S, k > 1, there exists a predccessor in Sp_q1.If
rkmax
|Sk| = 1, say S = {u}, then all jobs from U Sy are descendants of wu.
r=k+1

Property 2: For each 1 € L, k < rkmaz, there exists a successor in
k-1

Lyy1.If |Lg| = 1, say Ly, = {v}, then all jobs from U L, are ancestors of v.
r=1

Using the introduced sets Sy and L, we can easily give two feasible

schedules of the problem being considered. Obviously, we can schedule the
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68 H. BRASEL, D. KLUGE, F. WERNER

jobs of the sets Sy and Ly, respectively, within the time interval [t;, tx]
where in the first case

k-1
ty=> max{2,|S;[} and & =t +max{2, |Sk|}
r=1

and in the second case
k—1
te=) max{2, L[} and  f =t +max{2 L}
r=1

is fulfilled.

Here we use that a set {11, 12, ...4,} of jobs can be processed in [, Zx]
as follows:

M, e |0 | 4 tu-1
M, i1 | 2 | i3 iy
t, G+l G424 43 i

Figure 1. — Gantt chart in the case ;> 1.

M2 il

M1 il

L L+l i

Figure 2. - Gantt chart in the case ;= 1.

For the schedules described above we obtain

rkmaa

Chax = », max{2, S/} =n+Mh

r=1

where h; is equal to the number of sets Sy, 1 < k < rkmaz, with | S| = 1.

rkmax

Célax: Z max {2, |Lr|} =n+ ha

r=1
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where hg is equal to the number of sets Ly, 1 < k < rkmaxz with |Lg| = 1.
In an optimal schedule, we must have a minimal number h of unavoidable
idle times on each machine, i.e. Cpax = n + h. Clearly, the first constructed
schedule is optimal if there does not exist a set S, 1 < k < rkmax — 1,
with |Sx| = 1 and the second schedule is optimal if these conditions hold
for the sets Lj.

The following lemma gives the possibility to describe the existence of
unavoidable idle times.

LemMA 1: Assume that there exists an index k with 1 5 k < rkmax such
that |Si| = 1 holds and that Sy, = {i}. Moreover, for the optimal objective
value C} .. (PC;) for the set PC; of ancestors of job i we have

k-1
C:;lax (Pcl) = Z |S7'|’
r=1
then it is not possible to process all jobs of the sets S1, Sa, ..., Si without

any idle time.

Proof: Assume that there exists an index &k with the above properties. Then,
within the time interval [0, C} .. (PC;)] it is possible to process completely
k-1

all jobs of the set U Sy. We notice that C}, . (PC;) is the earliest starting

r=1
time of job 7. On the other hand all jobs of the sets Sy, u > k&, are descendants
of job 3. Therefore, within the time interval [C}, (PC;), Ck . (PCi) +2],
only job ¢ can be processed, i.e. an idle time is unavoidable. W

The above condition is easy to formulate but hard to handle because
the determination of C} ., (PC;) is an optimization problem, too. Now we
will divide the problem into subproblems by means of the existence of
unavoidable idles times.

LeEMMA 2: Let k be the smallest integer with |Li| = 1 and assume that

Ly = {i}. Moreover, let
k

k
s=Us\U L
r=1 r=1

k-1
If S = 0, then in the time period [0, Z!Lrl +2] an idle time is unavoidable

r=1
and, if S # 0, it is avoidable in this time period.
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70 11. BRASEL, D. KLUGE, F. WERNER

Proof: Again let PC; denote the set of all ancestors of job i € Ly.
k-1

Because |Ly| = 1, we obtain PC; = U L, (cf. Property 2). Since |L,| > 2

r=1
for 1 < r < k the optimal objective value for the set PC; of jobs is equal
to the cardinality of this set. Moreover, |PC;| is the earliest starting time

for job 7 € L.
k k

k k
If S = @ then, due to ULk - USk, we obtain ULk = USk and,
r=1 r=1 r_l r 1

ULT U Sr

satisfied and, by Lemma 1, an idle time is unavmdable in [0, |PC | +2].
If S # (, then it contains a job j # i executable in

k-1 k-1
[ Uz || Uz +2 H
r=1 r=1

and this idle time is avoidable. W

By means of Lemma 2 we can design an algorithm for solving the problem
as a partition into u silbproblems FPr, 1 < r < u. We denote the set of jobs
of problem P, by I,. Each set I, has one of the following properties:

1. there exists a job ¢ € I, with the property that all other jobs of I,
are ancestors of job ¢,

therefore, |S;| = 1 holds. Thus, CZ,. (PC;)

3y

2. there exist two jobs 2, 7 € I, with the property that job j is not an
ancestors of job ¢ and all other jobs of I, are ancestors of job i.

The first case stands for the occurence of an unavoidable idle time when
the processing of the job 7 € I, begins and in the second case an idle time

is avoidable in this situation by scheduling job ¢ and 7 in parallel. We obtain
"

Chax (I) = Z}Ir| = n +h and b is the number of unavoidable idle times.
r=1
In the following Algorithm 1 we construct a schedule by inserting each
job i into a block By of jobs, 1 < k < rkmaz, such that the resulting
schedule contains only unavoidable idle times. All jobs in By are processed
in the time interval (¢, t] with

t,=> max{2 |B|} and f=1f +max{2 |B]} (22
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Let k(i) and k (i) be the smallest and greatest possible value of the index
k of the block in which job ¢ can be inserted, ie. we have 7 € S;(;) and
i € Lg(;). We call a job ¢ critical if k() = k().

In Algorithm 1 we first insert all critical jobs into the blocks. If after
this insertion there exists an index k with |Bx| = 1 we determine exactly
one job ¢ in the set of unscheduled jobs which can be inserted in By. If
this set of possible jobs is not empty, we choose the job i with minimal
k (i). This can be realized in O (n max {1, max {k (¢) — k(3)|1 < i < n}})
if we assume that the jobs are ordered by nondecreasing k (i) values, i.e.
k(1) < k(2) € ... < k(n). Furthermore, if there exist two jobs i and
i+ 1 with k(i) = k(4 + 1) then k(i) < k(i + 1) should be satisfied. This
ordering can be done in O (n + r) time if r is the number of arcs in the
graph of precedence constraints (note that this ordering is simply a classical
topological ordering of the vertices of a directed graph without circuits).
Hence we get the following complexity of Algorithm 1:

Treorem 1: Algorithm 1 solves the problems O 2|p;; = 1, prec|Crax in
O (n max {1, max {k(¢) — k(?)|1 <i < n}}+r) time.

Algorithm 1: Determination of the blocks By for the problem
O2|pij = 1, prec|Cpax

begin
1. for k := 1 to rkmaz do By = §;
2. for : := 1 to n do
3. if k(i) = k(i) then
begin
. k= k(3);
S. B = B U {i};
end,
6. for : := 1 to n do
7. if k(i) < k(i) then
begin
8. k = k(3);
. while (|B;| > 20or k< k(i) dok :=k+1;
10. By := B U{i};
end;
end.

Now we determine the corresponding schedule by means of the sets By,
1 < k < rkmaz and the corresponding values of #; and #; (which can be
calculated by 2.2) as shown in Figure 1 and Figure 2.
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Note that Algorithm 1 does not successively determine the individual
subproblems. Nevertheless, these subproblems have been obtained when
Algorithm 1 stops. Also the number p of subproblems has only been
determined at the end of Algorithm 1. We still have to prove that Algorithm 1
works correctly.

THEOREM 2: Algorithm 1 generates an otpimal solution.
Proof: Consider the first block By, with one of the properties
1.|Bg| =1 or
2. |Bg| = 2 and there exists a job j € By, with k(5) > k.
In both cases |By| > 2 for 1 < r» < k holds and the algorithm has

k-1

only ordered all jobs ! with k(I) < k into UB"" Thus, the equality
=1

k-1 k—1 "

UB" = ULT is satisfied. Furthermore, the condition |By N Li| = 1

=1 r=1

holds and for each of the above described properties of Bj the equality
|Lx| = 1 follows. According to lemma 2 there exists an unavoidable
idle time in case 1 and we can avoid this idle tin}ce in case 2. The set

I; of jobs of the first subproblem P, is I} = UBT and we obtain

r=1

k
Chax (1) = Z max {|Bg|, 2}. Clearly, for the further considerations we

r=1
have to delete the job j € By from the set Ly G)- Now we can separately
consider the remaining blocks B, with k£ < r < rkmax. We repeat the
above argument, which proves the theorem. B

To illustrate the above algorithm, we consider the following example. Let
n = 18 and the graph GT is given in Figure 3. The jobs are numbered
according to the required order.

O o6
~ __— Ny ~
OO~ O—T——O—0—0

@7 \/ /

Figure 3. - The graph GF.
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Notice that vertex 19 is the fictitious sink. All jobs in I\{13, 14, 16, 18}
are critical. In step 1-5 the algorithm determines the blocks By = {1, 2, 3, 4},
B, = {5}, By = {6}, By = {7}, Bs = {8, 9, 10}, Bs = {11}, By = {12},
Bs = {15}, By = {17} and Bjp = {19}. In step 6-10 job 13 is inserted
into Bz, job 14 into By, job 16 Bg and finally job 18 is inserted into B3
(note that £ (13) = 1, k(14) = 7, k(16) = 8 and k (18) = 2 hold). Because
of the cardinalities of the sets Br, 1 < k < 10, all jobs of the set By are
processed in the time interval [tj, ;] with

k 1 2 3 4 5 6 7| 8 9 | 10
t 0 4 6 8 10 13 15 17 19 21
A 4 6 8 10 13 15 17 19 21 23

Therefore, the optimal objective function values is Cnax = 21.

3. THE PROBLEM O2p;; = 1, intree|»  C;

In this section we give a polynomial time algorithm for the problem
O2p;; =1, intree|z C;. GP denotes again the graph of precedence
constraints including the fictitious sink. The above problem will be solved
by partitioning the original problem into two subproblems P; and P, with
the following properties:

e the set I; of jobs of the first subproblem Pj is the largest subset that
can be processed without any idle time on the machines, i.e. the last job
is completed at time |I;| and

o the set of jobs I of the second problem P, forms a chain in the graph
of precedence constraints.

Notice that it is possible that all jobs form a chain. Let Si, L and rkmaz
be defined as in Section 2. We use the considerations about unavoidable idle
times in Section 2 for determining the subproblems. Clearly, Algorithm 1
constructs also an optimal schedule for the problem O 2|p;; = 1, intree|Cmax
such that there exists an index k with |B,| > 2 for1<r <k and |B,| =1
for k < r < rkmax. Therefore, we obtain the above described partition

k—1 rkmax
I=11U12Withf1:UBTandIZ= UBT‘
r=1 r=k

All jobs not contained in I3 form a chain in the graph of precedence
constraints and Cj ., (I1) is the earliest possible starting time of the first job
of this chain. Hence, having determined an optimal schedule for the set I; of
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74 H. BRASEL, D. KLUGE, F. WERNER

jobs with respect to z C; that is also Cmax optimal, one can concatenate
this optimal schedule with the remaining set Iy := I\I; of jobs such that
the jobs of Iy are processed in the interval [C} ., (I1), Cha. (1) + 2+ |LI2]].
Note that one machine is always idle in this period.

Let us now return to the solution of the first subproblem with the set [
of jobs. This problem will be solved by transforming the intree problem into
an outtree problem by reversing the direction of all arcs between jobs of
I; and applying an algorithm, which has been given in {4] for the problem
“ Olpi; = 1, outtree|Z C;.

First we derive a lower bound for O 2|p;; = 1, outtree|z C;. Consider

the parallel preemptive machine problem P 2|p; = 2, pmtn|z C;, which

is a relaxation of the problem O 2|p;; = 1|Z C;. In [11] McNaughton has
proved that there is no schedule for the parallel machine problem with a finite
number of preemptions, which yields a smaller objective value. Hence, the
optimal objective value for P 2|p; = 2, pmtnlz C; is a lower bound for
O2\pij = 1]2 C;. Thus, an optimal schedule for this open shop problem
is given by scheduling successively blocks of two jobs within 2 time units
(only the last block contains only one job if ny := [I1] is odd).

The corresponding objective value is

2
f1:2-2+2-4+...+2~n1:4- 22
if n1 is even or

ny+1
f2:2-2+2~4+...+2-(n1—1)+(n1+1)=4-( % >+n1+1

if n; is odd.

However, if n; is odd the above schedule is not optimal for the Cpax
criterion. But it is easy to see that this can be obtained by forming one
block containing 3 jobs without changing the value of z C;. For the further
considerations we only need such an assertion for the following types of
blocks in this case:

1.|By| =3, |Byl = ... = |Bi_n1/2J| =2
2.1Bf|=...= lBi_/nl/2J—1' = 2, i_lnx/2J| =3.
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Scheduling the blocks By, in the time intervals [t;, x] as described in
Section 2, we obtain in case a) the value

fr=1:242.342.54+...+2:m
np —1
2

=1-2+42-2+4+2-44+...+42- (1 —-1)-
ny+1
=4. % +n1+1=fo

Analogously, this can be shown for case b, i.e. we have f} = f.

In [4] there has been given an O (nm) algorithm for the problem
Olpi; = 1, outtree|z C;j by decomposing the original problem into
subproblems and processing blocks of jobs within m time units. However,
in our case we have only one subproblem for the outtree problem with 3.
Let S;- be the corresponding rank sets for the outtree problem. It is shown
in [4] that for an arbitrary number m of machines we have no idle time
in the period [0, rm] when

u
Z|S§~|Zu-m, u=2,...,r 3.1
i=1

holds. However, using the blocks Br_j, Br—3, ..., B1 determined by
Algorithm 1, it is immediately clear that condition (3.1) holds for m = 2
and all u because each of these sets contains at least 2 jobs and we have
no precedence constraint among the jobs of each block B;. Hence, the
Algorithm from [4] works for O 2|p;; = 1, outtree|Z C; as follows:

Algorithm 2: Determination of the blocks for the problem
O2|p; = 1, outtree|z C;

begin
1. Uy =S
2. j=1
3. jmaz = [m/2];
4. while j < jmax do
5. begin
6. determine the block B; by selecting 2 jobs from U; having the largest number of

jobs on a longest path from this job to a sink; j := 7 + 1;
7. determine U; by replacing in U;_; all jobs of B;.., by their direct successors
end;
8 if n; is odd then Bjpazt+1 = Ujmaz+1.
end.
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76 H. BRASEL, D. KLUGE, F. WERNER

Hence, applying the above algorithm to an odd number ni of jobs the
last block contains only one job, i.e. we have idle times. In this case we
modify the obtained solution by combining the last two blocks into a block
of three jobs. Because of the above considered case b), this does not change
the value of Z C;. The following lemma shows that this modification is
always possible.

LEmMMA 3: Let n1 be odd. Then we have no precedence constraint among
the jobs of the last two blocks obtained by Algorithm 2.

Proof: Assume that we have a precedence constraint between two jobs
U € Bjmaez and v € Bjmaa41. Let job 7 € B, be an ancestor of job v such
that any two adjacent blocks in the chain C' from r to v have been inserted
into adjacent blocks and w is as small as possible (see Figure 4).

Bw—l Bw Bjmaz Bjma:+l
o e o e
T c u v
Figure 4.

Then we consider two cases:

1. w = 1: Due to the definition of & when determining both subproblems,
it is impossible that a job of I; has the rank jmaz + 1.

2. w > 1: Then B,,_1 must contain two jobs from which a chain exists
in the graph of precedence constraints (i.e. the graph of outtree constraints
among the jobs of the set /1) with at least as many jobs as in the chain C.
Because of the outtree constraints these 3 chains are disjoint. However, this
constradicts the fact that we have altogether only 2 jmax + 1 jobs.

Hence, we get the assertion of the lemma. W

Thus, using the above modification we obtain a schedule that is optimal
for both criteria Z C; and Cpax With respect to I; and outtree constraints.
Now, processing the blocks of jobs in reversed order we get an optimal
schedule for the intree constraints and both criteria (note that, if n is odd,
now the first block contains 3 jobs, which does not change the value of
ZCi due to case a), ie. f5 = fa).

To evaluate the complexity of the above algorithm, note that the
determination of the sets Sy and Ly can be done in O (n) time for the intree
constraints. At the same time the required ordering to non-decreasing k (7)
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values is automatically generated. Because we use Algorithm 1 to determine
the set of jobs for problem Pj, the above algorithm has the same complexity.
However, because we have only to determine the first unavoidable idle time,
we only note here, that in the case of intree constraints algorithm 1 can be
modified to run in O (n) time. hence we obtain the following result:

TueoREM 3: Algorithm 2 solves the problem O 2|p;; = 1, intree|z C;
in O(n) time.

To illustrate the above algorithm, we consider the following example. Let
n = 12 and the intree graph G be as in Figure 5. For simplicity we avoid to
add a fictitous sink because we have only one intree component.

=08

ONGS |
OB No—o—
O,
®

Figure 5. — The graph G.

Here we have S1 = {1, 2, 3, 4, 5}, So = {6,7, 8}, S3 = {9}, S¢ = {10},
S5 = {11} and S¢ = {12}. Moreover we obtain L; = {1, 2, 3, 4},
Ly = {6,7, 8}, L3 = {5, 9}, Ly = {10}, Ly = {11} and Lg = {12}.
Applying Algorithm 1, we get 1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} and
I, = {10, 11, 12}. Transforming the precedence constraints among the
jobs I into an outtree, using the algorithm for O 2|p;; = 1, outtree|z C;,
Cmax and processing the blocks of jobs in reversed order, we get the
following blocks for the intree problem: By = {1, 2, 3}, By, = {4, 6},
Bs = {7, 8} and By = {5, 9} with the makespan value Cpax = 9. Thus,
the jobs 10, 11, 12 are processed consecutively in [9, 15] and we obtain the
optimal objective value }:C’i = 89.

4. CONCLUDING REMARKS
In this paper we gave polynomial time algorithms for two 2-machine
open shop problems with unit processing times and different types of

precedence constraints. The presented algorithms can also be used for solving
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78 H. BRASEL, D. KLUGE, F. WERNER

the corresponding parallel machine problems with a simple straightforward
modification. Whereas for the problem P 2|p;; = 1, prec|Cmax there already
exist some algorithms mentioned in the introduction, for the problem
P2lp;; =1, intreelz C; there is no known algorithm from the literature.
However, the algorithm presented in Section 3 for the problem
O 2|p;; =1, intree|2 C; does not necessarily lead to an optimal solution
for the case of an arbitrary number of machines. To illustrate, we consider
the following instance of this problem. We have to process 16 jobs on 3
machines and the graph of intree constraints is given in Figure 6.
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Figure 6. - The graph G for a problem O3lp;; = 1, intreelz C..

If we apply Algorithm 2 to this problem, we obtain B; = {1, 2, 3},
By = {4, 7,8}, B3 = {9, 10, 5} and By = {6,11, 13}, Bs = {12, 14},
Bs = {15} and B; = {16}. The corresponding objective function value is
Z Ci = 159. However, if we choose B1 = {1, 2, 3,4}, By = {7, 8, 9, 10},
Bs = {13, 5, 6}, By = {14,11, 12}, B; = {15} and Bs = {16} we can
construct a schedule with E C; = 158. In this case the optimal schedule
has the property that for B; one job is finished at time 3 and the other three
jobs are finished at time 4, for By one job is finished at time 7 and the other
tree jobs are finished at time 8 and so on.

However, some polynomially solvable cases of both problems O|p;; = 1,
prec|Cmax and Olp;; = 1, intree|Z C; can easily be given. Here we
mention only two cases:

1) for all k£ with 1 < k < rkmaz the condition |Si| < m hold or

2) for all k£ with 1 < k& < rkmaz the condition S = L. holds.

In both cases it is easy to see that one can form blocks B; consisting of
the jobs of the set S and process each block B; within max {|B;|, m} time
units to determine an optimal solution. Therefore, the complexity status of
the problem Olp;; = 1, intreelz C; is still open.
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