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SOLUTIONS OF TRANSFERABLE
UTILITY COOPERATIVE GAMES (*)

by A. STEFANESCU (})

Communicated by Jean-Yves JAFFRAY

Abstract. — A uniform compétitive solution predicts a configuration of payoff vectors associated
with coalitions which are likely toform in a coopérative game. This configuration satisfies the internai
and external stability principles and the predicted payoffs are both individually and coaliîionally
rational. The uniform compétitive solution is a modified version ofthe compétitive solution concept
introduced by R. D. McKelvey, P. C. Ordeshook and M. D. Winer (1978). A parallel study of these
two solution concepts emphasizes their common properties and the existing différences. Existence
theorems of uniform compétitive solutions are provided under very gênerai assumptions and it is
proved that compétitive solutions exists onlyfor some special classes of transférable utility games.

Keywords: Coopérative games, Characteristic function, Compétitive solutions.

Résumé. — Une solution compétitive uniforme prédit une configuration de vecteurs de paiements
associés à certaines coalitions susceptibles de se former dans un jeu coopératif. Cette configuration
est caractérisée par une stabilité interne et externe et les paiements associés répondent à des
impératifs de rationalité individuelle et collective. La solution compétitive uniforme est une version
modifiée de la solution compétitive proposée par R. ZX McKelvey, P. C. Ordeshook and M. D.
Winer (1978).

On fait ici une étude parallèle de ces deux notions, en soulignant leurs propriétés communes
ainsi que leurs différences. Les théorèmes d'existence pour la solution compétitive uniforme sont
démontrés dans des conditions très générales. D'autre part, on prouve que l'existence d'une solution
compétitive est restreinte à quelques classes particulières des jeux coopératifs à utilités transférables.

Mots clés : Jeux coopératifs, fonction caractéristique, solution compétitive.

1. INTRODUCTION

Since the first consistent solution concept for coopérative games was
defined in the framework of the classical von Neumann-Morgenstern theory,
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370 A. STEFANESCU

several other solutions have been proposed. Much of them focus on predicting
payoffs which will be received by the players after the bargaining process.
But many situations in économies and political science require also to predict
the coalitions that are likely to form.

Of course, each player can actually participate in at most one coalition, but
generally, there are many potential coalitions that seem to be profitable for
him. In such situations a solution should take into account the possibilities
available to the players in different coalitions and predict a "stable"
configuration of coalitions and payoffs.

The compétitive solution was proposed by McKelvey, Ordeshook and
Winer (1978) as an alternative to classical solution concepts. The main
motivation behind this concept arises from its applications in political
science [see also Ordeshook (1986)]. Although the original définition refers
to the non-transferable utility case, it may be also interpreted in terms of
transférable utility games.

The uniform compétitive solution is a slightly modified version of the
compétitive solution and was introduced in Stefanescu (1993).

In sections 4 and 5 of the present study we discuss the common properties
of these two concepts and clarify the relationships between them. Existence
theorems are provided for different standard models of transférable utility
games. In fact, the existence of the uniform compétitive solutions is proved
under very genera! assumptions, while the existence of compétitive solutions
is restricted to some special classes of games. Moreover, it is shown that
in most situations any compétitive solution must be an uniform compétitive
solution at the same time. Note also that the method of proof of the main
theorem of Section 4 allows us to rediscover Shapley's theorem for the core
of convex games as a particular case of the existence of uniform compétitive
solutions. The relationships between the uniform compétitive solution and
other solution concepts are discussed in sections 3 and 6.

2. DEFINITIONS AND NOTATIONS

Everywhere in this paper we deal with n-person coopérative games. The
set of players {1, 2, . . . , n} is denoted by N and e very subset of N is
called coalition. The set of all coalitions (including the empty coalition 0 )
is denoted by 2iY. If C is a nonempty coalition, then | C | stands for the
cardinality of C, but we will use for convenience the notation R c instead
of R J C L
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SOLUTIONS OF TRANSFERABLE UTILITY COOPERATIVE GAMES 371

If C C D and u G RD then u (C) = ^ Uj and the symbol uc will be

used for the vector (uj)jçc formed by the components of u indexed in C.
More generally, if A C HD then pre A = {uc G R c | u G A}.

If u, v G R c for some C Ç N then we write u > u if UJ > VJ for ail
j G C and n > u if n > v but u / u. For the case when Uj > VJ for ail
j G C we will use the notation u ^> v,

A transférable utility (TU) coopérative game is defined by its characteristic
fonction v : 2iY —• R. As usual, 1/ (C) is the total payoff which the coalition
C can guarantee for its members. Since the ouput space is R iY the condition
u (C) < v (C) if u G RiY is called the effectiveness condition of the coalition
C and therefore, the set eff C = {u G R ^ | u (C) < i/(C)} is the set of
ail payoff vectors which are effective for C. Particularly, if C — N the
inequality u (N) < v (N) shows that the payoff vector u may be achieved
by the players at the end of a possible play. We will call the above relation
the feasibility condition.

If the vector u is feasible and effective for a coalition C then the
components of UQ may be interpreted as payoffs which can be achieved
by the players in C even if the players not in C act against this coalition.

For the basical model of TU coopérative games, the set of feasible
payoff vectors can be unbounded, but in many situations some boundedness
conditions are required.

Let us dénote by U the set of feasible payoff vectors. We will consider
two cases:

(i) (basical model): U = {u G RiY \u(N) < v(N)}

(ii) (bounded model): U = {u G KN \u(N) < v(N), u > a}, where
a G R ^ is fixed.

In the classical von Neumann-Morgenstern theory, a — u° where
y® = v({j}) for ail j G N and the nondominated feasible payoff vectors
are called imputations.

Note also some properties of the characteristic function which may be
cited:

monotonicity: C C D => v (C) < v (D)

superadditivity: C n D = 0 =^ v{C) + v(D) < v {C U D) (if the
equality always holds then v is additive and ifC, D / 0 C fl I) = 0 = ^
v(C) + v (D) < v {C U D) then v is stricüy superadditive).

convexity: v (C) + v (D) < v (C U D) + v (C n D)
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372 A. STEFANESCU

In the following a TU coopérative game will be represented as the
triple (Nj v, U) or, simply, (JV, v) when U is specified. Also, for every
coalition C, we dénote by V (C) the set of all feasible effective payoffs
U fl eff C.

DÉFINITION 1: A proposai ofthe game (iV, u, U) is a pair (u, C) where C
is a nonvoid coalition and u G V (C) (i.e. u is feasible and effective for C).

Let K = {(u\ Ci); z — 1, . . . , m} be a finite set of proposais such that
C% ï Cj if z / j .

Following McKelvey, Ordeshook and Winer (1978) we will define the
compétitive and the strong compétitive solutions of the game (JV, v, U).

DÉFINITION 2: JC is a compétitive solution (c.s.) if it satisfies the following
properties:

T h e r e a r e n o i , j s u c h t h a t n ^ . n C . ^> u3
c_nC_ ( 1 )

and

If (u, C) is a proposai and ucnd ^ ucnCi ^or s o m e h

then there exists j such that u3
Cr]C_ ^> ucnCj (2)

If (1) is replaced by

There are no i, j such that ^c ne- ^ uh-nc- ^

then /C is called strong compétitive solution (s.c.s.)
Now we slightly modify the previous définitions to obtain a new solution

concept.

DÉFINITION 3: Kis an uniform compétitive solution (u.c. s.) if it satisfies:

uhincj = uc,r\c^ for an^ *> 3 (4)
and

If (u, C) is a proposai and ucnd > ucnCi ^or s o m e h

then there exist j and k £ C C\ Cj such that ^ > u^ (5)

There are some similarities between the c.s. and other classical solutions.
In summary, a (strong) compétitive solution is a set of proposais having
two fondamental properties; internai stability and external stability. Hence,
there is a close correspondence between the original définition of the c.s. and
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von Neumann-Morgenstern stable set. However, some significant différences
must be pointed out. Firstly, in a c.s. (s.c.s.) each payoff vector is associated
with a coalition for which it is effective. Therefore, a c.s. predicts not
only the payoffs but the coalitions which can guarantee them too. On the
other hand, the classical domination relation is replaced here by the strong
préférence manifested by the pivotai players, Le. the players belonging to
the coalitions associated to the payoff vectors to compare. An objection
against a given proposai is a proposai which is strictly prefered by ail pivotai
players. According to this interprétation the internai stability follows from
the absence of any objection within the c.s.

The external stability of a c.s. is expressed, like in the Aumann-Maschler
bargaining theory, in terms of the counterobjections against any possible
objection. But an important différence arises from the f act that the coalitions
in a c.s. are not necessarily disjoint. Consequently, a c.s. may only predict
the payoffs for a set of coalitions which seems to be profitable for the
potential partners, but it cannot predict the coalitions which will be actually
formed after the bargaining process.

The définition of the u.c.s. does not alter the main characteristics of the c.s.
The internai stability, expressed by (4) is strengthened in order to avoid some
contradictory situations in the original définition. To explain this assertion
let us comment the external stability condition of the previous définition.
Suppose that the proposai (u, C) is an objection against (u\ Ci) G /C.
This means that the pivotai players, namely the players in C D Ci support
this objection since it improves their output. A counterobjection must be
claimed by some players which would loose if the objection is accepted. But
according to the définition of the c.s. some of these players might be at the
same time supporting players, Le. it is possible that C n Ci and C n Cj
be not disjoint. In that case one or more players have two contradictory
positions against the objection (u, C). Condition (4) of the définition of the
u.c.s. makes impossible this situation. Consequently, any player must have
one and only one position toward a given objection; he may support it, he
may reject it or he is indiffèrent.

Finally, let us note that for some classes of coopérative games, the
compétitive solutions (c.s. or u.c.s) are also related to the core. Within
the present formalization the définition of the core [denoted C (N, v)] may
be restated as follows:

C(N, v) — {u G C/|there is no proposai (a:, C) such that XQ
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3 7 4 A. STEFANESCU

The relationships between the core and es. will be discussed in the next
section.

3. THE COMPETITIVE SOLUTIONS AND THE CORE

As it was shown in McKelvey, Ordeshook and Winer (1978), if the core
is not empty then a s.c.s. always exists. A similar statement holds for u.es.
Moreover, a converse implication can be proved.

PROPOSITION 3.1: Assume C(N,v) # 0 and u G G(N,v), Then
)C — {(uy N)} is s.c.s. and u.c.s. at the same time,

Proof: It is sufficient to show that there are not objections against (u, N).
Obviously, if (x7 C) is a proposai and XQ > UQ then it is easy to see that
there exists a proposai (y, C) such that y (C) = x (C) and yc ^> uc* This
contradicts the définition of the core.

PROPOSITION 3.2: IfKL = {(n, N)} is a es. (or, ux.s.) for some u G R/Y

then u £ C (N, u) and therefore C (N, y) ^ 0

Proof: If /C is a es . (u.c.s.) and u $C (N, u) then there exists a proposai
(x, C) such that xc ^> ^c- Clearly, there are no counterobjections against
this objection, contradicting définitions 1 and 3.

As a conséquence of the previous propositions,

C (N, v) = {ueHN\ {(u, N)} is es. (u.c.s.)}

Moreover, for the u.c.s. a more complete statement easily follows:

PROPOSITION 3.3: If K, is a u.c.s. and (Uj N) E K for some u G RiY then
u G C(iV, i/).

For the remainder of this section it will be convenient to represent a es.
or a u.c.s, as a set K — {(uc\ C) | C G C} where C is a set of nonvoid
coalitions and (uc, C) is a proposai for every C E C.

DÉFINITION 4: The (uniform) compétitive solution K is complete if
J

cec
A complete compétitive solution (ces.), respectively a complete uniform

compétitive solution (eu.es.) is based on the idea of the active participation
of ail players in the bargaining process. As we will see (Example 3) not ail
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SOLUTIONS OF TRANSFERABLE UTILITY COOPERATIVE GAMES 375

c.s. (u.c.s.) are necessarily complete. It seems to be reasonable to prefer the
complete solutions if there exist.

Let us assume )C be either a c.s. or a u.c.s. and dénote by w the vector
of components:

WJ = max {uf \j G C, C E C}

We will call w the ideal payoff vector associated to K. Obviously, the
dimension of w equals the cardinality of [ J C, so that w G R iY if fC

Cec
is complete.

Note that if K is a u.c.s. then wc = Uç for every C e C. For the c.u.c.s.
the following characterization of w easily results from the définition.

PROPOSITION 3.4: If K is a c.u.c.s. then the ideal payoff vector w satisfies:

wc e pre V (C), for every C G C (6)

For any proposai (x, D) it is impossible that xry > WD (7)

Conversely, ifw G R ^ satisfies (6) and (7)ywhere M C — N, then a c.u.c.s.
cec

K can be defined by taking, for each C eC the vector uc G RYY as a possible
extension ofwc up to a feasible payoff vector fi.e. uc G U, Uç = WQ)-

According with this resuit the c.u.c.s. /C could be represented as the pair

K c).
Remarks: 1. Obviously, w is not necessarily a feasible vector but if it is,

then by Proposition 3.3 it follows that w G C(JV, i/).
2. If C (w) = {C C N | wc e prc V (C)} then K! = {(uc, C) | C G

C(w)}, where uc G V(C), u^i = tt;(7, is a maximal c.u.c.s. (Hère the
term "maximal" refers to the set-inclusion relation). This solution will be
denoted by (w, C{w)),

4. COMPETITIVE AND UNIFORM COMPETITIVE SOLUTIONS FOR THE
GENERAL TU GAMES (BASICAL MODEL). PROPERTIES AND EXISTENCE
THEOREMS.

Everywhere in this section, the set U of feasible payoff vectors will be
considered in the case (i) of Section 2. Some interesting properties of the
u.c.s. will be pointed out. These properties are common for c.s. and s.c.s.
too. In fact, as we will prove, there are no c.s. which are not u.c.s. Moreover,
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3 7 6 A. STEFANESCU

the concept of es . is consistent only for the weakly-subadditive games or
for the games having nonempty core. On the other hand, the existence of
u.c.s. is proved for all games considered here.

Let us firstly remark that since U is not lower-bounded then each payoff
vector which is effective for a coalition may be also considered to be
feasible. More precisely, we have:

PROPOSITION 4.1: Ifu G eff C for some C C N, C / 0 , then îhere exists
x E U such that XQ — UQ.

Since in the définition of the proposai only the payoffs assigned to the
members of the associated coalition are employed we can neglect in the
following the feasibility condition (Le. we will always consider that if
u (C) < v (C) then u is one of the possible extension of uc up to a feasible
vector in R iY). Moreover, for the sake of simplicity we will write effC
but we will mean this as V (C) = U Ci eff C.

PROPOSITION 4.2: Every u.c.s. is complete.

Proof: Suppose that K = {(u\ Ci), i — 1, . . . , m] is a u.c.s. We are going
to prove that M C% = N. Let w be the idéal payoff vector associated with K

and suppose that [JCi^N. Pick a k 0 \J Ci. Set C = (\J C^ U {k} and

take UJ — Wj+e for j G [ J Ci and u^ — v (C) — Y^ Uj, where e is arbitrary

positive. Of course, for a suitable extension u G RiY of uc = (UJ)J^C^ the
pair (u, C) is a proposai and UQ nd > ucnd f° r everY i = 1, . . . , m.
This contradicts the définition of /C.

As it was already mentioned, a u.c.s. is not only stable, but also rational.
The next two results establish the internai and the coalitional rationality
of any u.c.s. Since the proof is in both cases straightforward it will be
omitted here.

PROPOSITION 4.3: If K is a (complete) u.c.s. and (u, C) G JC then
u (C) =' v (C). Particularly, UQ is Pareto-optimum ofprc eff C

PROPOSITION 4.4: Let w be the idéal payoff vector associated with the
u.c.s. K. Then wj- > v{{k}) for every k e N. Consequently, if C E C then

> J > ({k}).
kec
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SOLUTIONS OF TRANSFERABLE UTILITY COOPERATIVE GAMES 377

Proposition 3.1 establishes sufficient conditions for the existence of the
compétitive solutions. Since any TU game with nonempty core admits s.c.s.
and u.c.s. it follows that any sufficient condition for the nonemptiness of the
core is a sufficient condition for the existence of s.c.s. and u.c.s. Particularly,
the balanced and the convex games always admits s.c.s. and u.c.s. Let us
emphazise another simple situation when the existence of the compétitive
solutions is guaranteed.

DÉFINITION 5: The characteristic function v is weakly-subadditive if

J2U (W) f°r evefy c ç N, c ^ 0

kec

Dénote by A (i/) - {C C N | | C | > 2, v (C) =

PROPOSITION 4.5: Ifv is weakly-subadditive, then /Co — {(^°, {&}) | k G N}
is s.c.s. and u.c.s. at the same time (Here 1$ = v ({j}))- Moreover, for each
subset A Ç A(u), the set of proposais /C = /Co U {(u°, C) \ C G A} is
sx.s. and u.c.s.

Proof: Obviously, /Co is internai stable in the sense of both définitions.
If (IA, C) is an objection against the proposai (u°, {k}) then it is necessary
that \C\ > 2 and uk > v({k}). Since u(C) <v(C)< ^ ^ ( { j } ) then

jee
there exists j G C such that UJ < v{{j}) — vQ. Hence, (w0, {j}) is a
counterobjection against (it, C).

For "the second statement, we firstly note that if /C is a c.s. (u.c.s.) and
/Co C /C then, for each proposai (u, C) G /C the equalities ùk = v({k}),
k G C must hold. Otherwise, the internai stability would be violated. Assume
that /C = /Co U {(«, C) | C G A} and piek (u, C) G /C, | C | > 2. Then
^ (C) = u (C) = Y^ ^ ({j})* Suppose that there is a proposai (re, £>) such

jee
that xcnD > wcnD. Then XJ > UJ = ^({j}) for some j G C n ö
but x(D) < v(D) < /_J^({j})- Hence, there exists k G D such that

= u^- Therefore, (n°, {/c}) is a counterobjection against
(x, D).

Now we are able to précise the conditions under which a c.s. exists. As it
will be shown, each c.s. is at the same time a u.c.s.
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3 7 8 A. STEFANESCU

THEOREM 4.1: The game (N, v) admits es. if and only if one of the
following two conditions is satisfied:

a) C (TV, v) ^ 0

b) v is weakly-subadditive.

In these situations the sets of es. are those described in the propositions 3.1
and 4.5, and each es. is at the same time a u.c.s.

Proof: Suppose that a es . K = {(^C, C)\C G C} exists. Dénote by
fC — {k | {k} G C} and let w be the associated idéal payoff vector. We must
analyze three situations:

1. C = {N}. (Le. K = {(u, TV)} for some u G R*) .

Then by Proposition 3.1 n G C (N, u) and by Proposition 3.2 /C is a u.c.s.

2 . C / {TV}, K ^ N.

Choose C e C and k g K such that fc 0 C. (If AT ̂  0 then C may be
{j} for any j G iT and k g K is arbitrary. If ÜT = 0 pick C e C, C ^ N
and fc G N\C.) Take n G R ^ of components:

{ üj + e iî j ^ k

v(N)~YluJ if J = k

where s is arbitrary positive.

Since u (N) — v (N) then (u, N) is a proposai and UQ ^> Uç. Moreover,
there is no D G C such that u^ ^> ti^ (since {k} £ C). Therefore, (w, iV) is
an objection against (uc, C) but there does not exist any counterobjection.
Consequently, /C is not a es .

3. C ^ {N}, K = N

Clearly, WJ — v({j}) for every j G N and if (uc, C) G /C then
n^ = Tüj- - i/(0"}), J G C. Consequently, ^ ^({j}) = ^ C (C) < u{C).

Moreover, if u (C) > ^ u ({j}) for some C Ç TV, then it is easy to find

u G eff C such that Uj > v ({j}) for ail j G C. Then the définition of K
would be contradicted. Hence, K, is a es. only if v is weakly-subadditive.
In this case the conclusion of the theorem follows from Proposition 4.5.
Indeed, since if K / N there are no es., it follows that the es. listed in
Proposition 4.5 are ail es . of the game.
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Remark: An important conclusion of the previous theorem is that every c.s.
is at the same time u.c.s. But, as it will be shown in the following example,
there are u.c.s. which are not c.s. Moreover, even in the special cases
considered in the propositions 3.1 and 4.5, there are u.c.s. which are not c.s.

EXAMPLE 1: n = 3 • v{{i}) = 1, i = 1, 2, 3; v{{i, j}) — 2, for every
{t , j} C {1 ,2 ,3} ; v(N) = 3.

This is a simple example of additive game. The core consists in a
single point C{N, v) - {u0}, where u° = (1, 1, 1). The following set
of proposais is a u.c.s. but not a c.s.:

K = {(«°, {1, 2}), («°, {1, 3}), («°, {2, 3})}

Indeed, ((1.5, 1.5, 0), N) is an objection against (u°, {1, 2}) € IC, but
there does not exist counterobjections in the sense of the définition of c.s.

EXAMPLE 2: n = 4 • i/({i}) = 1, i = 1, 2, 3, 4; i/({l, 4}) = 2;
i/({l, 2, 3}) = I / ( { 1 , 2, 4}) = i/({2, 3, 4}) = 4; i/(C) = 3, otherwise.

Let £ = {((1, 2, , ) , {1, 2}), ((1, ,2 , ) , {1, 3}), ((1, , , 1), {1, 4})}.
(The blanks can be arbitrary completed up to feasible payoffs).

It is easy to verify that /C is a u.c.s. However, it is not c.s. Indeed, the
proposai ((2, 1, 1, 0), {1, 2, 3}) is an objection against the last proposai
of /C, but there are no counterobjections satisfying the définition of c.s.

The main result of this section establishes the existence of the u.c.s.

THEOREM 4.2: Every TU coopérative game (TV, v) [case (i)] has a
(complete) uniform compétitive solution.

LEMMA 1: Let IC be a CM.C.S. and (x, D) a proposai such that x (D) <
v (D). Then there exist (u, C) € JC and k G C n D such that uk > xk.

Proof: Let (y, E) G /C such that D n E / 0 . Suppose x^nE > VDHE-

Define z G R D by zt = xt + e/ \ D \, t G D, where e = v(D)-x(D)> 0.

Obviously, z (D) = x (D) + e = v (D), and therefore z G effD. Since
ZDDE > ZDDE there exist a proposai (it, C) £ K. and fc G C n D such
that Ufc > zis > Xfr

Proof of the Theorem:

By induction on n — | N \.

For n — 1 the truth of the theorem is obvious; {(u ( {1}), {1})} is a u.c.s.
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380 A. STEFANESCU

Suppose that the theorem holds for every game having at most n — 1
players and let (TV, v) be a game with n players. Set M = N\{n} and
define the reduced game (Af, ISM) by its characteristic function:

uM(C) =max{i / (C) , v(C U {n}) - zn}> C CM

where zn = v({n}).
Since | M \ — n —1, the game (M, UM) has au.c.s., say KM = {(y\ C«)î

i = 1, . . . , m}.
Set:

, = f Ci if i/ (C, U {n}) - * „ < ! / (CO

* I C i U M if v(CiU{n})-zn>u(Ci)

(y*, ^ ) where |£ < i/ (JV) - £ 2/} if C| - C,

i = 1, . . . , m}

and

\
fC if there exists i such tha t n G C\

K U { ( u m + 1 , {n})} otherwise

(Hère ^ m + 1 is arbitrary with ujf"1"1 = 2:n, and for convenience, the pair
( u m + 1 , {n}) will be denoted by ( u m + \ C ^ + 1 ) ) .

We are ready to prove that /Cyy is a u.c.s. of the game (iV, i/).

Obviously, ( J c ^ = iV and u* G e / / C ^ for ail i e N. To verify (4)

suppose ( u \ C^), (n J , Cj) G KN and uj. > u{ for some fc G C[ H Cj .
Clearly k must differs on n and then yl

k > y£ for some k G C^ n Cj,
contradicting the properties of KM-

Let us verify (5). Pick a coalition C and x G e ƒ ƒ C and suppose that
xCf\C' > uhnC' f ° r s o m e *• We will consider three possibilities:

(i) If n £ C then ( X M , C) is a proposai of (M, I/J^ ) and x c n c , > Vc n c* *
Since / C M is a u.c.s. of (M, VM) then there exist j < m and k E C D Cj
such that 2/j[, > Xk or, equivalently, w .̂ > x^ for some A; G C n C'-.

(ii) If C — {n} , then xn < zn and the initial assumption fails.
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(iii) Suppose that C = Q U {n} where 0 ^ Q C M. There are three
possible situations: rcn > 2n, a;n = zn or xn < zn. In the first case,
x (Q) — x (C) - xn < v (C) - zn<VM (Q). Hence, (XM? Q) is a proposai
of (M, UM)> From the previous lemma, there exist j and k E Q n Cj such
that y^ > Xfc* That is, it̂ . > x^ for some fc E C D Cj. If #n = zn, the
initial assumption implies xgnd > VonC (if n ^ ^ then un = 2n). Since
x (Q) <v(QU {n}) - zn<VM (Q) it follows that ( % , <5) is a proposai
of (M, i/M )• (In fact, XM stands for a (n — l)-dimensional extension of
XQ.) But KM is a u.c.s. of (M, VM) SO that, there exist j and k E Q f) Cj
such that yl> xt Le. u3

k > Xk for some A: G C Pi Cj. In the third situation
u3

n = zn for every j such that n E Cj> so that the desired conclusion
follows with k = n.

COROLLARY 4.1: /ƒ i/ is convex and z /(0) = 0 ïAen f/ze game (A?", i/) has
a U.C.S. of the form K = {(w, iV)}.

Proof: Note firstly that the proof of Theorem 4.2 is constructive. A u.c.s.
may be obtained in n steps, each step extending an existing u.c.s. to a
solution of a game with one more player. This extension may be made on
two ways; by adding a new proposai to the existing solution, or keeping the
same number of proposais. In the last case, according to (8) and (9) a new
player is added to some coalition-component of the proposais in the previous
solution. The process starts at the first step with the solution of an one-person
game. Obviously, this solution would be extended to a one-proposal solution
at the next step if (8) picks on the second alternative. It is easy to see that
this happens if the corresponding characteristic function is superadditive. In
summary, if at each step the characteristic function of the current game is
superadditive, then the final solution will consist of a single proposai. The
completeness implies that the corresponding coalition is just N. Now, it is
sufficient to prove that if v satisfies the assumptions of the corollary, then
VM is also convex. Obviously, since u (0) = 0, the convexity implies the
superadditivity (we can always take UM (0) = 0 by définition).

Let C, D Ç M. We are going to prove that vM (C) -h VM (D) <
VM (C U D) + VM (CDD). Since this relation is obviously verified if
one of the two coalitions is 0 or M, we can consider both C and D
to be different of 0 and M. Since v is superadditive then n 0 C implies

v{{N}) < v(C U {n}). Hence, vM (C) = v(CU {n})-2rn.Then,
+ vM (D) = v (C U {n}) + v {D U {n}) - 2 zn < v (C U D) U

{n}) + i/((C n D) U {n})-2zn = vM(C U D) + vM{C n D).
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COROLLARY 4.2: [Shapley (1971)]. If v is convex and v (0) = 0 then
C{N,v) ? 0.

Proof: It simply follows from the previous resuit and Proposition 3.2.

5. BOUNDED TU GAMES. EXISTENCE THEOREMS

We will consider now the case (ii) of Section 2. That is, the set of all
feasible payoff vectors is U — {u G RiY \n(N) < v(N), u > a}, for a
fixed a G TlN. Without loss of generality we can take a — 0. This is an
immédiate conséquence of the following proposition.

PROPOSITION 5.1: Let us consider the games (N, v, U), (JV, i/, U') where

v1 (C) = au (C) + r (C) for every C Ç N, for fixed a > 0, 1
N ƒ

and

U = {ue TLN\u(N) < i/(JV), u>a}]

U' = {ye HN \y(N)< v1 (TV), y>aa + r)

Then {u, C) is a proposai of(N, z/, U) if and only if (y, C) is a proposai of
(N, v1, Uf), where y = au + r. Moreover, K — {(u\ Ci); i = 1, . . . , m}
is a es. (u.c.s.) of (iV, */, U) if and only if K! = {(y2, Ci); i — 1, . . . , m},
y1 — au1 + r is a es. (respectively, a u.c.s.) of (N, z/, U1).

Remarks: This proposition extends to the compétitive solutions the classical
property of the strategical équivalence. As it is known, since v and v1

are strategically equivalent, [as a conséquence of (10)], then the games
(iV, i/, U) and (iV, z/', U!) are isomorphic and the one-to-one correspondence
h : RN »—> R ^ , h (u) = au + r maps t/ onto Uf preserving the préférence
relations.

For the remainder of this section, the set of feasible payoff vectors will
have the form U = {u G R ^ \u(N) < v(N)} and we will refer to the
game (JV, v, U) as the pair (JV, u). Clearly, U ^ 0 if and only if

i/ (tf) > 0

and this condition will be imposed in the following to ensure the consistency
of the solution concepts.
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Moreover, V (C) = U D eff C ^ 0 if and only if u(C)>0 and it is easy
to see that in this case pre V (C) = {ucRP \ u (C) < min {v (C), v (N)}}

Let us define 1/ : RiY ^ R by 1/ (C) = min {u (C), 1/ (JV)}. Then,

PROPOSITION 5.2: /C = {(tfc\ C%); i — 1, . . . , m} w a as. fw.c.s.J o/ f&e
game (N, u) if and only if it is a c.s, (u.c.s.) of the game (JV, i/)

As a conséquence of this result we can consider that v (C) < v (N) for
every coalition C, Le. every payoff which is effective for a coalition C
must be also feasible. (Otherwise, the original characteristic function can be
replaced by i/ as above).

Refering to the properties of the u.c.s. proved in the previous section, it
is easy to verify that Propositions 4.3 and 4.4 remain still valid, but it is
not the case of Proposition 4.2. The next example will show that within the
present model a u.c.s. (as well as a es.) is not necessarily complete.

EXAMPLE 3: n = 3. v({i}) — 1, i — 1, 2, 3; v({i, j}) = k, if
{*, j , k} = {1, 2, 3}; u(N) = 4.

Obviously, JC = {((2, 1, 1), {1, 2})} is a u.c.s. (and es.) which is not
complete.

The following example emphasizes other significant différences between
the considered models; a es. is not necessarily u.c.s.

EXAMPLE 4: n = 3. I / ( { 1 } ) = ^({2}) = 1.05; i/({3}) = 0; i/({l, 2}) =

K =-{((0.9, 1.1, 0), {1, 2}), ((1.1, 0.9, 0), N)} is a s.c.s. but not a
ux.s. [condition (4) is violated].

The main results of this section concern the existence of the u.c.s. In fact,
we will prove the existence of a c.u.c.s. For the sake of the simplicity it will
be assumed that the characteristic function satisfies v (C) < v (N) for every
C and that U = {u G R ^ \u(N) < i/(N)}. As it was shown on above
this does not restrict the generality.

THEOREM 5.1: If the characteristic function v is non-negative, then the
game (iV, v) admits a c.u.c.s.

Proof: The proof follows the same way as for Theorem 4.2; the
completeness of the u.c.s. is obvious at the first step and may be assumed
inductively for V]$.
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We will pay more attention for a special case which includes the simple
games. As it is known, in a simple game e ff C is nonempty only for the
winning coalitions and the class of these coalitions is closed under the set-
inclusion relation. Since in the present case effC / 0 ^ v(C) > 0 we
can characterize the set of all winning coalition as:

W = {C\v(C) >0}

THEOREM 5.2: Assume v be monotonie on W and W / 0 satisfy the
condition:

c G w, c c f l^ D ew (il)

Then the game (iV, v) has a eux.s.

Proof: If W = 2N\{0}9 then we are in the case of Theorem 5.1.

Let us assume that W ^ 2 iY\{0}. Piek T G W such that \T\ =
min { | C | \C G W}. Take z e effC such that z(T) = v (T) and set
M = JV\T. Define vM : 2M ^ R by:

0 ) if C ^ 0

mnx{v(CuS)-z(S)\SÇT} if 0 ^ C Ç M.

Clearly, z/M (C) > 0 for every C ̂  0. Indeed, i/M (C) > v (C U T) -
z(T) = i/(C U T) - z/(T) > 0. Note also that i/M (C) < y M {M) for
every C C M. Then, Theorem 5.1 implies the existence of a c.u.c.s. KM of
(M, i/M); /CM = {(y\ Ci); i = 1, . . . , m}. Let y E R M be the associated
idéal payoff vector.

Since y1 {Ci) = vu (Ci) there exists Si ÇT such that y% (Ci) + z (S,) =
y (Cj U 5j). Obviously, (y^ , 25.) G RCiUSi an(j ^ c a n ^ e extencjed up
to a feasible payoff vector u% G RiY. This means that u1 (N) < v(N) and

Set C\ - C% U Su C = {C[; . . . , Cf
m} and

' C if
C' =

| C U {T} otherwise

The existence of a c.u.c.s. of the game (JV, i/) will be proved by using the
proposition 3.4. In fact we will prove that the pair (u, C) satisfies (6) and
(7), where « - (y, zT). Clearly, | J C' = iNT and uC' e prC ' F (Cy) for

every C' G C''. Let us verify (7).
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Suppose C EW and x E eff C such that XQ > uc> Of course» C = T or
C n M / 0 . K C = T then x G e / / T and xx > ^x which is impossible
because x (T) < v (T) - * (T). Assume C = Q U S where 0 ^ Q Ç M
and S C T. We have either XQ > yg or xs > %s- ï*1 the first case,
since xs > zs it follows that x(Q) + z(S) < x(Q U S) < i/(Q U 5).
Consequently, x(Q) < i/̂ f (Q) L£. ( % , Q) is a proposai of (M, VM) and
the initial inequality contradicts the properties of y.

In the second case, XQ > y g and xs > zs> Then, xt > z% for a least one
t E S. Dénote by e = xt — zt and construct v E RiY such that:

if kEQ

vk = < zt iî k — t

otherwise

Obviously, v (Q) + z (S) < x (Q U S) and VQ > yg. Hence, (VMJ Q) is
a proposai of the game (M, VM) and the previous inequality contradicts the
properties of y. This complete the proof of the theorem.

Remark: If v is monotonie then v1 is monotonie too. Therefore the
assumptions of Theorem 5.2 refer to the original characteristic function of
the game.

The next resuit establishes that for an important class of TU games, a c.s.
exists only when it coincides with a u.c.s.

THEOREM 5.3: Suppose v be strictly superadditive and v (C) > Qfor every
C Ç N. Then a c.s. exists if and only ifC(N, z/) ^ 0 . Moreover, in this
case, every c.s. is a u.c.s, at the same time,

Proof: It follows from the propositions 3.1 and 3.2 that C (N, v) ^ 0 if
and only if there exists u E R ^ such that {(it, N)} is c.s. and u.c.s. All
that we must do is to prove that there are no other c,s.

To the contrary, let assume K = {(nc , C) | C E C} be a c.s. and C ^ {N}.
This will lead us to a contradiction.

We begin by proving that Ci nCj ^ 0 whenever CiyCj E C. Suppose that
this is not true and dénote by C = C{ U Cj. Then, v (C) > v (Ci) + u (Cj).
Now, it is easy to find a proposai (x, C) such that x (C) = v (C) and
XQi ^> Uç., xcd ^> v>ç . (Hère, u% = uCi). Since /C is c.s. there exists
(ukj Cfc) E /C such that V!Q^Q S> xcnck- Consequently, at least one of
the following two inequalities: ukçkC)çz > u\jknc.9 u%kCiCû > uchncd

holds. But this contradicts the properties of /C.
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Now, let choose (u, C) e 1C, C ^ N. Clearly, v (N) > v (C) = u (C)
and a proposai (x, TV) can be found such that xc >> ̂ c- Then there would
exist a proposai (y, Z?) G /C such that ?/£> ̂ > X£>. But, as it follows from
the above, D D C ^ 0. This implies ycnD ^ uCnD and condition (1)
is violated.

6. UNIFORM COMPETITIVE SOLUTIONS AND ASPIRATIONS

Although the définition of u.c.s. is derived from the original concept
of compétitive solution, it seems to be closely related to other solution
concepts. Particularly, there is a strong similarity between the idéal payoff
vector associated to a eux.s. and the "aspiration" [see Bennett (1983)]. In a
slighty different form the définition of the aspirations can be adapted for ail
game models considered in the present paper.

DÉFINITION 6: The n-vector u G R ^ is an aspiration if

\J{CÇN\ue effC} = N (12)

and

There does not exist x G R ^ such that x G e ƒ ƒ C

and xc > uc for some 0 ^ C C N (13)

Note that an aspiration is not restricted to satisfy any feasibility condition
and this is the main différence between this concept and the u.c.s. (compare
the above définition with Proposition 3.4). Ho wever, as it was shown, for
the basical model of TU games [case (i)] the feasibility is a conséquence of
the effectiveness. In this case, the relationships between the c.u.c.s. and the
aspirations follow from Proposition 3.4.

PROPOSITION 6.1: Assume the game (N, v) satisfy (i). Let Kbea cu.es. and
w the associated idéal payoff vector. Then w is an aspiration. Conversely, if
u is an aspiration then (n, C(u)) is a c.u.c.s.

For the following algebraic characterization of the c.u.c.s. [case (i)] we
can also refer to Lemma 2.1 of Bennett (1983).

PROPOSITION 6.2: The pair (u, C), where \J{C \C G C} = N is a cu.es.
if and only if

u{C) >v{C), forevery C Ç N, C^0 (14)
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and
u(C) = v (C), for every C eC (15)

Proof: Indeed, if (u, C) is a c.u.c.s. then (15) follows from Proposition 4.3.
Moreover, if u (C) < v (C) for some C, then a proposai (x, C) can be
found such that x (C) — v (C) and XQ ^> uc contradicting the définition.
Consequently, (14) must be satisfied too.

Conversely, if u e KN satisfies (13) and (14) then it also satisfies (6)
and (7) and the second statement of the present proposition follows from
Proposition 3.4.

For the bounded model [case (ii)] only the first statement of the
proposition 6.1 remains valid. Since the aspirations are not subjected to
the feasibility condition it is not always possible to identify an aspiration
with the ideal payoff of a c.u.c.s.

EXAMPLE 5: n = 3. v{{i}) = 0.5; I / ( { 1 , 2}) = 2.5; I / ( { 1 , 3}) = 3;
1/(12,3}) - 1; u(N) = 2.

Clearly, u — (2, 0.5, 1) is an aspiration and C (u) — {{2},
{1, 2}, {1, 3}}. But the pair (n, C (u)) does not represent a u.c.s. (If C =
{1, 2} then uc = (2, 0.5) cannot be extended to a feasible payoff vector).
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