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Abstract. — In this paper, we analyze the quantity discount problem by considering the competitive
nature of the problem and the informational structure regarding the buyer’s cost structure. We
formulate the problem as a two-person nonzero-sum game and analyze the seller’s optimal quantity
discount schedule and the buyer’s optimal order quantity by using Stackelberg equilibrium. We show
that it is always possible for the seller and the buyer to gain from quantity discount. However, a
quantity discount schedule under which the buyer orders more than his EOQ at the discounted price
is necessary for the seller and the buyer to gain. The optimal quantity discount schedule when the
seller knows the buyer’s cost parameters is given by a single break point. When the seller does
not know the buyer’s cost parameters, an optimal quantity discount schedule may not exist. Two
approaches have been developed for the seller to offer quantity discount in this case. The application
of our analysis is discussed. Our results can be especially useful when the seller has many buyers.

Keywords: Game theory, quantity discount.

Résumé. — Nous analysons dans cet article le probleme du rabais pour quantité en considérant la
nature compétitive du probléme et la structure informationnelle au regard de la structure des coits
de 'acheteur. Nous formulons le probléme comme un jeu & deux personnes a somme nulle. Nous
analysons le plan de rabais optimal du vendeur et le réapprovisionnement optimal de I’acheteur
en utilisant 'équilibre de Stackelberg. Nous montrons qu’il est toujours possible pour le vendeur
et l’acheteur de tirer un profit du rabais pour quantité. Cependant, un plan de rabais selon lequel
I’acheteur commande davantage que son « EOQ » au prix de rabais est nécessaire pour que le
vendeur et I'acheteur puisse faire un gain. Le plan de rabais optimal lorsque le vendeur connait les
paramétres de coiit de I’acheteur est donné par un simple point de coupure. Dans le cas contraire, un
plan de rabais optimal peut ne pas exister. Deux méthodes d’attaque sont développées alors pour le
plan de rabais par le vendeur. Nous appliquons notre analyse, et nos résultats sont particulierement
utiles lorsque le vendeur a plusieurs acheteurs.
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416 M. PARLAR, QINAN WANG

1. INTRODUCTION

Traditional quantity discount models analyze primarily buyers’ best
reactions to quantity discount schedules provided by sellers. They minimize
buyers’ total buying cost and inventory related cost, assuming that sellers
offer a quantity discount schedule and then accept orders, usually of larger
sizes, that buyers place (Sethi, 1984; Hadley and Whitin, 1963; Peterson
and Silver, 1979).

These models are useful for buyers to order in optimal quantities when
replenishing their inventory. However, the models do not consider sellers’
decisions of offering optimal quantity discount schedules. Recently, decision
models have been developed solely from the sellers’ perspective (Monahan,
1984; Lee and Rosenblatt, 1986; Dada and Srikanth, 1987). The models
focus on sellers’ best quantity discount schedules, assuming that buyers will
cooperate as long as they will not be worse-off.

There are still two important issues of the quantity discount problem that
should be considered. First, independent suppliers and buyers pursue their
own interests in quantity discount. These interests are normally in conflict.
Consider a situation where a buyer orders periodically from a seller. There are
two decisions to make: order quantity and price. Order quantity is controlled
by the buyer and price is determined by the seller. If the seller offers a
quantity discount schedule to the buyer, the buyer orders the quantity that
minimizes his total relevant costs. As such, the seller might want to take
the buyer’s reaction into consideration when offering his quantity discount
schedule. Models developed exclusively from one party’s point of view
suppress the conflict of the seller and the buyer and fail to incorporate the
competitive nature of the problem.

Second, sellers and buyers are invariably independent and opportunistic
agents who are likely to have private information about their cost structures.
Models on the quantity discount problem in the literature have always
assumed that sellers and buyers have perfect information about each other’s
cost parameters. This appears to be unrealistic and is a major weakness for
the models to be applied in practice. What one can do to get information
about others’ cost structures is usually to make some estimates of their cost
parameters.

In this paper, we present an economic analysis of the quantity discount
problem using a game-theoretic approach in which the seller and the buyer
are treated as players in a two-person game. We analyze the seller’s optimal

Recherche opérationnelle/Operations Research



QUANTITY DISCOUNT PROBLEM 417

quantity discount schedule and the buyer’s optimal order quantity when they
do not know each other’s cost structure. The analysis is focused on sellers’
quantity discount schedules because sellers usually lead in quantity discount
by offering buyers quantity discount schedules.

The paper is organized as follows. In Section 2, we formulate the discount
problem as a two-person nonzero-sum game in the normal form. In Section 3,
we solve the problem with the model built in Section 2 by using Stackelberg
equilibrium. Subsequently, we discuss the applications of our results in
Section 4. Finally, main findings and possible extensions to this research are
summarized in Section 5.

2. THE MODEL

We first consider the situation where a seller sells a single product to a
single buyer who faces a deterministic and constant demand. This has been
the setting of many discussions of the quantity discount problem (Monahan,
1988; Lee and Rosenblatt, 1986), probably because it is mathematically
simple and can still provide useful insights into the problem.

We assume that the seller buys the product from another supplier or
produces it himself at a large production rate that can be considered to
be infinite for the purpose of this model. Currently, the seller offers the
buyer the market price and the buyer orders his economic order quantity
(EOQ) each time from the seller. In addition, the following conditions are
assumed in our analysis: (1) both the seller’s and the buyer’s lead times are
known with certainty; (2) no backlogging and lost-sales are allowed; (3) the
seller and the buyer are motivated by profit maximization and cost savings,
respectively; and (4) the players are rational and use only pure strategies.

We use the following notation.

Ajp := the buyer’s fixed ordering cost per order;

As := the seller’s fixed cost of processing one order placed by the buyer;

A := the seller’s fixed set-up cost or ordering cost per order when producing or ordering from an
external supplier;

Hp := the buyer’s inventory carrying cost per dollar per year;

Hs = the seller’s inventory carrying cost per dollar per year;

D := the buyer’s deterministic annual demand rate for the product;

C := the seller’s unit acquisition cost (unit production cost or unit buying cost from the external
supplier);
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418 M. PARLAR, QINAN WANG

P := the unit maket price (the seller’s initial unit selling price or the buyer’s unit buying cost in
the absence of discount);

@ := the buyer’s EOQ under the unit market price P, ie., Q@ = /(2D Ay /P Hy);

& := the factor by which the buyer will increase his ordering size, i.e., he will order (1 + z) Q

units each time;

y = the factor by which the seller will decrease his unit selling price, i.e., he will offer a unit
selling price of (1 — y) P.

A quantity discount scheme is a scenario in which the seller offers a lower
unit selling price than the market price and the buyer orders each time a
larger quantity than this EOQ under the market price. Using the notations
defined above, it consists of a pair of ordering size (1 +2) @ and unit selling
price (1 — y) P, where z and y are such that

0<uz, 1)
0<y< 1. 2)
The buyer’s concern in this problem is his total inventory related and

purchase cost of the product. The buyer’s total annual relevant cost, denoted
by T'C, can be expressed as

TC = (Purchase cost) + (Ordering cost) + (Carrying cost)
= DP + Ay D/Q + QPHy/2. 3)

If a discount scheme is formulated, the new total cost, T'Cp, is

TC,=DP(1—y)+DA/[(14+2)Q]+ (1+2z)(1 —y)QPH/2.
What the buyer can gain under (z, y) is 7 (z, y) = TC — T Cp, or

™ (2, y) =y DP +[2-1/(1 +2) - (1 +2) (1 - y)] Cp/2.

where, hy, = PH, is the buyer’s inventory holding cost per unit per year
in the absence of discount and Cp = \/(ZDAb hy) is the buyer’s annual
average inventory related costs when the seller offers the market unit price.

The seller’s concern is also what he can gain from quantity discount. The
relevant factors include his sales revenue, acquisition cost, order processing
cost and inventory related cost which includes his inventory carrying cost
and ordering cost from the external supplier. His annual profit, denoted by
TP, can be expressed as

TP = (Sales revenue) — (Acquisition cost) — (Order processing cost)

— (Inventory related cost).
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QUANTITY DISCOUNT PROBLEM 419

The first three terms are, clearly, DP, DC, and As D/Q. To obtain
the inventory related cost, the seller’s replenishment policy or his optimal
production batch size or ordering size has to be considered.

Suppose the seller orders a quantity at a time enough to meet N orders of
size (), where N is an integer. It has been shown that (Lee and Rosenblatt,
1986) the seller’s total annual inventory related cost, denoted by 11, is

TI=[(N-1)/2]Qhs + DA./(NQ), ©)
where hs = CHj is the seller’s inventory holding cost per unit per year.
It is easy to verify that 71 is a convex function of N. Thus, the optimal
N is determined by TI (N) <TI(N+1)and TI (N) < TI (N —1). After
some modification, these conditions turn out to be

Jr+1/4) =12 <N < /(r+1/4) +1/2, 7

where 7 = Q3/Q% = (Ac/hs)/(Ap/hy) and Qo = v/ (2A4¢ D/hs) is the
seller’s EOQ when facing a uniform demand of D units per year. Rewriting
(7), we obtain '
N* =1 if r <2,
=2 if 2<r<6,
=3 if 6<r<12,.... (8)

The seller’s optimal replenishing policy depends on r, a ratio (squared)
of the seller’s EOQ to the buyer’s EOQ or a ratio of the seller’s inventory
related costs to the buyer’s inventory related costs. If » < 2, the optimal
N is 1. The seller orders what the buyer orders each time and carries no
inventory (lot-for-lot policy). If » > 2, the lot-for-lot policy is not optimal
and (8) should be used to determine the best replenishing policy. In both
cases, his total inventory related cost is determined by (6).

Let Ny denote the seller’s initial optimal replenishing policy, ie., the
seller orders Ny @ units each time when the buyer orders @ units each time.
The seller’s annual profit, denoted by 7P, when offering the market price
to the buyer (no discount) is

TP =DP - DC - A;D/Q - [(Nyg —1)/2] Q hs — (D As)/(No Q). (9)

When a discount scheme is formulated, the buyer’s order quantity is
(1 + z) @ and the above analysis still holds. The seller’s optimal ordering
policy, denoted by N, is determined by

JIr/Q+2)? +1/4 - 1/2 < No < /[r/(L+2) +1/4] +1/2. (10)
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420 M. PARLAR, QINAN WANG

This can be rewritten in terms of Ny and =z as

Ny =Ng—1i when z; <z <ziy1, (1D
where i = 0,1, ..., No~1, 20 = 0,z = /{r/[(No—1) (No—i+1)] } -1
for 0 < 2 < Ny, and zpn, = o0.
The seller’s total inventory related cost is

TI, =[(Ne —1)/2](14+2)Qhs + D A /[N, (1 + z) Q. 12)

At each z;, TI, (Ng — i+ 1) = TI, (No —4), 0 < i < Ny, and TI,
is continuous. However, TI, is not differentiable at z;. By differentiating
TI, in (z;, zi+1), we obtain

dTI,/dz = (No—i—1) (Q/Q0) (Cs/2) [1-(14ziy1)?/(142)?] < 0. (13)

Therefore, TI, decreases as x increases and the seller reduces his inventory
related cost when the buyer increases his ordering size.

The seller’s annual profit, denoted by T'F, is

TP,=(1—-y)DP—DC - As D/[Q(1 + )]
—(Nz =1)(1+2)Qhs/2— DA/[N: (1 +2)Q]. (14

What the seller can gain under (z, y) is 75 (z, y) = TPs — TP, or,

s (s,y)= —yDP+[1-1/(1+12)|As D/Q
+ (Qhs/2)[(No — 1) = (Ne — 1) (1 + z)]
— (DA/Q){1/[(1 + z) Nz] — 1/No). (15)

Note that 75 (z, y) is continuous in both z and y.

We have thus formulated the discount problem as a two-person game in
the normal form. The buyer and the seller formulate a discount scheme
(z, y), over which the buyer exerts his control through his ordering size ()
and the seller exerts his control through his unit selling price (y). The payoff
functions for the buyer and the seller are given by 7, (z, y) and 7 (z, y)
and their strategy spaces are given by (1) and (2), respectively. This is a
nonzero-sum (75 + 7, # 0) game.

Consider the impact of an increase in the buyer’s order quantity on the
seller. If » < 2, the seller uses the lot-for-lot policy. Any increase in the
buyer’s order quantity does not alter this policy. His gain by inducing
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the buyer to order large quantities comes from only the decrease in his
ordering and order processing costs associated with the buyer’s reduced
frequency of ordering. If » > 2, the seller should not use the lot-for-lot
policy initially. When the buyer increases his ordering size, he orders or
produces in batches including fewer and fewer number of orders of the
buyer. His gain by inducing the buyer to order larger quantities comes from
not only the decrease in his ordering and order processing cost but also the
reduction in this inventory carrying cost.

If the seller uses the lot-for-lot policy initially, Nog = 1 and N, = 1. For
any x > 0, (15) becomes

me(z,y) = —yDP +[1—1/(1+ 2)] (Ae + As) D/Q.  (16)

This is the case discussed by Monahan (1984). He assumed implicitly that
the seller is always using the lot-for-lot policy and carries no inventory. As
pointed out by Lee and Rosenblatt (1986) and Joglekar (1988), the lot-for-lot
policy is normally inappropriate. As shown above, the seller’s initial optimal
replenishing policy depends on his own EOQ and the buyer’s EOQ. The
seller, as a major intermediary, usually has better inventory facilities than
the buyer. His EOQ is often much larger than the buyer’s EOQ.

In the modelling of the quantity discount problem, the buyer’s inventory
carrying cost formula has been used to obtain the seller’s saving in inventory
carrying cost (Lal and Staelin, 1984; Dada and Srikanth, 1987). It can be
seen from our analysis that this extension may be used only if the seller’s
order quantity is determined independently of the buyer’s ordering size. In
the discussion of a single buyer, this is normally not the case. This translation
requires an additional condition H} > H, for the existence of an optimal
solution (Dada and Srikanth, 1987).

By the nature of the problem, no one will play the game if quantity
discount makes him worse-off, hence 7, (z, y) > 0 and 75 (z, y) > 0. After
some algebra, these conditions become

y >y = [2° (Co/2)/(1 +2))/[DP + (L + ) Cy /2], )

y<ys=[1-1/1+x)]As/(PQ) + [Q hs/(2DP)]
X [(No = 1) = (Na = 1) (1 4 )]
— [Ae/(PO)I{1/[(1 + z) No] = 1/No }. (18)
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422 M. PARLAR, QINAN WANG

We note that both (17) and (18) are continuous and increasing in xz. The
set of such points is shown by the area bounded by solid curves in figure.
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Figure. — The feasible solution area.

The area bounded by solid curves in figure characterizes the feasible
solution area for the problem. Any point on the boundary represents a
discount scheme which makes one gain and the other neither lose nor gain,
except the two end points at which no one gains or loses; any point inside
this area represents a discount scheme which makes both players gain; and
any point outside the area makes at least one lose.

LemMA 1: The feasible solution area is always non-empty.

Proof: See Appendix I
QED.

For any product that the seller and the buyer are trading, it is always
possible and worthwhile for both the seller and the buyer to exploit the
benefit of quantity discount. We discuss in the following the seller’s optimal
quantity discount schedule and the buyer’s optimal order quantity.

3. SOLUTION TO THE PROBLEM

We consider independent sellers and buyers who pursue their own interests.
Because their interests are usually in conflict, they rarely work in full
cooperation as assumed by some authors (Goyal, 1976; Banerjee, 1986a;
Kohli and Park, 1989). We discuss non-cooperative solutions to the quantity
discount problem.
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Quantity discount schedules are usually given by suppliers. Buyers always
order each time the quantity that minimizes their total relevant costs.
Therefore, sellers act as leaders and buyers act as followers in quantity
discount. The determination of seller’s quantity discount schedules should
take buyers’ reaction into consideration. This type of decision problem is
characterized by Stackelberg equilibrium, which gives the leader’s optimal
decision by maximizing his payoff after taking account of the follower’s
response to his decision (Basar and Olsder, 1982, pp. 176-183). In what
follows, we focus on the seller’s quantity discount schedule by using
Stackelberg equilibrium.

3.1. Informational structure

It has been generally assumed that sellers and buyers know each
other’s cost parameters (Goyal, 1976; Dada and Srikanth, 1987; Jucker
and Rosenblatt, 1985). This is normally unrealistic for independent suppliers
and buyers because revealing one’s cost parameters usually puts one into a
position of disadvantage in bargaining and competition. They are likely to
have private information about their cost parameters.

In this paper, we discuss the quantity discount problem when the seller
and the buyer do not know each other’s cost structure. Because the buyer
determines his order quantity according to the quantity discount schedule
provided by the seller, he does not need information about the seller’s cost
parameters to make his ordering decision. However, to determine his optimal
quantity discount schedule, the seller has to take the buyer’s reaction into
consideration and needs information about the buyer’s cost parameters.

The seller’s decision depends on his own payoff function was well as the
buyer’s payoff function. The payoff functions are determined by the market
demand, the seller’s and the buyer’s cost structures, the seller’s selling price
and the buyer’s order quantity. We assume that each of the seller and the
buyer knows his own cost parameters and the market demand with certainty.
We also assume that the seller knows the buyer’s EOQ under the market
price from the buyer’s previous orders. Conversely, the only unknown factor
for the seller’s decision making is the buyer’s cost parameters. From the
buyer’s payoff function, it can be seen that information is summarized in a
single parameter Cp, or the buyer’s annual inventory related cost under the
market price. The value of Cj, determines the position of the lower boundary
of the feasible solution area (Fig.).
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We analyze the seller’s quantity discount schedule in two cases. First,
Cp is known to the seller with certainty. In this case the seller has perfect
information about the buyer’s cost structure. Second, the seller does not
know C} with certainty. In this case the seller has incomplete information
about the buyer’s cost structure.

3.2. Reaction curve

If the seller’s decision y is given, the buyer will choose the order quantity
z that maximizes his payoff 7, (z, y). When y goes through its domain
[0, 1), the buyer’s decision will form a curve over 0 < y < 1. This curve
is called the buyer’s reaction curve, which gives the buyer’s best responses
to the seller’s all possible decisions (Basar and Olsder, 1982). Similarly, the
seller’s reaction curve is his best responses to the buyer’s possible decisions.

For a given y, we obtain

dmy/dz = [1/(1 4 2)* = (1 - )] Cs/2, (19)

d?my/dz? = —Cy/(1+2)3 < 0. (20)

Thus, 7, is concave in x for x > 0. The optimal z, for a given y, is
determined by setting (19) equal to zero, which gives

z=1//(1-y)-L 21

This is the buyer’s reaction curve. It is easy to see that this is the buyer’s
EOQ formula for a given y.

On the other hand, dn;/dy = —DP < 0 for any given x. Therefore, 7
is strictly decreasing in y and attains its maximum at y = O for any given
z. The seller’s reaction curve is y = 0. This is reasonable because the seller
would never lower his selling price if the buyer’s order quantity is given
in advance. The buyer does not have the potential to act as the leader in
the quantity discount problem.

3.3. Quantity discount

A quantity discount schedule is characterized by a direct association
between discount and order quantity. Different restrictions on discount and
order quantity can form different quantity discount schedules. Three popular
(all-unit, incremental and carload lot) quantity discount schedules have been
discussed by Jucker and Rosenblatt (1985). They showed that an all-unit
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quantity discount schedule is general enough to admit others as special
cases. Thus, we use only all-unit quantity discount schedules in our analysis.
In an all-unit quantity discount schedule, all units in an order are eligible
for the appropriate discount.

An all-unit quantity discount schedule defines price as a non-increasing
function of order quantity. Generally, it is defined by using a step function
as: the seller offers a unit selling price P; for any order between (); and
Qiy1,where i =1,2, ... n, PI>P>...>F, Q1 <@2<...<Qyp
and Qn4+1 = 00. In our notations, a quantity discount schedule is that the
seller offers a unit selling price (1 — y;) P for any order between Q (1 + z;)
and Q(1 + zj41), where 1 = 0, 1,...,m, 0 = yo < y1 < ... < Un,
0=12p <21 <...<2p and Zp41 = oo. Each (z;, y;) (¢ > 0) is referred
to as a break point.

LEMMA 2: The seller should not offer any discount to the buyer without
using a quantity discount schedule.

Proof: See Appendix II.
QED.

If the seller offers a discount without imposing any restriction on the order
quantity eligible for the discount, the buyer orders according to his EOQ and
the seller loses. Thus, the seller should not offer any discount without using
a quantity discount schedule. A quantity discount schedule is necessary for
the seller to gain from quantity discount.

Lemma 2 also suggests that if the seller is to offer a quantity discount
schedule, he has to make the quantity for each break point greater than the
buyer’s EOQ under the discounted price. In other words, each break point
(z, y) has to satisfy the condition

(1+a),/(1-y)>1. (22)

Otherwise (1+z) /(1 ~y) < lor (1+2)Q /(1 —y), where (1+z)Q
is the quantity at the break point and Q/,/(1 — y) is the buyer’s EOQ
under the unit selling price (1 — y) P. The buyer orders his EOQ under the
discounted price and the seller loses. We note that every point in the feasible
solution area satisfies condition (22).

ProposiTiON 1: A quantity discount schedule that makes the buyer order
more than his EOQ under the discounted price is necessary and sufficient for

the seller and the buyer to exploit the benefit of quantity discount.
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Proof: The necessity condition has been established by Lemma 2.

From Lemma 1, we have at least one point in the feasible solution area.
For any point in the feasible solution area, assign it to be the single break
point of a quantity discount schedule. The buyer orders the quantity at the
break point, and both the seller and the buyer gain. Therefore, a quantity
discount schedule can be used to achieve any possible quantity discount
scheme for independent suppliers and buyers.

QED.

A quantity discount schedule provides a necessary and good mechanism
for the seller and the buyer to gain from quantity discount. This might explain
why quantity discount schedules have been so widely used in practice. In
the following, we discuss the determination of quantity discount schedules
for the seller when he acts as the leader by using Stackelberg equilibrium.
Because the buyer’s reaction to a quantity discount schedule depends on
the break points, the analysis will be different from that when no quantity
discount schedule is used. We consider only points in the feasible solution
area as possible break points of quantity discount schedules.

3.3.1. Perfect Information

We first consider the case where the buyer’s cost structure or Cp is known
to the buyer with certainty. When a single buyer is considered, only one
order quantity will be selected. Because the seller knows the buyer’s reaction
to a break point, a quantity discount schedule with only one break point is
adequate. Such a schedule in our notations is defined as: the seller offers no
discount for any order 0 < x < z7 and a discount y; for any order z; < z,
where z; > 0 and y; > 0.

The seller gains nothing if the buyer orders the initial order quantity ) or
z = 0. If he wants to gain from quantity discount, the seller has to provide
sufficient incentive for the buyer to order more than @) units each time. Let
w > 0 the least amount of gain that the buyer is interested to change his
order quantity. The buyer orders more than his EOQ under the market price
or Q units each time if 7 > w.

The buyer’s reaction (order quantity) to a quantity discount schedule with
a single break point (21, y1) is then z = 0 if 7, (21, ¥1) < w and = = 27 if
7y (1, y1) = w. On the other hand, the seller gains zero if the buyer orders
@ units each time (z = 0) and 7, (21, y1) if the buyer orders (1 + z1) Q
units each time (z = z1). The buyer’s payoff is zero when m, (21, y1) < w
and 75 (z1, 1) if 7 (21, 11) > w.
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The seller’s optimal quantity discount schedule by using Stackelberg
equilibrium is given as follows.

ProroSITION 2: If the seller knows the buyer’s cost parameters, his optimal
quantity discount schedule has only one break point (1, y1) given by

i = 2w+ Cy2? /(1 +:)|/[2DP + Cy(1 + 1)), 23)

where x1 is obtained by maximizing T or

Max{~41 () DP +[1 - 1/(1 +2)] 4: D/Q

+(Qhs/2)[(No — 1) = (N — 1) (1 + )]
— (DA,/Q)[1/(1 + z) Ny — 1/Nol }. (24)

Proof: Because the seller knows the buyer’s cost parameters and, thus, the
buyer’s reaction to any break point, a quantity discount schedule with only
one break point is adequate for the purpose of maximizing his payoff.

The seller is to find the break point (z7, y;) that maximizes his payoff.
According to Lemma 1 and 2, such a point exists for an appropriate w.
Because the buyer’s reaction is z = 0 if 7, (21, 1) < w and z = z; if
7 (21, y1) > w, the seller’s optimal break point (z1, y1) is determined
by maximizing his payoff function with respect to both x and y, subject
to m, > w. The constraint has to be tight in maximizing 75 because, as
can be seen from (15) and (5), the seller will set x = oc and make the
buyer lose otherwise.

Solving m, = w for y, we obtain (23). Substituting the obtained y into 7
and maximizing 7 in x, we obtain x; by (24).

QED.

CoROLLARY 1: If the seller knows the buyer’s cost parameters, the buyer
gets at most w from quantity discount.

Proof: This is obvious from Proposition 2.

QED.

If the seller knows the buyer’s cost parameters, the seller has more control
of quantity discount than the buyer because he maximizes his own payoff by
detting. the -buyer gain w. When w = 0, the buyer gains nothing and the seller
obtains all the benefit from quantity discount. This is the case discussed
by many writers (Monahan, 1984; Lee and Rosenblatt, 1986), although a
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quantity discount schedule with a positive w seems to be more appropriate
because the buyer normally needs some incentive to respond positively to
a quantity discount schedule.

Because 7, > w is always tight when maximizing 7, decreasing w
usually increases the seller’s gain. The seller gets his maximum gain when
w = 0. It is then desirable for him to set w as small as possible. But the
buyer may not cooperate by ordering his initial order quantity, in which
case the seller gains nothing. The problem in this case may be considered
as a bargaining problem over w for the seller and the buyer. However, the
quantity discount problem is normally not resolved through bargaining in
practice. It is usually the seller who takes the initiative by offering a quantity
discount schedule. We treat w as an exogenous parameter in our model.
Nevertheless, we will demonstrate that it is often worthwhile for the seller to
give the buyer some payoff. When w is unknown in developing a quantity
discount schedule, he should carefully select w > O to get the buyer to be
engaged in a quantity discount.

Because N, is a discrete function of z, finding z; by maximizing

given by (24) analytically is usually cumbersome. To avoid this difficulty,
the following non-linear programming model can be used.

ll/lﬁ%i {-yDP+[1-1/(1+2)]A;D/Q )

H(@hs/2) [(No — 1) = (N = 1) (1 + )
~(DA/Q)[L/(1 +2) N —1/No },
S.T. : yDP+[2—1/(1+m)—(1+a:)(1~y)]Cb/2—w20, \ (25)
z < /{r/[N(N-1)]},
z > /{r/[N(N+1)},
N > 1 and integer,
y>0andy < 1.

/

This model can be easily solved by using a non-linear programming
package such as GINO (Liebman et al., 1984).

3.3.2. Incomplete information

The case where the seller has perfect information about the buyer’s cost
structure is a simplified version of reality. Practically, independent suppliers
and buyers are likely to have private information about their cost parameters.
In this section, we discuss the determination of the seller’s quantity discount
schedule when he does not know the buyer’s cost structure or C, with
certainty.
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In this case, the seller does not know the buyer’s reaction to a break
point with certainty. A quantity discount schedule with many break points
may provide more possibility that the buyer will respond positively so the
seller can gain. Therefore, a quantity discount schedule with a single break
point may no longer be adequate for the maximization of his payoff function.
Quantity discount schedules with many break points should be considered. In
the latter case, the buyer also has an opportunity to select an order quantity
at one of the break points that maximizes his own payoff. The seller does
not have the same control of the problem when he has perfect information
about the buyer’s cost parameters.

Solving 7, > w, we obtain

Co2C(z,y)=2(w—-yDP)/2-1/0+2z) - (1+2z)(1-y)]. (26)

For a quantity discount schedule with a single break point (21, y1), the
buyer’s reaction is = z1 if Cp > C(z1, y1) and z = 0 otherwise. Thus,
the seller’s payoff is 75 (1, y1) if Cp > C (21, 1) and O otherwise. Assume
that the seller knows the probability distribution of Cj and is to maximize
his expected payoff. The optimal break point is determined by maximizing
7s (x1, y1) P{Cy > C(z1, y1) } with respect to 1 and y1, 1 > 0 and
y1 > 0.

For a quantity discount schedule with two break point (z1, y1) and (z2, y2)
1 < 72 and y1 < yo, let Oy = C (zg, yx), 7o (T3, ¥i) < ™ (5, Y5)s
© # j, k = 1, 2. The buyer’s reaction is z = z; if Cp > Cp;; z = x;
if Cp; < Cp < Cyj; and z = 0 otherwise. The seller’s expected payoff
is ws(zi, vi) P{Chi < Cp < Cb]‘} + 7 (:17]'7 yj)P{Cb > ij }. The
optimal quantity discount schedule with two break points is determined by
maximizing the expected payoff with respect to x1, z2, y1 and y2 subject to
z1 < 22, Y1 < Y2, and 7y (@i, i) < 7 (T4, Y;)-

For quantity discount schedules with more than two break points, the
seller’s expected payoff can be found similarly to a quantity discount
schedule with two break points. The optimal break points are determined
by a maximization problem.

However, to find the optimal quantity discount schedule for the seller
in this case is difficult. First, for quantity discount schedules with many
beak points, the buyer’s reaction depends on which break point gives
him the most payoff. In the case of two break points above, we assumed
7 (25, ;) < 7 (x5, y;) in order to determine the buyer’s reaction. This
condition will become cumbersome for quantity discount schedules with
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more break points. Second, the optimal number of break points is unknown.
An optimal quantity discount schedule may not exist at all.

Because of this difficulty, we develop two approaches (heuristic) for the
seller to develop quantity discount schedules in the following.

(i) For each value of C}, a single optimal quantity discount schedule has
been obtained in our analysis. This optimal schedule is determined by a
single break point (z, y) that maximizes the seller’s payoff while letting the
buyer gain w. For all values of Cj, we obtain y as a function of z. Because
both player’s payoff functions are continuous, this function is generally a
continuous curve.

This function is also a quantity discount schedule in the general form. It
represents all optimal solutions for Cj, and is obtained without knowing Cj,.
However, if this is offered to the buyer, the buyer may not order the quantity
determined by the optimal quantity discount schedule when the seller knows
his cost parameters. The buyer will order the quantity on the schedule that
maximizes his payoff. This schedule is usually not the optimal quantity
discount schedule when the seller does not know the buyer’s cost structure.

However, this schedule represents the seller’s best decision for each Cp.
When w is small, for example, w = 0, the seller obtains all the gain. Even
if the buyer orders the quantity on the schedule that maximizes his own
payoff, it is also likely to give the seller a significant payoff. Assume that the
seller is able to estimate the range for the buyer’s average annual inventory
related cost Cy, denoted by Cp < C, < Cpy. A quantity discount schedule
can be developed as follows.

(a) Select the number of break points, denoted by M, for the quantity
discount schedule. The selection of M could be based on the seller’s past
experiences or industrial norms.

(b) Divide the estimated range for Cj into M — 1 sub-ranges such that
C'L:C] <C2<---<01M:CU-

(c) Solve (z, y) for each C;, 1 = 1, 2,..., M, by using (25).

(d) Let the solution form (c) for C; be denoted by (z;, vi), @ =
1, 2,..., M. A quantity discount schedule with M break points is obtained
such that a discount of y; is offered for z; < =z < z;_1, ¢ = M + 1,
M, ..., zp41 =0, yyr+1 = 0, and 2y = oo.

We will demonstrate by a numerical example in the next section that a
quantity discount schedule developped by the above heuristic can give the
seller a significant payoff.
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(ii) The quantity discount schedule developed in (i) does not guarantee the
seller any amount of gain. The seller may want to ensure that it gets at least
a certain amount of payoff by offering a quantity discount schedule. Let u
denote the amount that the seller wants to gain. The seller has to set up the
quantity discount schedule such that 75 (z, y) > u. Solving it for y, we obtain

ygyu:ys_u/(DP)- (27)

Because y, is less than y; and continuous and increasing in z, it is a
guantity discount schedule in the general form. The buyer orders a quantity
on this schedule if it makes him gain and ) units otherwise. Since the buyer
always orders the quantity that maximizes his payoff, constraint (27) is tight
if he orders more than () units each time. The seller gains w in this case and
zero otherwise. A quantity discount schedule in the step function form can
be obtained by selecting break points directly from y,, in this case.

4. APPLICATIONS OF THE RESULTS

If the seller is able to make a single accurate estimation about the buyer’s
annual inventory related cost, the optimal quantity discount schedule with a
single break point should be used. Otherwise the approaches developed in
the incomplete information section should be used.

4.1. Comparison of our model with some models in the literature

Quantity discount models have been developed by assuming that the buyer
will cooperate as long as he will not be worse-off. In our analysis, we assume
that the buyer always orders the quantity that maximizes his own payoff.
To illustrate the difference between these two approaches, we first compare
our model with the models developed by Monahan (1986) and Lee and
Rosenblatt (1986) by using a numerical example provided by Rosenblatt
and Lee (1985). The comparison is limited to the perfect information case
because their models have been developed under this assumption.

Example: D = 100, P = $10, A; = $0, 4, = $1200, A, = $1200,
H, = 0.5, hy = $2.5,
When no discount is offered, @ = 219, Qg = 310, r = 2 and Ny = 1.

The seller’s optimal inventory resplenishing policy is the lot-for-lot policy
and this policy does not change when the buyer increases his order quantity.

When a quantity discount is considered, by using Monahan’s model or
Lee and Rosenblatt’s model, the improved ordering size is 310 units and the
discount is $0.6645. The seller gains $93.97 and the buyer gains $50.85.
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If our model is used, with w = $50.85, the buyer’s improved order
quantity is 410 units with a 13.45% discount from the seller. The buyer
gains $50.85 and the seller gains $120.18. If the seller is satisfied with the
gain by using Monahan’s model or Lee and Rosenblatt’s model, the seller
should offer a 16.75% discount to induce the buyer to order 420 units each
time. The seller gains $93.97 and the buyer gains $104.21. O

Our model generally provides a more efficient, more flexible and perhaps
more equitable solution to the quantity discount problem. This is because
our model considers any quantity discount scheme that makes both the seller
and the buyer gain. Their models restrict the solution of the problem to a
single curve, ie., mp = O.

It is also interesting to consider the model developed by Rosenblatt
and Lee (1985) because they considered the buyer’s reaction explicitly
in the determination of the seller’s quantity discount schedule. A linear
quantity discount schedule was used in their analysis. For the above
numerical example, the optimal quantity discount schedule given by them is
p = 10—0.0059 z, where p is the unit selling price and z is the ordering size.

It seems that the buyer was not considered as an independent agent who
always maximizes his payoff in their analysis. Otherwise, it is easy to verify
that the buyer will order an infinitely large number of units each time to
maximize his payoff and the seller loses with the above quantity discount
schedule. We have considered independent suppliers and buyers who always
pursue their own interests. This appears to be more realistic. We also found
that linear quantity discount schedules are usually not efficient for sellers to
maximize their payoff from quantity discount.

4.2. A numerical example

We now discuss the applications of our results. We focus on the case
where the seller has incomplete information about the buyer’s cost structure
and first demonstrate our results by using the above numerical example.

Example: We assume that the seller has only the following information
in the above example: D = 100, P = $10, A, = $0, Q = 40 /30,
Ae = $1200, hs = $2.5. The seller has estimated that the buyer’s inventory
carrying cost per dollar per year is from 0.3 to 0.7. Hence, the estimated
range for Cp is from $120 /30 to $280 /30. Note that G, = QP H,.

We consider a quantity discount schedule with five break points. By
dividing the estimate range of ()} into four sub-ranges with equal length
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and solving the non-linear program (25) for each Cj;, we obtain the break
points for w = 0 as follows.

Cy T Y Ts Th

120 v/30 1.0619 0.1071 174.95
160 v/30 | 0.9208 0.1050 157.54
200 V30 | 0.8292 0.1028 145.45
240 V30 | 0.7646 0.1008 136.51
280 /30 | 0.7164 0.0990 129.61

[=NeNeNeNo]

A quantity discount schedule with five break points is obtained as

Order quantity Discount (%)
219-376 0.00
377-386 9.90
387-400 10.08
401-420 10.28
421-451 10.50

452-00 10.71

If the buyer’s actual annual inventory related cost is $200 /30, the buyer’s
optimal order quantity is 377 units. The buyer’s payoff is $28.29 and the
seller’s payoff is $129.61.

If the seller is willing to let the buyer gain at least $50.85, the amount
given by Monahan’s model, w = 50.85, and the seller’s quantity discount
schedule with five break points is as follows.

Order quantity Discount (%)
219-383 0.00
384-394 12.69
395-409 13.05
410.430 13.45
431-463 13.90

464-00 14.38

The buyer’s optimal quantity under the quantity discount schedule is 384
units if his actual annual inventory related cost is $200\/ 30. The buyer’s
payoff is $72.63 and the seller’s payoff is $107.78.

If the seller wants to ensure that he gets, for example, v = $129.61, a
quantity discount schedule is obtained by using (27) as y = 0.1 Vv 30x /(1+
z) — 0.1291. The buyer will order 406 units each time, getting a 12.22%
discount. The seller gains $129.61 and the buyer gains $31.81. O
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The seller can get a significant payoff by using the heuristic developed in
our analysis. The buyer can also improve his profitability significantly.

In the numerical example, the number of break points was arbitrarily
selected. The seller should select the number of break points based on
industrial norms or his experiences in practice. We note that the break points
in the example are close to each other. The seller may provide a quantity
discount schedule with fewer number of break points. This will also limit
the buyer’s choices to select an order quantity. If the first break point is
eliminated in the above quantity discount schedules, the buyer will order
each time the quantity at the second break point. The seller gains more and
the buyer gains less. However, if Cj > $260 /30, the buyer may order
219 units each time and the seller gains nothing. The seller has to balance
these two tradeoffs.

If the seller’s estimation of the buyer’s inventory related cost is reliable,
the estimated range of Cp is small. A quantity discount schedule with fewer
number of break points might give the seller more payoff. Otherwise, a
quantity discount schedule with more break points might give the seller
more insurance to get a positive payoff.

4.3. Many buyers and joint solution

Our results when the seller has incomplete information about the buyer’s
cost structure can also be applied when he has many buyers and does not
know their cost structures.

When the seller has more than one buyer, his inventory replenishing
policy depends on the size and timing of the buyers’ orders. Let S denote
the number of buyers and use the notations above with a subscript i for
buyer ¢. If the seller orders a quantity each time to meet N; orders from
buyer ¢, his order quantity is Qg = X N; @;. The seller’s average inventory
carrying cost can be expressed as X [(N; — 1) Q; hs/2] and his ordering cost
is (X D;) Ae/(X N; Q;). The seller’s total inventory related cost is

TI=3(N; —1)Q;i hs/2+ X D; A/(Z N; Qi)
=Qshs/2+ (2 Di) Ae/Qs — X Qi hs/2. (28)

The seller’s optimal order quantity should include an integer number of
orders from each buyer. However, when the buyers are many and small, we
can approximate it by the quantity that minimizes 7' by (28). By minimizing
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T1I with respect to @5, we obtain that the optimal Qg is the seller’s EOQ
or Q% = \/[2 (¥ D;) Ac/hs). Substituting Q% into (28), we get

TI* = /[2(S Di) Ae/hs) — = Qi hs/2. (29)

The seller’s payoff from quantity discount is then given by

s = —LD; Py, +2(A5Di/QZ') [1 — 1/(1-+—£Ci)] +E.’127;Q7;h5/2
=X{-D;Py;)+ (Di/Qi)[1 —1/(1+zi)] + z:; Q; hs/2 }
=27r8n ) (30)

where 5, = —(D; Py;) + (Di/Qi)[1 — 1/(1 + ;)] + z; Q; hs/2 is the
seller’s gain from buyer <.

Because 7, is independent, a quantity discount schedule can be developed
for each buyer by using the results above. However, a supplier normally
offers a common quantity discount schedule to all buyers. When the seller
offers a quantity discount schedule to each buyer, the difference in the
seller’s decision problem is that he has a different payoff function (or the
upper boundary of the feasible solution area) for each buyer. Therefore,
a common quantity discount schedule can be developed for all buyers by
using the average of m;, or

ws= —DPy+ (AsD/Q)[1 - 1/(1 +z)] + = Q hs/2, (€2))

where D = (X D;)/S and Q = (X D;)/S. Using 75 given by (31) and =
given by (5), a quantity discount schedule can be developed by using the
procedures developed in our analysis.

In the literature, several models have been developed to address the
joint solution of the problem (Goyal, 1976; Banerjee, 1986a). By letting
T = 7 + T, We have

m=[1-1/(1+2)] (A + As) D/Q + (DA/Q) [1/No — 1/(1 + z) Ne]
+(Qhs/2) [(No = 1) = (N — 1) (1 + )]
+C[1—-1/(1+2z)—(14+2)(1—-1y9)]/2. (32)
Differentiating = with respect to y, we get
or /0y = (Qhp/2) (1 4+ z) > 0. (33)

Hence, 7 increases as ¥ increases. To maximize the joint payoff, the seller
should set y as high as possible or his unit selling price as low as possible.
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At the extreme, the seller should sell the product to the buyer at a price of
zero and his profit becomes negative. This is unrealistic. Even if there is
some collaborative agreement for them to cooperate, this will put the seller
into a position of great disadvantage in bargaining. Such a joint solution
is highly artificial.

When quantity discount schedules are used, how much the seller and the
buyer can gain jointly depends on the quantity discount schedule provided
by the seller. In the above numerical example, the joint gain for the seller
and the buyer when they work together but no one will be worse-off is
$301.31. In this case, the buyer gets all the gain and the seller gains nothing.
This solution is also difficult to implement. However, using the quantity
discount schedules provided above, the seller and the buyer can get more
than fifty percent of this gain.

5. CONCLUSIONS AND POSSIBLE EXTENSIONS

In the present paper, we have discussed the quantity discount problem
using the game-theoretic approach. We considered two important aspects of
the problem that have not been adequately addressed: the competitive nature
of the problem and the seller’s information about the buyer’s cost structure.
The main conclusions are briefly summarized as follows.

(1) It is always possible for the seller and the buyer to benefit from
quantity discount.

(2) Quantity discount schedules are necessary and sufficient for
independent suppliers and buyers to exploit the benefit of quantity discount.

(3) The optimal quantity discount schedule when the seller knows the
buyer’s cost structure is given by a quantity discount schedule with a single
break point. Our model generally gives better results than quantity discount
models that assume the buyer will cooperate as long as he will not be
worse-off.

(4) When the buyer’s cost structure is unknown to the seller, a quantity
discount schedule with a single break point is generally inadequate. In
this case, an otpimal quantity discount schedule is difficult to find. Two
approaches have been developed in our analysis for the seller to develop
quantity discount schedules in this case.

(5) Our results when the seller does not know the buyer’s cost structure
can be applied when the seller has many buyers.
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(6) Quantity discount schedules can significantly improve the profitability
of independent suppliers and buyers.

In this research, we provide some realistic solutions to the quantity discount
problem. However, we have restricted our analysis to a single product and
considered the seller’s replenishing policy solely based on the buyer’s order
quantity. In reality, suppliers and buyers normally trade many products.
Sellers, as buyers from other suppliers, many also determine their order
quantity from other suppliers for the purpose of obtaining quantity discount.
These considerations represent some interesting and challenging extensions
to our research.

APPENDIX I; Proof of Lemma 1

LemMma 1: The feasible solution area is always non-empty.

Proof: We consider H; > 0 and A, > 0. Let Y () = ys — yp. Note that
Y (z) is the difference between the upper bound and the lower bound of the
feasible solution area, Y (x) is continuous in z and Y (0) = 0.

By differentiating Y (x) with respect to = at 2 = 0, we obtain

dY/dzle=0 = As/(PQ)+ (1/DP)[DA./(No Q) — (No — 1) Q hs/2]
> [(No — 1) Q/DP){ DA¢/[No (No — 1) Q] — hs/2) }
since A;/(PQ) >0
> 0 since @ < Qo/\/[No (No —1)]and Ae. D/Qo = Qo hs/2.
Y (z) is increasing at z = 0. Because Y (0) = 0, there is an zg > 0 such

that Y (z) > 0 in (0, zo).
QED.

APPENDIX II. Proof of Lemma 2

Lemma 2: The seller should not offer any discount to the buyer without
using a quantity discount schedule.

Proof: 1f the seller does not use a quantity discount schedule and acts as
the leader by offering a discount y to the buyer, the buyer’s uses his reaction
function (21) or his EOQ to determine his order quantity.
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By substituting (21) into the seller’s payoff function, we obtain

ms= —yDP+[1—/(1-y)| 4, D/Q
+(Qhs/2)[(No — 1) = (Ny = 1)// (1~ )]
~ (DA/Q) [,/ (1 - y)/Ny — 1/No), (A2-1)

where Ny is the seller’s optimal replenishing policy when offering a discount
y. By substituting (21) into (11), we obtain
Ny = No —1 when y; <y <uyit1, (A2-2)

where 1 =0, 1,..., No— 1, yo = 0, yn, = yo and
yi=1—(Ng—t+1)(Ng —1) for /r0<i< Np.

Because 7, is continuous in y for 0 < y < 1 and differentiable in each
interval (y;, yi+1), we obtain by differentiating 7 with respect to y in each
interval that

drs/dy = —DP + (A D/Q) (1 —y)™/?/2— (Qhs/2) (Ny — 1) (1 — y)~*/2/2
+ (DA/Q) (1 —y)~ /(2 N,)
< —DP+(A4;D/Q) (1 — ) ?/2+ (DA/Q) (1 - y)"/? /(2 N,)
< —{(1-y)DP - A, D/[(1 + ) Q]/2
~ DAJ[2N, (1 +2) Q)] }/(1 - y)

< -{(1-y)DP-A;D/[(1+1)Q]
— DA/[Ny(1+2) Q)] }/(1—y)
< —(TP; + DC)/(1 — ). (A2-3)

We use (21) or 1+ 2 = 1/,/(1 — y) to obtain (A2-3).

We assume TP > 0 or the seller gets a positive profit for trading the
product initially. For any y > 0, if TP, < 0, ny = TP; — TP < 0;
if TP; > 0, drs/dy < 0 and 7 is strictly decreasing. Because 75 is
continuous for y > 0 and 75 (0) = 0, 75 < 0. The seller loses for any y > 0
and he should not off any discount.

It is obvious that the Stackelberg equilibrium when the seller acts as the
‘leader is (0, 0) in this case.

QED.
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