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A RELATION BETWEEN THE APPROXIMATED VERSIONS
OF MINIMUM SET COVERING, MINIMUM VERTEX
COVERING AND MAXIMUM INDEPENDENT SET (*)

by V. Th. PascHos Q)

Communicated by Pierre ToLLA

Abstract. — Let p be a universal constant denoting the approximation ratio of a hypothetical
polynomial time approximation algorithm for the instances of the independent set problem with

11 .
% n<a(G)< 0™ where G is a graph of order n and stability number o (G). Let finally

suppose the existence of a (universally) constant-ratio-polynomial-time-approximation-algorithm
for set covering problem. Then, there exists a polynomial time approximation algorithm for vertex

9 9
covering problem with a ratio bounded above by max { 5 2 - 0 p} + € for a € arbitrarily small.

Keywords: NP-complete problem, polynomial time approximation algorithm, set covering, vertex
covering, independent set.

Résumé. — Soit p une constante universelle représentant le rapport d’approximation d’un
algorithme approché hypothétique pour les instances du probléme du stable maximum vérifiant

9 11
20" <a(G)< " ou G est un graphe d’ordre n et de nombre de stabilité o (G). Supposons

qu’il existe un algorithme approché de rapport constant pour le probléme de recouvrement minimum
d’ensembles. Il existe alors un algorithme polynomial approché pour le probléme de transversal

9 9
minimum avec un rapport majoré par max {g ,2— 0 p} + € avec € arbitrairement petit.
Mots clés : Probleme NP-complet, algorithme polynomial approché, recouvrement d’ensembles,

transversal, stable.

1. INTRODUCTION

Given a graph G = (V, E) of order n, a vertex covering (or vertex cover)
is a subset V' C V such that, for each edge uv € E, at least one of u
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414 V. Th. PASCHOS

and v belongs to V' and the minimum vertex covering problem (VC) is
to find a vertex cover of minimum size [in what follows, we shall denote
the cardinality of a minimum vertex covering of a graph G by 7(G)]; an
independent set is a subset V/ C V such that not any two vertices in V' are
linked by an edge in G and the maximum independent set problem (IS) is to
find an independent set of maximum size [in what follows, we shall denote
the cardinality of a maximum independent set of a graph G by a(G)].

Given a graph G, a maximum (maximal) independent set is the complement
of a minimum (minimal) vertex covering with respect to the vertex set of the
graph; so, the sum of the cardinalities of a maximum (maximal) independent
set and of the associated minimum (minimal) vertex covering equals the
order of the graph.

Also, given a collection S of subsets of a finite set C, a set cover for C
is a subcollection S’ of S such that every element of C belongs to at least
one member of &’ and the minimum set covering problem (SC) is to find
a set cover of minimum size.

There is a picturesque graph formalism for SC. Every instance I of SC
characterized by two sets S and C (S = {s1, ..., s} denoting the family
of the subsets of the set C = {c1, c2, ..., ¢m}, where n and m are the
cardinalities of & and C, respectively), can be represented by a bipartite
graph B = (S, C, E), called the characteristic graph of I, where the vertex
set S denotes the family S, the vertex set C the elements of the set C' and
E = {s;cj : ¢; € s;}. Then, finding a minimum set covering for C' becomes
to find a minimum size subset of vertices of S (B) “seeing” (sending edges
to) all vertices of C (B). On the other hand, every instance I of VC is
expressed in terms of a graph G = (V, Eg), which can be equivalently
represented by a bipartite graph Bg = (V, Eg, E') where E’, the edge set
of Bg, contains the pairs v; e; such that e; € Eg is incident in G to v; € V.
Clearly, the instances of VC are exactly the instances of SC where every
element of C is contained in exactly two subsets of S, or equivalently, in the
characteristic graph of these instances of SC, the degrees of the C-vertices
are equal to 2. Hence, we can treat every instance of VC as an instance
of SC, by considering G or equivalently Bg as the characteristic graph of
this instance.

One of the most interesting theoretical problems in the complexity theory
is to be able to “transfer” approximation results (positive, negative or
conditional) from an NP-complete problem to another one via reductions
preserving approximations ratios or to condition the existence (or the
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improvement) of existing approximation performances for some problems
on the existence (or the improvement) of approximation performances for
other ones.

Minimum vertex covering is a famous combinatorial problem for which
we know a polynomial time approximation algorithm (PTAA) with a ratio
equal to 2, namely the maximal matching algorithm [6], consisting in picking
a maximal matching M in G and in putting in the approximated solution
for VC both the extremities of the edges of the obtained matching (so, the
cardinality of the so-obtained approximated solution is 2| M |). Up to now,
all the researchers have failed to find another approximation algorithm with
better performance guarantees.

On the other hand, recently, some researchers [1] have proved that VC
does not admit a polynomial time approximation schema unless P =NP; the
remarks made previously on the relation between SC and VC (the latter is a
sub-problem of the former), permit to conclude immediately that the result
of [1] is valid for SC also.

In the light of this remarkable result, the evaluation of a value constituting
the lower bound for the approximation ratio of VC, or an improvement of the
known approximation ratio for VC, would be of a great theoretical interest.
Concerning the improvement of this ratio, we mention here the works of Bar-
Yehuda and Even ([2], [3]) as well as the work of Monien and Speckenmeyer
[9]. Their results concern an improvement of VC approximation ratio from
log log n

2log n

In this paper, we propose a conditional method for the improvement of
VC ratio by an absolute constant €, by considering VC as a restriction of SC.
In fact we link, from an approximability point of view, three optimization
problems, the VC, SC and IS. We prove then that a sufficient condition for
the improvement of VC approximation ratio is the simultaneous existence
of an approximation algorithm for SC and an approximation algorithm for
IS on graphs for which « (G) < n holds!, where o (G) denotes the stability
number of the graph G and the two approximation algorithms are supposed
of constant approximation guarantees.

2to2—¢, but foran e = [3] which tends to O whenever n — oo.

Our method consists, given an instance of SC, in constructing a new larger
instance of the problem in which the cardinality of a set covering is a power
of the cardinality of the solution in the initial instance.

! fxgifandonlyif f=0(g)and g = O (f).
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416 V. Th. PASCHOS

This construction is performed by means of a kind of operation on
bipartite graphs, called composition, where, given two bipartite graphs
B; = (S;, C;, E;) and B; (S, Cj, E;), someone can construct the bipartite
graph B; x Bj = B;; = (S;5, Cij, Eij) with S;; = S; x 8, Ci5 = C; X C;,
and Ejj = {s¢r c1 : St ek € E; A sy ¢ € Ej}, where the operator x denotes
the Cartesian product.

We denote by BP = (SP, CP, EP) the graph obtained by the following
inductive schema:

By =B
B = Bx BP™L.

Given the graph BP, we can see the set C? as the union of m = | C| sets
of cardinality mP~! = |CP~!|, every set CP~! as the union of m = |C |
sets of cardinality mP~2 = |CP~2|, ..., every set C? as the union of
m = |C| sets of cardinality m = |C| (the same correspondence holds
also for the set SP). For reasons of facility, Vi < p, we will call by C*~1-
groups the m sets C* !, the union of which giving C* (the same convention
holds also for S*); also, sometimes, for these C*~!-groups (S*~!-groups),
we will say that they are embedded in C* (S*); moreover, whenever it is
necessary, we will index them by the index of the vertex of Bg to which a
group corresponds; finally, for every j, set C?~1 of the graph B’ is “seen”
by two S’~!-groups of B?. This is due to the definition of B’, since every
c-vertex of Bg is “seen” by two s-vertices of Bg.

6]

Let us, for example, consider the graph G of Figure 1(a) where we have
denoted its vertices by sj, s and s3 and its edges by ci, ¢z and c3,
respectively; let us denote by S the set {s1, s2, s3} and by C the set
{c1, c2, c3}. The bipartite graph Bg = (S, C, E') constructed as discussed
previously is shown in Figure 1(b).

51 $2 S3

c: c
) 1 2 ® 3

Figure 1. — (a) an instance B of VC; (b) the bipartite graph Bg.

In Figure 2, the graph B?2 = Bg x Bg constructed using schema 1 is
shown. As one can see, every s-vertex (c-vertex) of Bg has been replaced
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by the whole set S (C); we have so created three S-groups (S1, S2, S3,
where S; = $; X S, 1 = 1, 2, 3) and three C-groups (C1, Cy, Cs, where
Ci=¢ xC,i=1, 2, 3), respectively. Every thick line between an S- and
a C-group represents the whole of Eg (in other words, between an S- and
a C-group corresponding to two vertices of Bg linked by an edge, we have
drawn the whole graph Bg; we have chosen this representation for purposes
of clarity of the figure). Everyone of the groups has three embedded vertices.

S, S, S

>
D

c, q, c,

Figure 2. — The graph B2 = B x BB; the S- and C-groups are also indicated.

In Figure 3, the graph B3 = B x B? constructed using schema 1 is
shown. Here, every s-vertex (c-vertex) of Bg has been replaced by the
whole set S% (C?); we have so created three S2-groups (S?, S2, S3, where
S§2 = 8 xS, 4 =1,2,3) and three C2-groups (C%, C%, C3, where
C’i2 = C; x C, 1 = 1, 2, 3), respectively. Every thick line between two
rectangles in Figure 3 represents the whole of the edges of B?; in other
words, between an S?- and C?-group corresponding to two vertices of Bg
linked by an edge, we have drawn the whole graph B2; we have, once more,
chosen this representation for purposes of clarity of the figure?. Everyone of
the S%-groups (C2-groups) has three embedded S-groups (C-groups), each
one of them containing three embedded vertices.

2 For example, the thick edge between the subsets S7 and C3 in Figure 3 means not only that
there exist links between these two subsets, but also that these links are of the same nature as the
ones of the initial graph Bg [Figure 1(b)].
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Figure 3. — The graph B; = B x B?; the S2- and C2-groups are also indicated.

In what follows, we will suppose that A is a hypothetical polynomial
time p'-approximation algorithm for SC and .A” is a hypothetical polynomial
time p-approximation algorithm for IS on a family Gy, x, of instances of
IS, where p and p’ are universal constants. The family Gy, «, is defined as
Griks = {G : k1n < a(G) < kan}, where n is the order of the graph G
and « (G) its stability number.

Throughout the paper and for reasons of facility, we fix the constants

k1 and kg to 20 and 50’ respectively; we notice that the only changes

performed in the result of section 2, due to the choice of precise values
for the two constants, lie in the value of the constant substracted from
2 in the approximation ratio of VC. Moreover, for reasons of notation’s

9 11
simplifications, we shall denote by G = {G ‘oo™ <a(G) < 2 n} the

corresponding family of graphs.

We can suppose that the IS algorithm A", solving approximately the
instances of the family G, when applied to graphs not contained in G,
provides either solutions with ratio smaller® than p, or non-feasible solutions.
Also, we will denote by 7' (indexed whenever necessary) the cardinality of
the approximated (sub-optimal) solution for VC.

3 p < 1, since IS is a maximization problem and the adopted approximation measure is defined
!
as the ratio ﬁ, where o is the size of the approximate solution for IS provided by an
approximation algorithm [5].
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2. THE RESULT

2.1 An algorithm for vertex covering

In what follows, we use the terminology of [10] where exposed vertices
(with respect to a maximal matching M) are called the vertices that are not
saturated by the edges of M; given also an edge uv of M, wu(v) is called
the mate of v (u). In order to use the least possible of notations concerning
the optimal and the approximated solutions of the different instances, we
will use the same notations for variables representing these quantities within
the algorithm, and for constants representing the same quantities within the
proof of the theorem of section 2.2. Finally, let us notice that the variables
T', 7' appear twice in algorithm 1 (in steps [5] and [7]). This is no so
missleading since we can see step [7] as an assignment of the final solution
(solution value) to the variable T” (7').

Algortihm 1 (algorithm .A’) is the polynomial time approximation
algorithm, the (approximation) performance of which we analyze in
section 2.2. In fact, A’ is really polynomial since k depends only on &
which is independent of both n and m (as size of the VC instance can be
considered the quantity n; on the other hand, m, the edge set cardinality of
the instance, is bounded by n?). In fact, step [51, which is the most expensive
step of the algorithm, has a time complexity bounded above by O (m*~1);
on the other hand, in the worst case, the combination of steps [S5] and [6]
induce a complexity bounded above by nm¥~1, both these quantities being
polynomial on n. As one can see, algorithm 1 uses three other algorithms
as procedures, namely the hypothetical algorithm A for SC, the hypothetical
algorithm A" for IS, and the maximal matching algorithm for VC.

Concerning step [5] for £k = 2 for example, let us denote by M;,
1 =1,2,...,n, the subsets of Té in the S-group S;; then, the solution
T’ is obtained by taking one of the subsets of 7% of minimum cardinality
which “sees” (covers) all of the vertices of a C-group of B? (the
minimum being taken over the distinct C-groups), or more formally:

T'I{Mi UMJ‘: |Mz UMj| :lt—IlniZH nlMl UMt:slstE(G)}[}.

Really, since in B every vertex cq “is seen by” two s-vertices, s;, s, then
by the construction of the graph B? [expression (1)], vertex cq corresponds
to a CP~1-group C’f]’_l of BP receiving edges issued only from two SP~1-
groups Sf -1 SP ~1 of BP corresponding to the vertices s;, s; of Bg;
consequently, the part of the solution TI', covering the elements of the group
C’g_l is contained in the groups S7 -1 SP -1
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Ti—1
2 b
2, ..., k, verified in step [5] assures, as we shall see in section 2.2, that

On the other hand, the “chain” of the conditions 7{ > n 1 =

k—1
T’k > (g) 71 and since the cardinality 7’ of the final VC-solution found

k-1
in step [6] is smaller than or equal to 71, we have 'k > (2) .

Moreover, concerning step [6], let us notice that in graph B!, 2<i <k,
every S*l.group of the set S* corresponds to an S-vertex of Bg and,
equivalently, to a vertex of Gj so, the sets P and @ are well-defined on both
graphs Bg and G. Furthermore, in section 2.2, we prove that the graph BG
defined on color classes P and @ is really a bipartite graph.

Let us now revisit the example of section 1 in order to make clearer step
[5] (and, partially, step [6]) of algorithm 1.

ArcoritiM 1: Algorithm A’ solving approximately VC.

[1] Given the graph G = (V, E), pick a maximal matching on G; store as candidate solution
for VC the vertices incident to the edges of the maximal matching just obtained.

[2] Construct the characteristic graph B = Bg = (S, C, E'), with S =V and C = E.

[3] Fix an arbitrarily small universal constant € and construct the graph B* [inductive schema
of expression (1)], where k is the smallest integer for which p’% <l+e

[4] Construct B¥; execute A on the instance of SC represented by B*.

[5] For i = k do the following:

for every C*~-group C:! of set C' in the graph B', consider the two S*~'-groups “seeing”
C:~! and find the elements of T}, lying into these S*~-groups, which cover C:~L; form a
solution T} _ 1,r for C:~1 by taking the set of the elements of T! found just above, by projecting
their indices onto their i — 1 last coordinates and then by removing (eventual) duplications;

form a SC-solution T!_,(|T!_y| = 7i_,) for the graph B'~!, where T! , =
1<l'nlél {T 1, r}

if, for the value of T{_,,
i, else go to step [6];
execute A" on G and let o' be the cardinality of the obtained solution S';

9
if S’ is feasible and moreover o' > 23P™ then store the set T" = V\S' as candidate solution;
go to step [7].
'

7!

[6] (We are in the case where 3i < k, 7! < n —’2;1—.)
I

Let P(Q) be the set of the S*~1-groups of B* with more than, or equal to (less than), b
elements of T,
construct the graph BG = (P, Q, E'), which is the bipartite graph resulting from G by removing
all the edges between the vertices of G corresponding to the elements of P and obtain a maximum
matching M on BG; let PS, PE (QS, RE) be the saturated and the exposed vertices in P (Q)
with respect to M;

if PE = O, or M is perfect, then P = PS is an optimal vertex covering for G;

Recherche opérationnelle/Operations Research
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else, start from set QF and consider the set PS' of the members of PS adjacent to the members
of QE; consider the set QS' of the mates of the members of PS'; augment PS' by inserting in
this set all the vertices adjacent to the members of QS' that are not already in PS'; augment
also QS' by taking into account the mates of the vertices recently added to PS’ and repeat this
procedure until no more vertices can be added to PS’'; let G' and G"' be the subgraphs of G
induced by the sets PS' U QS’' U QE and (P\PS') U (Q\(QS’ U QE)), respectively;

take as solution of G' the set PS';

go to step [1] and replace G by G''.

[7] The final solution T' (|T"| = 7') for G is the smallest set between

(i) the candidate solution obtained in step [1],

(ii) the union of T} (obtained in step [5]) with the union of the sets PS' created from the
(eventually multiple) executions of step [6] and

(iii) the union of T"' (obtained in step [5]) with the union of the sets PS' created from the
(eventually multiple) executions of step [6].

For k = 2 and following the above remark, let us suppose that .4 has found
a solution T4 for B? constituted from the first vertex of the Si-group, the
second vertex of the Sy-group and the third vertex of the S3-group (Fig. 2)*;
it is easy to see that these three vertices “see” all of the vertices of C?,
constituting so a solution for the SC-instance represented by B?. Now, the
C-group of B? is seen by the set {s11, s33}, the projection on the second
index for both vertices (that is the set {s1, s3}) constituting a solution for
the original SC instance; other solutions could be the sets {s1, s2} (for the
C»-group) and {s3, s3} (for the C3-group)’. Since, for all of the C-groups
of B2, the obtained solutions have the same cardinality, the solution 7" can
be one of the three sets just mentioned; if this was not true, then T' would
be the minimum cardinality so obtained set.

Finally, let us discuss the case kK = 3 (Fig. 4) and show how a
solution for the first (leftist) C-group embedded in the C?-group of set
C? can be constructed®. The subset of Tj which “sees” the C-group Cj
embedded in the C%-group C? embedded in set C® contains the vertex-
set {s111, 122, $133, $311, S322, S333}. The projection of the indices of
these vertices onto their two last components gives the set {s11, S22, $33}
constituting a solution for the SC instance represented by Bs; next, we can
obtain a solution 7" = {s1, s3} for the considered C-group as described
just above.

4 Following the notation we have used when we defined the composition of two bipartite graphs,
we could call these vertices sy, S22 and s33, respectively.

5 Let us remark here that another solution could be the S-vertices of B corresponding to those
S-groups of B2 containing non-empty subsets of T5; for our example this solution is trivial since
all S-groups of the set S? contain some members of T7.

6 This group, following the adopted notation, contains the vertices c111, c112 and ¢113.
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On the other hand, concerning the second part of step [5] of algorithm A,
the feasibility test can be performed polynomially by taking the candidate
solution S’ and by verifying that it really constitutes an independent set;
also, since p is supposed to be a priori known and, moreover, n is the order

9
of the graph (instance of VC), the test o > 20 pn is meaningfull (in fact,

it is the case (a2) of the theorem in section 2.2).

Let us now have a small discussion on step [7] of A’. Cases (ii) and (iii)
are due to the following configuration: for an 7; < k, step [6] is executed
and a set PS’ is obtained, as well as a partition of G into two subgraphs G’,

G"'; then, algorithm 1 is re-executed with G” instead of G; (a) let us suppose
/

that G” ¢ G; then, if the condition of step [5] (T{ >n Ti;, Vi< k) is

verified, the final solution is the union of the set PS’ and of the solution-set
obtained from the execution of step [5]; on the other hand, if the condition
of step [5] is not verified, then step [6] is executed and a new set PS’ and a
new partition G', G” of G (recall that G is now the graph G”) is obtained;
then, the solution of VC will be the union of the two sets P.S’ obtained and
of the solution of the new graph G”; moreover, algorithm A’ is re-executed
with the new G” in place of Gi;... [case (ii)]; (b) let us now suppose that
during an iteration (re-execution) of algorithm 1 the graph G”, replacing
G, belongs to the class G; then, the final solution for VC is the union of
the sets PS’ produced during the anterior executions of A’ with the set 7"
produced by step [5] during the last execution of the algorithm [case (iii)],
or the solution obtained as we have just described in case (a).

r b dEE dbEE A

@

€ € @I [ € €[ @) &

Figure 4. — A solution T} for B>; the arrows show the members of T} (using
the notation adopted in the definition of the composition of two bipartite
graphs, the indicated vertices are si11, s122, 5133, $2225 S311, $322, $333)-
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2.2 The theorem

THEOREM: Let p be the approximation ratio of a polynomial time
approximation algorithm A" solving independent set on graphs in G, and let
us suppose the existence of a polynomial time constant-ratio-approximation
algorithm A for set covering. Then, algorithm 1 is a polynomial time
approximation algorithm for vertex covering achieving an approximation

9 9
ratio bounded above by max {g, 2 — 0 p} + ¢, for a positive constant €

arbitrarily small.”
In order to prove the theorem, we examine two cases, namely,

9 9
a(G) < 20" and a(G) > 2™ The proof of the first case is easy

and straightforward. For the second case, starting from an instance G

(or equivalently Bg) of VC, we use iteratively the inductive schema of

!
T
expression (1) and we examine the cases (a) 7, > n — L

, where ¢ denotes

the ith iteration of schema (1) and 7/, 7/_; denote the approximated vertex
covering cardinalities for the bipartite graphs B' and B'~! produced,

respectively, during the iterations ¢ and 2 — 1 of schema (1), and (b)
/
Ti—1

7'{ < n , Where 1, Ti/ and ’Tz-/_l are as in case (a). For case

11
(a), we distinguish two subcases, namely (al) a(G) > 20" and (a2)

9 11
20" <a(G@) < 20 ™ In all, for case (a), we prove that there always exists

1 2 .
apf> 3 such that 77, > B5—1 1'% this fact, as we prove at the end of

section 2.2, entailing an approximation ratio for VC strictly smaller than 2.
For case (b), we partition the vertices of G into two subsets such that the
subgraph G’ induced by the one of these sets is an instance where VC
is polynomially solved, and the subgraph G” induced by the other one
admits the hypotheses of case (a); moreover, we prove that the union of
the approximated solutions of G’ and G” constitutes a solution for G and
moreover that the cardinality of an optimal vertex covering of G is greater
than, or equal to, the cardinality of the union of the optimal solutions of G
and G". So, if for case (a) one can find a polynomial time approximation

9 9 <1 9
72— — 2—- — 2-—>0.
wPte>2 9P > 257>
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algorithm with ratio strictly smaller than 2, then one can obtain an algorithm
of ratio even smaller than the one case (a) also for the graphs admitting
the hypotheses of case (b). Then, the only remaining question is to show
how algorithm 1 achives such a ratio; hence, we conclude the proof by
answering this question.
9
Whenever o (G) < 0™ and since a(G) + 7(G) = n, we have
11

7(G) > o™ consequently, given that any minimal vertex covering is

at most of cardinality n (recall that by n we denote the order of G), any
suboptimal algorithm for VC (for example, the maximal matching one) has
an approximation ratio bounded above by

n 20
T =77 <182

Step [1] of A’ serves to treat the cases where o (G) < -2% n.

9
Thus, the main part of the proof concerns the case a (G) > 2 n.
In what follows, we assume the existence of a PTAA A with approximation
ratio p’ (absolute constant) for SC which provides us with a solution T! of
cardinality T{ for B* [inductive schema of expression (1)], by means of which

we shall derive a solution 7" of cardinality 7 for Bg (or equiv. for G).
Let us suppose that a graph G, instance of VC, is given. We apply A’
(algorithm 1) to G and we examine the following two cases corresponding
to steps [5] and [6] of algorithm A’, respectively:
. / Tio1
@Vi <k, 2n—=;
(b)3Ji < k, 7] < n—F=

@Vi<k 7 >n-i2

Here, we have to examine two subcases concerning « (G):
11
G) > —n;

(al) 0;( ) 2 55w .

—n < < —n.
(a2) 20” <a(G) < 50 "
(al) Let m be the cardinality of a maximum matching in G. Given that

[4] a(G)+ 7(G) = n and m < 7(G), we have -
9

ﬁer(G)S%n. ¥))
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We have already mentioned that given a maximum matching M, the set
of vertices incident to the edges of M constitutes a solution A for VC of

. 9
cardinality A = 2 7m; thus, by using expression (2), we get A < 0" and, by

taking into account the fact that the exposed vertices of a graph with repect
to a maximal matching form an independent set of the graph, we obtain

immediately such a set of cardinality o/ > % So,n=A4+ad >+ i%’

9
or A < —n, this expression implying
10 10

In fact, solution A is the one obtained during step [1] of algorithm 1;
moreover, this solution is compared to the ones obtained in steps [6] and
[7] of the algorithm in order to select the minimum among them. So, if
the constraint of case (al) holds, then, for the finally selected solution 77,

10
7/ < X and, consequently, n > —9-7" .

So, using the hypothesis of case (a) and expression (3), we conclude that

! Thoa k-1
/ Te—1 n—3 n
T 2N 5 >n 5 2 ..sz_l'r
or
5 k—1
™ > (-) 'k 4)
9
(a2) In this case, if o/ is the cardinality of the independent set S" obtained
from A" (second part of step [5] of algorithm 1), it verifies —— o G) >por
: 9
o > pa(G) > 20 °™ Then, T" = V\S’ is a vertex covering for G of
9 20—-9
cardinality A < n — S9P"= ~——2-0——pn or,
20
> — 5
"=20-9, ®

Let 7' be the cardinality of the solution for G found by the application of
A on B’” (ﬁrst part of step [5] of algorithm A’). For 7/, given that Vi < k&,

T>

2
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and by expression (5),

101 \*!
L > ! 6
TL—(20—9p> T ©
10 k-1
If A > 7/, then expression (6) gives 'r,’c > (50—9—[)) 7%, while if
k-1
10 o
A< ’7",, it giVCS ’I',lc Z (m) )\’".
So, the solution obtained in step [7] of algorithm 1 always verifies®
k-1
! 10 1k
- —_— . 7
Tk = (20 —9p) ™

This concludes case (a).
/

. ! Ti—1
MdIJi <k 7y < n~2—

7
T,—

Of course, the inequality 7; < n 1 imposes in B’ the existence of

/
Ti—1

some S~ 1-groups with less than vertices, elements of the solution 7

(these groups form the set Q).

As we have already seen, in B! there are n = | S | S*~!-groups, each one
of these n groups representing a vertex of G when seen with respect to the
whole graph B'. Thus, we have equivalently a partition of the vertices of
G into two sets P and @, the set @ being an independent set of G. The

argument: since the S*=1_groups that form @ contain each one less than
/
Ti—1

members of 77, the existence of a C*~1_groups of B* (equiv. an edge

of G) “seen” in common by two S*~1-groups of Q (let us denote them by
51 and S*~1) would lead to a smaller solution 7/_; (contradicting so the
minimality of Ti’_l assured by step [5] of algorithm 1); this solution could be
obtained by considering the vertices of 7} belonging to §i=1 and 51, by
projecting their indices onto their ¢ — 1 last coordinates and by considering,
finally, the union of these vertices.

8 Recall that, in algorithm 1, if after the excecution of step [5], step [7] is immediately executed,
then in step [7] the minimum between the maximum matching solution of step [1], the solution
provided by step [5] and the solution found by the execution of algorithm A" is selected as final
solution for VC; so, always, 7/ < A.
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Let us examine, for a while, set PE and QFE.
!

TA

If QF is empty, then the constraint 7/ < n —=%

is not true. Really,

let us consider the maximum matching M obtained on BG in step [6] of
algorithm 1. In terms of the graph B*, i =1, ..., k, one can see M as the
set of C*~l-groups (elements if i = 1) such that there is no Si_l-group
(set if ¢ = 1) simultaneously “seeing” two of them; moreover, for each one
of the C*~!-groups corresponding to the edges of M, the cardinality of
set, covering it in B! is greater than, or equal to, 7;_, (recall that in the
first part of step [S] of algorithm 1, the minimum of the solutions for the

m C*~l-groups has been retained). So, if p. is the cardinality of PE, we

! !
N —Pe 4 Ti—1 Ti—1

2 2
on the size of 7).

On the other hand, if PE is empty (P = PS) or M is perfect
(PE = QF = @), then the optimal solution for G is found. The arguments:
since (i) PS = P is saturated by the matching M?, (ii) the mates of this set
is set QS (iii) P, being the complement of an independent set, i.e. V\Q!°
is a solution for G' and, moreover (iv) in every graph, the cardinality of a
vertex covering is greater or equal to the cardinality of a maximum matching
[4], then the minimum over all the possible solutions is found.

Thus, we can suppose that the sets PS, PE, QS, QF provided by the
execution of step [6] of algorithm 1, are all non-empty.

have 7] > , contradicting so the hypothesis

Of course, the fact that M is a maximum matching implies that there
will never be a vertex member of PE added in PS’ during the described
procedure. In fact, during step [6] of algorithm 1, we proceed by creating sets
of alternating paths!!. If for instance we suppose that, by this construction
of alternating paths, we attain member of PFE, this means exactly that we
have discovered an augmenting path!? and of course the hypothesis that M
is a maximum matching is contradicted. Also, the fact that there are no more
vertices that can be added in PS’ during step [6] of algorithm 1, implies
that all the members of the so-formed QS’ are adjacent exclusively to the

9 It is easy to see that M is also maximal for G.

10 Recall that V = S (step [2] of algorithm 1).

" Given a matching M in a graph G, an alternating path is a simple (elementary) path
P =w; —wv;, —...—v;,, where an edge in M N P alternates an edge of (E\M) N P.

12 An augmenting path is an alternating path where the vertices v;, and v;, are exposed with
respect to M; a matching M is maximum if and only if it does not contain augmenting paths.

vol. 28, n° 4, 1994



428 V. Th. PASCHOS

members of PS’ formed throughout the procedure. At the end of step [6] of
algorithm 1, we have a partition of the vertices of P into two sets, namely
PS’ and P’ = P\PS'.

Figure 5 shows an example of how step [6] of algorithm 1 works. Set
QFE is considered first and, next, the set of the neighbours of QF (the first
rectangle marked PS’); after, the mates of the vertices of P.S’ (first circle
marked )S’) are considered; all of the neighbours of these new vertices are
then entered to P.S’ (if they do not belong already); these newly introduced
vertices are in the second rectangle marked P.S’ and so on; this procedure
will go on until the vertices lastly introduced to @S’ have all of their vertices
already in PS’ (this is the case of the rightest circle marked QS’). With
respect to Figure 5, let us suppose that one of the neighbours of the lowest
vertex of the second circle marked QS’ belongs to PE. Moreover, let us
denote by v;, the lowest vertex of the circle marked QF, by v;, the lowest
vertex of the first rectangle marked PS’, by v;, the lowest vertex of the first
circle marked QS’, by v;, the lowest vertex of the second rectangle marked
PS’, by v;, the lowest vertex of the second circle marked @S’ and, finally,
by v;, the hypothetical neighbour of v;, belonging to PFE (this vertex, as
well as the edge v;, v;,, are not shown in Fig. 5). Then, it is easy to see that
the path v;, — v;, — vi; — v;, — Vi, — V4, 1S an augmenting path and, in this
case, we could obtain a greater matching by replacing the set {v;, v;, vi, v, }
of matched edges on this path by the set {v;, vi, vi, vi, Vi, Vi, } (considering
the latter set as the set of matched edges along this path).

[ )
‘ ——— .
Py \ - < \ .........
° pu T
NN @ a—
e
QE PS' Qs PS' Qs PS' Qs'

Figure 5. - An example of how step [6] of algorithm A’ works.

We claim that PS’ is an optimal solution of VC in G’ (created by
algorithm 1). Clearly, PS’ is a solution for G’, since its members are
adjacent to all other vertices (QS’ U QF) of G'. Moreover, this solution is
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optimal for G'. The arguments: the way we have constructed PS’ implies
that all the members of this set are endpoints of edges contained in M (this
subset of M constitutes, obviously, a maximal matching for G’); furthermore,
all of the other edges emanate from those vertices; finally, the edges of the set
(E(G)\E (BG)) N E(G") (where by E(G), E(G'), E(BG), we denote
the edge set of G, G’ and BG, respectively) removed from G to obtain
BQ@ are all incident to members of P N PS’ = PS'. Thus, the cardinality
of PS’ is exactly the cardinality of a matching in G’ and thus the solution
induced by PS’ is minimum [4].

Also, by the way we have conceived step [6] of A, there are no edges

between the members of QS’ U QF and the vertices of the graph G” (where
all of the vertices of the set Q\(QS’ U QE) are saturated by M).

By referring to Figure 5, one can see that the union of the vertices of
all of the rectangles marked PS5’ (that is the set PS’ finally produced by
algorithm 1) cover all of the edges of the graph induced by the vertex-set
QF U QS U PS.

Finally (the multiple executions of), algorithm A’ produces a partition
of G say G}, G5, ..., G} such that G}, k < [, are polynomially solved

/
T
and G| is either polynomially solved or admits the constraint 7/ > n le
where, now, 7;, n and 7/_; concern Gj, for which case (a) is applicable.

Let us denote by G’ the union 1<kL<Jl 1 G|, of the graphs produced by the

(eventually multiple) execution of step [6] and by G” the graph GI.

For this partition of G into the graphs G’ and G”, we can prove that
the approximation ratio p of a polynomial algorithm solving approximately
the VC in G is smaller than the approximation ratio p3 of a polynomial
algorithm solving approximately the VC in G".

Really, let us consider the independent set ()1 associated with the solution
T) (|T]| = 1) of G'. We denote by T (| Ty | = m1) the quantity 7 (G”), i.e.
the optimal solution for G’. We have already proved that T} = T} (1] = 71).
Let Ty (| Ty | = 74) and T3 (| T2 | = 72) be the approximate and optimal
/

solutions, respectively, for G’ (ra = 7(G")) and let 2 o< p2 for a fixed
T
constant ps. 2

In fact, Q1 is the set QS’ formed during step [6] of algorithm 1; moreover,
since the construction of graph G’ stops when all neighbours of QS’ are
already in set PS’, in graph G’ induced by PS’ U QS’ U QF all of the
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neighbours of the members of QS’ are included in G’ and, consequently, all
edges between G’ and G” are edges outcoming from PS’. Furthermore, P.S’
being a complement of an independent set (the set @S’ U QF), it is a vertex
covering for G’ and, since its size equals the size of a maximal matching
of this graph, PS’ constitutes a minimum size vertex covering; moreover,
PS’ covers all of the edges between G’ and G” (we notice, once more,
that algorithm 1 constructs polynomially PS’; so, | PS’'| = |T7| = |T1|)-
Consequently, once the edges of G’ and the ones between G’ and G" are
covered, in order to all of the edges of G do so, the edges of G" remain to be
covered. One can do that by calling the approximation algorithm anounced
by the emphasized proposition to obtain the solution T%; since there are no
edges between members of ()1 and vertices of G”, there are no more edges
between (1 and the independent set Q2 associated with 7%: thus, the set
T' = T{ U T; covers all of the edges of G, constituting so a solution for G
(it is exactly the candidate solution of case (ii) in step [7] of algorithm 1).

For the optimal solutions on G’ and G”, respectively, 71 optimally covers
the edges of G’, as well as the edges between G’ and G”; on the other
hand, T, optimally covers the edges of G”. These sets (71 and T3) being
disjoint, we have 7 (G) = 11 + 7.

7 7

. T T
Thus, given that 1 -1 and -2 < p2, we get
! T2
b= ! :T{+Té=7'1+7'é<p2‘
T(G) m+7m T4

This completes the proof of the emphasized proposition.

(®)

The last line of step [6] of algorithm 1 implies the application of steps
[1] =+ [6] of the algorithm on G”.

It remains now to explore the approximation ratio for VC induced by
solutions for SC found after the kth composition of G" (step [5] of
algorithm 1). In any case [see expressions (4) and (7)], the cardinalities
of the solutions obtained in this step are of the form

72 ©)
10
20—-9p

1 5
where 1 > 3 > 3 and equal either to 9 [expressions (4)] or to
[expression (7)].

Moreover, for the optimal solutions 7 (G), 7 of G and Bk, respectively,
we have

((G)F > 7. (10
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From expressions (9), (10), and the fact that the approximation algorithm
A for SC has approximation ratio p’, we have

/ / k
s Tk k—1 T
> £ >
p_Tk_ﬁ (T(G)>
or
7! 1
_ < %,
(@) = pEL’

Ed

We have already seen that if the composition of algorithm A’ is performed
on G”, then the solution for G obtained in step [7] approximates the optimal
one within an error smaller than the one for the solution of G” [expression

@]l
So, we get (recall that in step [2] of algorithm 1, we have fixed p’% 'S 1+¢)

T 20-9p 9
T _<q 20-90 9
T(G)_(+€)max{ 10 ’5}
or
7! 9 ]
< T Z
(@) = {5’ 10p}+6
9 20-9p

fi < - — 5.

0r€_emax{5, 70 }

Henceforth, since we can choose e arbitrarily small, the approximation

9 9
ratio of algorithm 1 tends to max {g, 2 — 0 p} < 2.

3. DISCUSSION

The result of section 2 has brought to the fore an aspect of the complex
relation, concerning their approximation behaviour, between three known
and difficult combinatorial optimization problems. We think that such results
in a theoretical level contribute to produce a deeper knowledge of the
approximation mechanisms in the class NP-complete. On the other hand,
they could help us in deeper understanding of the properties of this class as
well as of the relations between its problems, relations that are not exhausted
in the fact that the existence of an exact polynomial algorithm for one of
them would imply the existence of such an algorithm for all of the problems.
Moreover, the investigation of this type of relation, from a “practical” point
of view, could produce immediate positive or negative results for some
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of the problems concerned. If for example, the conditions of the theorem
concerning IS and SC were true, a new improved algorithm for VC would
be immediately found.

Unfortunately, this “practical” significance of the above result is not valid.
In fact, in [8] (see also [7]), Lund and Yannakakis have proved a strong
negative result for SC approximability: SC cannot be approximated with ratio

¢ log m for any ¢ < 1 unless NP C DTIME [nP°Y 1°8 7] (conjecture weaker

than P = NP but highly improbable). On the other hand, the approximability
of IS in the class G, even if such a result has not be proved yet, is very
improbable!3. For one more time, in theoretical computer science it is very
frequent, we have produced theoretical results, we have eventually increased
the number of open questions, without, unfortunately, increasing the number
of the answers.
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