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THE STEEPEST DESCENT METHOD (*)

by A. N. IUSEM C1) (**) and B. F. SVAITER C1)

Communicated by Jean-Pierre CROUZEIX

Abstract. - We introducé a quadraîic regularization term (in the spirit of the proximal point
method) in the line searches of the steepest descent method, obtaining thus better convergence
results. While the convergence analysis of the steepest descent method requires bounded level sets of
the minimand to gei a bounded séquence, and establishes, even for convex objectives, only optimality
of the cluster points, our approach guarantees convergence of the whole séquence to a minimizer
when the objective function is pseudo-convex, whether its level sets are bounded or not.
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Résumé. - On introduit un terme de régularisation quadratique (dans l'esprit de la méthode du
point proximal) dans les minimisations unidimensionnelles de la méthode du gradient, et on obtient
ainsi des résultats de convergence plus forts. Tandis que l'analyse de la convergence de la méthode
du gradient demande des ensembles de niveau bornés, et démontre, même pour des fonctions
convexes, tout seulement l'optimaliîé des points d'accumulation, notre régularisation permet de
démontrer la convergence de la suite toute entière à un minimisateur quand la fonction objectif est
pseudo-convexe, même dans le cas où les ensembles de niveau ne sont pas bornés.

1. INTRODUCTION

The steepest descent method (also called Cauchy's method, or gradient
method) is one of the oldest and simplest algorithms for minimizing a real
function defined on Hn. It is also the departure point for many other more
sophisticated optimization procedures. Despite its simplicity and notoriety
(practically no optimization book fails to discuss it), its convergence theory
is not fully satisfactory from a theoretical point of view (from a practical
point of view the situation is even worse, but hère we are not concerned with
this issue). More precisely, standard convergence results (e.g. [1]) demand
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that the initial point belong to a bounded level set of the objective function ƒ
(and henceforth that ƒ have at least one bounded level set) and fail to prove
convergence of the séquence generated by the method to a stationary point
of ƒ, establishing only that all its cluster points are stationary. Even when ƒ
is convex (in which case the stationary points are the minimizers of ƒ) the
level set boundedness assumption is required, and the resuit is just what has
been called weak convergence to the set of minimizers of ƒ (a séquence {xk}
is said to be weakly convergent to a set S if {xk} is bounded, xk+1 - xk

converges to zero and every cluster point of {xk} belongs to S).

It is true that from a computational point of view weak convergence is
almost undistinguishable from full convergence, but failure to prove full
convergence is theoretically insatisfactory. On the other hand, the condition
of bounded level sets is quite restrictive both theoretically and practically.

In fact, the hypothesis of bounded level sets is indeed essential not only for
convergence but also for well-definedness of the steepest descent method: we
give next an example of a convex and differentiable function with nonempty
set of minimizers and unbounded level sets for which the steepest descent
method fails in the first itération.

It is well known that if C is a closed convex subset of R77, P : R n -» G
is the orthogonal projection onto C and g (x) — \\P (x) — x ||2, then g is
convex and differentiable, C is the set of minimizers of g and V g (x) =
2 (x - P (x)). Consider Cu C2 C R2 defined as Ci = {(xu x2) : x\ > 0,
002 > 1/ffi}, C2 — {(xi, X2) : X2 < x\ - 2}, let P2 be the orthogonal
projection onto Ci (i — 1, 2) andtake /(x) = || Pi (x)-x ||2 + || P2 (x)~x ||2.
It follows that ƒ is convex and differentiable, the set of minimizers of ƒ
is C\ n C2 = {(xi, X2) : xi > 1 + y/2, 1/xi < X2 < x\ - 2} where ƒ
vanishes and V ƒ (x) = 4x - 2Pi (x) - 2P2 (x). It is easy to check that
Pi (0, 0) = (1, 1), P2 (0, 0) - (1, -1 ) so that V ƒ (0, 0) - (-4, 0). If we
start the steepest descent method at x° = (0, 0), we are required to minimize
ƒ on the halfline L — {(£, 0) : t > 0}, but the minimum is not achieved,
because L n Ci D C2 = 0 and the distance from L to Ci H C% is 0 so that
ƒ (x) > 0 for ail x G L and inf ƒ (x) = 0.

In this paper we show that addition of a quadratic regularization term (in
the spirit of the proximal point method) to the linear searches of the steepest
descent method removes such obstacles and, for the case of a pseudo-convex
objective ƒ, it is possible both to prove full convergence of the séquence
to a minimizer of ƒ and to eliminate the assumption of boundedness of
the level sets.

Recherche opérationnelle/Opérations Research



A PROXIMAL REGULARIZATION OF THE STEEPEST DESCENT METHOD 125

We start by recalling the proximal point method for minimizing ƒ : Hn —>
R. Starting from an arbitrary x° G R n , a séquence {xk} c R n is defined by

ƒ (a?) + Àfc || x
k -x\\2} (1)

where {Xk} is a bounded séquence of positive real numbers called
regularization parameters. The origin of this algorithm can be traced back
to [5], and its applications in the area of convex optimization were fully
developed in [7], [8], where it is proved that under reasonable assumptions
of ƒ the séquence {xk} defined by (1) converges to a minimizer of ƒ. See
[4] for a recent survey on the proximal point method and its extensions.
We remak that this method is in gênerai a theoretical device rather than an
implementable procedure, because the minimization subproblems in (1) are
in principle as hard as the basic problem min ƒ (ar), and sorne numerical
algorithm is required to solve them in order to get each iterate xk.

In this paper we do not analyze the proximal point method as given by
(1). Rather we limit ourselves to add a regularization term of the form
Àfc || x - xk ||2 to the line searches of the steepest descent method.

Our proof is based upon the notion of quasi-Frejér convergence, introduced
for the first time [2], which will be discussed in the next section.

2. THE PROXIMAL REGULARIZATION OF THE STEEPEST DESCENT METHOD

Given a continuously differentiable function ƒ : R n —> R, the steepest
descent method for the problem

min f (x) (2)

is given by

Initialization:

Itérative step:

x°

ak = argmin ƒ (xk - a V ƒ (xk)) (3)
o>0

xk+1=xk-akVf(xk) (4)

Le. ak minimizes the restriction of ƒ (x) to the halfline starting at xk and
passing through xk - V ƒ (xk).
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Our method consist of using instead the restriction of ƒ (x) + Xk || x — xk ||2

to this halfline. If x = xk - a V ƒ (x*) then ƒ (x) + Xk\\x-xk ||2 = ƒ (xk -
a V ƒ (xfc)) + a2 Xk || V ƒ (x*) ||2. Therefore the proximal regularization of
the steepest descent method replaces (3), (4) by

ak = arg. min{/ (xk - a V ƒ (xk)) + a2 \k || V ƒ (xk) ||2} (5)
a>0

a r
f c - a f c V / ( x * ) (6)

where || • || is the Euclidean norm and {À^} C R satisfy

A < Afc < A (7)

for some A, A such that 0 < A < A.
We proceed to the convergence analysis. From now on {xk} refers to the

séquence generated by (5)-(6). We assume that problem (2) has solutions.
Let ƒ* = min f (x).

x€Rn

PROPOSITION 1: The séquence {xk} is well defined and, for ail k,

V ƒ (xfc+1)* V ƒ (s*) - 2afc Xk \\Vf(xk) ||2 (8)

Proof: Let ifk (a) be the minimand of (5), Le. % (a) = ƒ (xk ~
ot V ƒ (xfc)) + a2 Afc || V ƒ (xk) ||2. We claim that problem (5) always has
solutions. If V ƒ (xk) = 0 then </?& is constant and from (6) xk+1 = xk for
any choice of a^. Otherwise ^ (a) > ƒ* + a2 A || V ƒ (xk) ||2, implying
lim y?ju (a) = oo, so that the minimization in (5) reduces to a bounded

et—^oo

interval and existence of ak follows from continuity of ifk>
Observe that <pf

k(a) - - V / ( x f c - a V / {xk)YVf (xk) +
2a\k\\V f (xk)\\2

} so that ^ ( 0 ) - —1| V ƒ (xk)\\2 < 0. It follows
that either V ƒ (xk) = 0, in which case (8) holds trivially, or ak > 0,
in which case, using (6),

0 = <f/k (ak) = - V ƒ (^ + 1 )* V ƒ (a*) + 2 cfc Afc || V ƒ (xfc) ||2 (9)

and (8) follows from (9).

PROPOSITION 2:

(i) ƒ* < ƒ ( ^ + 1 ) + Xk || x
fc+1 - x* ||2 < ƒ (x*),

(ii) {ƒ (xfc)} Ï5 decreasing and convergent,

X*!! 2 < OO,

k=0
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(iv) lim (xk+x - a:*) = 0.

Proof:
(i) With tpjç as defined in the proof of Proposition 1, use (5) and (6) to get

ƒ (**) = yk (0) > Vk (a*) = f(xk-akVf (xk)) + a2
kXk\\Vf (xk) ||2

which proves the rightmost inequality. The leftmost one is trivial,
(ii) Foliows from (i) using A& > 0.

(iii) From (i) and (7), À || xl+1 - xl ||2 < À,1| xl+1 - xl ||2 < ƒ (é) -
k

/(x/+1).Summingon^Â^||ar/+1-^||2 < f(x0)-f{xk+1) < f(x°)-f*
1=0

oo

so that J2 II X^X ~ xk II2 < ^ ( / (x°) ~ /*) < °°-
(iv) Follows from (iii).

PROPOSITION 3:Ifx is a cluster point of {xk) then V ƒ (x) = 0.

Proof: Let {xlh} be a subsequence of {xk} such that lim xlk — x. By
fc—KX>

Proposition 1 and (6)

ar '* | | | |V/(x ' f c ) | |

By Proposition 2 (iv), (7) and continuous differentiability of ƒ, the left hand
side of (10) converges to || V ƒ (x) ||2 as k goes to oo, and the right hand
side of (10) converges to 0, Le. V ƒ (x) — 0.

We remark that up to now we have not established existence of cluster
points of {xk}> which will be proved below with a convexity hypothesis on
ƒ, but we chose to prove stationarity of the limit points before existence
in order to complete the set of statements that hold without demanding
convexity. Of course, if we assume that x° belongs to a bounded level set
ƒ, then by Proposition 2 (ii) such set contains the whole séquence, which is
therefore bounded, in which case Proposition 3 implies the standard resuit of
weak convergence to the set of stationary points, Le. even without convexity
our algorithm fares as well as the usual steepest descent method. But our
main goal is to get rid of the boundedness assumption and nevertheless prove
full convergence, which we do next for the case of pseudo-convex ƒ.

vol. 29, n° 2, 1995
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We present now the notion of quasi-Fejér convergence, introduced in [2].

DÉFINITION 1: A séquence {yk} c R n is quasi-Fejér convergent to a set
U C R n if for every u G U there exists a séquence {e^} C R such that

OO

ek > o , £ e f c < ° ° a n d l l y f c + 1 ~^l i 2 < \ \ y k - u \ \ 2 + ek.
k=0

The following resuit was proved in [3, Theorem 4.1] for rather gênerai
distances. We give hère a proof for the Euclidean distance in order to make
this paper self-contained.

PROPOSITION 4: If{yk} is quasi-Fejér convergent to a nonempty set U then
{yk} is bounded. If furthermore a cluster point y of {yk} belongs to U then
y = lim yk.

&—»oo

Proof: Take u G U. Apply iteratively Définition 1 and get || yk — u ||2 <
k—1 oo

|| y0 - u ||2 + ^2 ei < || y0 - u ||2 + ƒ?, where (3 = ^ eu < oo. It follows
/=o /fe=o

that {yk} is bounded. Let now y G U be a cluster point of {yk} and take
any 6 > 0. Let {y/fc} be a subsequence of {yk} such that lim ?/* = y.
Since y £ U there exists {e^} satisfying the properties of Définition 1. Take

oo

such that \ ^ e^ < - and k such that /^ > fco and || y/s — y \\2 < - .
k—k0

Then, for any k > 1% :

—1 - oo c c

\\yk - y \ \ 2 < \ \ v h - y \ \ 2 + E ^^ 2 + H ̂ ^ 2 + 2 = s

i-lk i=k0

Since 5 is arbitrary, it follows that y — lim yk. D
k—J-OO

We present next our quasi-Fejér convergence resuit, We remind that ƒ is
pseudo-convex if and only if it is differentiable and (y — x)f V ƒ (or) > 0
implies ƒ (y) > ƒ (x). It is immédiate that differentiable convex functions
are pseudo-convex.

PROPOSITION 5: If ƒ is pseudo-convex then the séquence {xk} is quasi-Fejér
convergent to the set of minimizers of ƒ.
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Proof: Let z be a minimizer of ƒ. Then

= -2{z-a*)t(xk+1 -xk)

= 2ak(z-xk)tVf(xk) (11)

using (6) in the second equality. We claim that (z —"xkY V ƒ (a:fc) < 0.
Otherwise, (z - xkf V ƒ (xfc) > 0 and we get f (z) > f (xk) by pseudo-
convexity of ƒ. Then xk is also a minimizer of ƒ, and therefore V ƒ (xk) = 0,
in contradiction with (z — xk)f V ƒ (r£fc) > 0. The claim is established.
Then, we get from (11) \\z - xk+1 ||2 < \\z - xk ||2 + \\xk - a;&+1 ||2

and the resuit foliows from Proposition 2 (iii) and Définition 1, with
ek = \\xk+1 -xkf. D

Finally we give our main resuit.

THEOREM h If f is pseudo-convex and attains its minimum on R n then the
séquence {xk} generaled by (5), (6) converges to a minimizer of f.

Proof: By Propositions 4 and 5 the séquence is bounded, so it has cluster
points. By Proposition 3 any such cluster point is a stationary point of ƒ, and
therefore, by pseudo-convexity of ƒ a minimizer of ƒ. The resuit follows
from the second statement of Proposition 4. G

3. FINAL REMARKS

The computational performance of the steepest descent method has been
up to now quite disappointing. Not only it has a best a linear convergence
rate (e.g. [6], though this happens with all first order methods) but the
fact the gradients at consécutive itérâtes are mutually orthogonal leads to
poor performance ("hemstitching" phenomena, see [1]), unless ƒ has almost
spherical level sets.

We do not make any claim in the sensé that our regularization is not
subject to the sarne limitations (though in our scheme consécutive gradients
form an acute angle, which in principle looks better, and the freedom in the
choice of the regularization parameters À ,̂ which control the size of such
angle, could have interesting computational effects); we just present a very
simple variant of the method for which much neater convergence results
can be obtained, eliminating at same time the rather annoying hypothesis
of bounded level sets.
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Nevertheless, we remark that the addition of the quadratic term to the
line searches represents a négligeable additional computational burden, and
in compensation, besides the better theoretical results presented above, the
minimand tp^ of the line search will be in gênerai better behaved than the
restriction of ƒ to the halfline (e.g. if ƒ is convex then tpk is strictly convex) so
that numerical procedures used to perform the line searches can be expected
to be more efficient for our proposai, whether they are nonderivative ones
(e.g. Fibonacci search) or derivative ones (e.g. Newton's method).
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