
RAIRO. RECHERCHE OPÉRATIONNELLE

M. MINOUX
Probabilistic bounds on one step objective/potential
function improvement in Karmarkar’s algorithm
RAIRO. Recherche opérationnelle, tome 28, no 4 (1994),
p. 329-355
<http://www.numdam.org/item?id=RO_1994__28_4_329_0>

© AFCET, 1994, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1994__28_4_329_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Recherche opérationnelle/Opérations Research

(vol. 28, n° 4, 1994, p. 329 à 355)

PROBABILISTIC BOUNDS ON ONE STEP
OBJECTIVE/POTENTIAL FUNCTION

IMPROVEMENT IN KARMARKAR'S ALGORITHM (*)

by M. MINOUX (x)

Abstract. -A detailed probabilistic analysis of the current step of Karmarkar's algorithm is
présentée. It does noî rely on asymptotic probabilistic results and hence its validity is not restricted
îo "sufficiently large" values of n (the dimension of the space). The main results obtained are
probabilistic bounds for both the decrease of the objective function value and the decrease of the
potential function value at one single step of the algorithm.

When compared with those classically derivedfrom worst case analysis, these bounds show that
much larger figures of the decrease are obtained with high probability; this may be viewed as a
partial explanation of the very good practical behaviour of Karmarkar's algorithm. Finally it is
shown that, contrasting with our analysis, results derivedfrom asymptotic analysis only feature poor
accuracy in the range of practical interest (n between 1000 and 107).

Keywords: Linear programming, interior point methods, probabilistic analysis of algorithms.

Résumé. — Cet article présente une analyse probabiliste détaillée d'une itération courante de
l'algorithme de Karmarkar. L'analyse ne repose pas sur des résultats probabilistes asymptotiques,
sa validité n 'est donc pas limitée à des valeurs « suffisamment grandes » de n (nombre de variables).
Les résultats obtenus sont des bornes probabilistes sur la décroissance de la fonction objectif et la
décroissance de la fonction potentiel au cours d'une itération de l'algorithme.

Lorsqu'elles sont comparées aux résultats classiques de l'analyse du pire cas, ces bornes
conduisent à des décroissances beaucoup plus rapides avec une probabilité élevée ; ceci peut
expliquer en partie le très bon comportement observé en pratique de l'algorithme de Karmarkar.
Finalement on montre que, contrairement aux résultats de notre analyse, des résultats fondés sur
une analyse asympîotique sont peu précis pour les valeurs de n intéressantes en pratique (n compris
entre 1 000 et 107).

Mots clés : Programmation linéaire, méthodes de points intérieurs, analyse probabiliste des
algorithmes.

1. INTRODUCTION

The by now widely acknowledged practical efficiency of Karmarkar's
algorithm [5] for solving large linear programming problems is primarily due

(*) Received November 1993.
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to the fact that the number of necessary itérations (to reach a spécifiée! final
accuracy) is most often very low and appears to increase only very slowly
with the space dimension n (number of variables). However worst-case
analysis of the algorithm, suggests that the number of necessary itérations
may have to grow linearly with n.

In the present paper this important différence between worst-case and
practical behaviour is (at least partially) explained through a detailed
probabilistic analysis of one typical step of the algorithm.

Earlier investigations on the average behaviour of Karmarkar's algorithm
can be found in [7] and [11]. Both authors make use of previously known
asymptotic results in probability theory, therefore their conclusions are only
valid for "large enough" n. However this kind of analysis does not provide
any information about how large n should be in order to get sufficiently
accurate estimâtes on the decrease of the objective function or of the potential
function.

In the present paper, a much more detailed analysis is presented, which
leads to probabilistic bounds on the decrease of both the objective function
value {see section 3) and the potential function value (see section 4). When
compared with those classically derived from worst-case analysis, these
bounds show that much larger figures of the decrease are obtained with high
probability (numerical results are presented for n ranging from 1000 to 107).
This provides a partial explanation of the very good practical behaviour of
Karmarkar's algorithm.

Finally, the behaviour of our bounds for n growing arbitrary large, is
studied in section 5, and the asymptotic values are compared numerically
with the exact values of the bounds obtained in sections 3 and 4. This
comparison shows that asymptotic analysis only provides poor accuracy in
the range of practical interest, namely for n between 1000 and 107.

2. KARMARKAR'S ALGORITHM IN BRIEF

Following Karmarkar (1984) the linear program to be solved is supposed
to be available in the form:

rp

Minimize z — c • x

subject to :

A-x = 0

x e S = {x/eT -x = 1, x > 0}
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where, if n dénotes the number of variables:
x e Un is the n-vector whose coordinates are the variables of the problem,
c € Rn is the cost vector,
A is a m x n real matrix of full rank,

e = (1, 1, . . . , 1)T is the n-vector with all coordinates equal to 1?

S = {x/x e Rn, eT x = 1, x > 0} is the simplex of Rn.
We also make the standard assumptions:

ASSUMPTION 1: The optimum objective function value z* in (LP) is supposed
to be known and equal to z* = 0.

ASSUMPTION 2: The point x° = — e (the center of the simplex) is afeasible
n

solution to (LP) or equivalently A • e = 0.
Karmarkar's algorithm générâtes a séquence of solutions a;0, rr1, x2

} . . . ,

xk starting from an initial feasible solution x° ( = — e ) . The current itération
\ n J

computes xfc+1 from x as follows.

CURRENT ITÉRATION. Let xk (xk > 0) be the current solution\
O

£> = diag(a;fc) =

\O art/
Let T be the projective transformation which maps every x G S to

D x
y £ S defined by: y — -^—-—:—. Through this transformation, (LP) is

e1 - D l x
transformed into the equivalent (Le. having the same optimal solution set)
linear program:

f Minimize cT • y

subject to : (LP)

yes

where: c = D • c, Â = A * D. Moreover the current solution xk is mapped

k D~lxk 1
to yK = T 1e1 * D~l

= - • e.
n

vol. 28, n° 4, 1994
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Compute g as the projection of c onto the subspace: {y/À • y = 0;
eT * y = 0}. Take a step of length 6 in the direction —g in transformed
space to find:

n II S II
Apply the inverse projective transformation to obtain:

Dyk+i

x ' =

(end of current itération).
Up to now, convergence analysis of Karmarkar's algorithm has essentially

been carried out in terms of worst-case analysis. Convergence proofs make
use of the so-called potential function:

n
f ( x ) = n l o g e CT 'X-

[5] has shown that if r = = (the radius of the largest sphère
s/n (n - 1)

inscribed in the simplex S), then taking a fixed step length 6 = a • r with

a = - results, at each itération, in a decrease of the potential function ƒ by
at least 8 > - = 0.125 (for sufficiently large n).

8
Later on, [3] and, independently, [2], have proved that, at each itération,

there exists a step length value insuring a decrease in the potential function
by at least 0.72148... As a conséquence of the above results, the number of
itérations necessary to obtain:

cTxk , _

for given q (required number of accuracy digits) is k = O(qn). In other
words, the number of itérations is5 in the worst-case, proportional to the
space dimension. Ho wever, in practice, Karmarkar's algorithm seems to
behave much more efficiently. Table 1 shows some computational results

reported in [10] on test problems from from NETLIB ( a fixed step length

0 = 0.99 • r is used where r = —, |. Table 2 shows similar results

V ( )obtained by [1] on a larger sample of NETLIB test problems. In both cases,
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PROBABILIST1C BOUNDS ON ONE STEP OBJECTIVE 333

we display the number of itérations necessary to reach a final accuracy equal
to 10~6 x initial objective function value, starting from a feasible solution.

These results, as well as many others, support the statement that, in
practice, the number of itérations should grow only very slowly with problem
size (in terms of number of variables and/pr constraints).

TABLE 1

Computational results from [10] on test problems from NETLIB. Results
obtained withfixed step length 0.99 x r (r = radius oflargest sphère
inscribed in the simplex). Final accuracy Kt6 x initial function value.

GNET20

ADLITTLE

SHARE2B

ISRAËL

BRANDY

BAND M

n

44

138

162

316

303

472

m

20

56

96

174

220

305

Number of itérations*

15

19

17

21

21

35

: (stalling from a feasible solution)

TABLE 2

Computational results from [1] on test problems from NETLIB.
Final accuracy Kt6 x initial objective function value.

ADLITTLE

SHARE2B

SCAGR 25

SCS Dl

BAND M

SCSD6

SfflP 041

SCTAP 2

SCTAP 3

SHIP 121

n

138

162

671

760

472

1350

2 166

2 500

3 340

5 533

m

56

96

471

77

305

147

402

1090

1480

1 151

Number of itérations*

23

24

25

17

26

20

26

26

29

29

* (starting from a feasible solution)
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In the following, we are going to show that these expérimental results may
be, at least partially, explained by studying the behaviour of Karmarkar's
algorithm from a probabilistic point of view.

3. PROBABÏLISTIC ANALYSIS OF THE DECREASE IN THE OBJECTIVE
FUNCTION VALUE ON ONE ITERATION

In the analysis to follow, we make the following basic probabilistic
assumption (BPA).

g
ASSUMPTION (BPA): The directions d — -—n obtained by carrying out

II ff II
the first step of Karmarkar's algorithm on randomly chosen instances of
problem (LP) are random directions in the subspace {d/eT • d = 0}
drawn from a uniform probability distribution (a probability distribution
with hyperspherical symmetry around the origin in Wl~1).

We observe that (BPA) actually amounts to assuming the existence of
an underlying probability distribution on the parameters A and c of (LP)
inducing a uniform probability distribution on the directions d.

Let g be the projection of c = D * c on the subspace {y/Ây — 0;
eT y = 0}. Define:

= max {gj}

9min = min {gj}

3=1—n

and, for 0 < A < 1 let y (A) G S be defined by:

y (A) - - e - -
n <7max

The point y (A) is the one obtained after a move in the direction — g in
transformed space, according to the step size A (note that, for A — 1, y (A)
hits the boundary of the simplex).

We will make use of the following lemma:

LEMMA 1 [2]: For 0 < A < 1;

< 1 ; ; ; r-
£ CT • e

Recherche opérationnelle/Opérations Research
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[2] shows that in the worst case, the term -. : : r may be as
I 5min I X I #max |

small as 2, therefore:
cTy{X)<x 2A
±cT-e- n

moreover this bound is tight
As a matter-of-fact, we are going to prove that, under assumption (BPA)

cT y (X)
the ratio , _^ may be bounded, in a high proportion of cases (Le. with

probability > 1 — 2 77 — 4 e for small prescribed 77 and e) by:

1 - A x tp (77, e, n)

where for fixed 77 and e, tp (77, e, n) decreases to 0 much slower than 2/n.
A natural way of drawing at random uniformly distributed directions d in

the subspace: {d/eT d = 0} is as follows. Consider v\y V2, . . . , vn to be n
realizations of n independent normal variables Vi, 1̂2? * • • ? Vn, each drawn
from a reduced normal distribution jV(0, 1). If we dénote v the n-vector
with coordinates v% (i — 1, . . . , n) it is well-known that the directions 71—rr

IMI
are uniformly distributed random directions in R .

Let fi— — ̂ ^ Vj, then 5 — v — fie is the projection of v onto the subspace
n ii

/ ^2 v% = O >, and the directions defined by the vectors v are uniformly

distributed random directions in this subspace. In view of the above, we
want to analyze the probabilistic behaviour of the term:

\v\\2

lönunl X Nmaxl
'lïT-ft'Vl 01 • —— ii. rt % t à / • n\ ft \ ii d'Mi^l O1 - T"Y"Ï 1 Y\ J a i < L *

% a x = max {VJ}.

Let e > 0 be a (small) specified probability and let a > 0 be defined
through the équation:

(the "tail" of the reduced normal distribution). Table A.l in Appendix A
shows some values of a corresponding to various (small) values of e.

vol. 28, n° 4, 1994
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Choosing e in the range [0.1, 5 10~6] results in a values in the range [1.28,
4.75].

LEMMA 2: Assume that n > 1000 and let a be chosen such that p(a) = e
and 1.28 < a < 4.75. Then, withprobability > 1 ~ 4s we have:

2
v\\2 < n + a V 2 n + -a2

2
n- aV2n-a2 < \\v\\2 < n + a V 2 n + -a2.

o
Proof:

fx is a centered normal variable with variance 1/n, therefore:

\v\\2 = V ^ v2 is a x2 distribution with n degrees of freedom. Using the\2 =

formula due to Hilferty and Wilson (1931) (see [4]) which very accurately
represents such a distribution as a cubic function of a reduced normal
distribution, it is possible to prove that with probability > 1 — e:

II?; Il2 < n + o;v /2n+ -ce2
M il _ - r v -y- 3

and with probability > 1 — e:

\\v\\2 < n — aV2ri.

From this, the Lemma easily follows. D

We now study the probabilistic behaviour of ^max» which is a random
variable defined as the maximum of n independent realizations of the reduced
normal distribution Af (0, 1) (extreme order statistics). The distribution
function of ^m a x is therefore:

Fn (u) = Prob {?;max < u}

where,

is the "tail" of the normal distribution J\f(O, 1).
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In a similar way, the distribution fonction of | vmin | is also Fn (u) given
by (1) (however observe that the random variables vmjn and t/max are not
independent, and this is taken into account in our analysis).

rj > 0 being a (small) prescribed probability, we dénote u^ (rj) the value
fi

ü of u such that Fn (ü) = 1 — - and u~ (rj) the value v! of u such that

Fn (*) = \

The following lemma provides accurate lower and upper bounds on u^ (77)
and u~ (rj) as fonctions of n and r}.

LEMMA 3: Let rj > 0 (77 <C 1) be given and define:

"*(£['-('-!)*])•
Then, assuming y r~ — loge (r+) > 3, we have:

v/r- - loge (r+) < «+ (77) < v/r+-loge(r--loge(r+)). (2)

Similarly, taking:

assuming s/s~ - loge (s+) > 3, the foUowing holds:

Proof: Assuming that u > 3 (the conditions stated in Lemma 3 ensure
that this assumption is valid), we use the approximation for p (u) obtained
in Appendix A:

p(u) =

with 0.89 < u/ < 1.

vol. 28, n° 4, 1994
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u+ (77) is the solution in u of the équation:

which may be rewritten as:

e"
= a (5)

Analogously, un (77) is the solution of a similar équation where the value
of a is changed to

Equation (5) is equivalent to

-—-

or:

(6)

f - )Letting x = u2 and r = 2 loge f - ) we find an instance of the équation

x + loge (x) ~ r> studied in Appendix B. In view of Proposition B.l of
Appendix B we get the following bounds for the solution to (5):

Vr - loge {r) <u< ï/r- loge (r - loge (r))

with r = 2 loge f - J. Since 0.89 < u < 1, let:

and

r
+ = 2 loSe ( ±

Recherche opérationnelle/Opérations Research
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then:

V r - - loge (r+) < ui (f)) < y r+ - loge (r~ - loge (r+)).

Bounds for u~ (rf) are obtained in exactly the same way, just replacing

and r by

s • = — t ^ [ l -(2)*])

Table C.3 in Appendix C shows, for a wide range of values for u and
for the value rf = 10~4, that the inequalities (2) and (3) provide accurate
confidence intervals for u + (rj) and u~ {rj). From these results» confidence
intervals for u subject to:

can be obtained. These are shown in Table 3.

TABLE 3

Confidence intervals [u~ (? )̂5 u£ (rj)] for u subject to
rj/2 < Fn (u) < 1 — rj/2 for various values of 'n.

n

1000

5 000

10 000

50 000

100000

500 000

106

107

7?=10-4

range for u subject to
V/2 <Fn(n)<l~ v/2

2.27

2.83

3.04

3.50

3.68

4.07

4.23

4.72

5.33

5.61

5.73

6.00

6.11

6.36

6.47

6.80

vol 28, n° 4S 1994



340 M. MINOUX

From the various preceding lemmas, we can deduce

PROPOSITION 1: Let e > 0 and r) > 0 be small chosen tolérances,

e G [0.1, 5-10~6], and let a be such thatp (a) = e, (hence 1.28 < a < 4.75).
Then, for n > 1 000, the double sided inequality:

\\v\\2

Pmin ^ ~i~z j r~z r S Pmax
I ̂  | x I % a x |

holds with probability > 1 — 2 77 — 4 e where:

n- a y/2n - a2

Pmin —

_ n + a \/2TT + (2/3) a2

Pmax —
M] - 7= [Un (V) ~ U\

Proof: From Lemma 2, all the following inequalities

n-a V2n - a2 < \\ v ||2 < n + a V2n + (2/3) a2

I A* I <4=

simultaneously hold with probability > 1 — 4e. On the other hand, each
of the inequalities:

un (V) < %ax < U+ (77) (7)

< I ̂ min | < ^t (V) (8)

holds with probability > 1 — 77. Now

Vunn X £max = (^min ~ M)(

= 'Umin X ü m a x - II (^min + %ax) + $ •

n
Since ^ ^ = 0, we have that vm3iX > 0 and ?5min < 0, | v^u \ =

i-l
Therefore

X | Vm3iX | = -t /min x Vm3iX + jJL {v^^ + î /m ax) ~ $ >
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Assuming both (7) and (8) hold (which occurs with probability > 1 — 2 rf)
we have:

< W+ (77) - U~ {ï}).

From all the above inequalities, we conclude that, with probability
> l - 2 ? 7 - 4 e , we have:

< [«+ {rf)f + - ^ [u+ (n) - U~ (f])]

2

> [u~ (rj)]2 - -j= [t*+ ^

and

pmin = I * I

I ̂ i | x

Q.E.D. •

We are now ready to state the main resuit of this section:

THEOREM 1: Let e > 0 and r] > 0 be small chosen probabilities,
e e [0.1, 5 • 10~6], and let a be such that

Then, for n > 1 000 and for all X G [0, 1] the inequality

cT • y (A) A n - a y/2n - a2

^ x —cT • e/n " n [u+ (rç)]2 + ^ [u+ (T?) - «^ (r,)]

holds with probability > 1 — 2 77 — 4 e.

Proof: using Lemma 1 with g — v

cT - e/n n |ömin'| x l^

LFrom Proposition 1, — p — L > p ^ with probability
| ^ | x | %ax I

- 2 r ç - 4 e . Therefore:

< 1 - A
c1 • e/n n

with probability > 1 — 277 — 4e.

Q.E.D.

vol. 28, n° 4, 1994
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TABLE 4

Comparison ofthe probabilistic and worst-case upper boundsfor

~ . . Hère we have taken e — 5 • 10~° and rj = 10~4, hence the
c1 e/n

probabilistic bounds hold with probability > 1 - 4 • 10~4 (= 0.9996).

n

1 000

5 000

10 000

50 000

100 000

500 000

106

107

cT y(l)
Upper bound on —~—;—c1 e/n

with probability > 1 — 2r\ — 4e

(Theorem 1)

0.971

0.970

0.971

0.972

0.973

0.975

0.976

0.978

Anstreicher's worst-case

cTy(l)
upper bound on —^—-~

c1 e/n

0.998

0.9996

0.9998

0.99996

0.99998

0.999996

0.999998

0.9999998

The numerical results displayed on Table 4 show for A = 1 how the

probabilistic upper bound on -^——^ given by Theorem 1 compares
c1 • e/n

2
with the worst case (tight) upper bound 1 from [2]. It is observed

n
that, with very high probability (> 0.9996), the relative decrease on the
objective function value is better than 2.2% for n ranging from 1 000 to
107 variables; moreover the bound on the improvement ratio détériorâtes
only extremely slowly for increasing n. By contrast, the worst-case bound
constantly increases and comes very close to 1 for large n.

4. PROBABILISTIC ANALYSIS OF THE DECREASE IN THE POTENTIAL
FUNCTION VALUE ON ONE ITERATION

We now extend our analysis to the so-called potential function defined as:

f(x) = n loge c
T - x -

Recherche opérationnelle/Opérations Research
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The potential fonction value at the initial point — • e is:
n

Let d — 71—n- be the direction taken at the first step of Karmarkar's

algorithm. For a step size À E [0, 1] the new point is y (A) = — e

and the potential fonction value at this point is:

ƒ (y (A)) = n loge (c
T . y (A)) - £ loge f 1 - ^ - ) - n loge ( i ) .

Therefore, denoting A ƒ = ƒ (y (A)) — ƒ f — e ) we have:
\n )

A probabilistic bound for ^ . has been obtained in the previous
c1 e/n

section, so let us concentrate on the second term in the above expression.
Under the probabilistic assumption (BPA) (section 3) we are therefore

interested in the probabilistic behaviour of

where Vi = v% — \x (i = 1 • • • n), Vi being n independent realizations of the

reduced normal distribution Af (0, 1), and \x — -
Tl

We make use of the following lemma.

LEMMA 4: Let 0 < A < 1. Thenfor all 9 > -X

/\1 -i

o e v • - ' - " 2 l - A

vol. 28, n° 4, 1994



344 M. MINOUX

al i

Proof: Let <p (0) = loge (1 + 0) - 6 + — x
2 1 - A

dip 1 _ 9

de î + e i - A

l + ô + l - A
6[0 + \]

For -A < $ < 0, -£ < 0 and y?(0) = 0, hence <p(ö) > 0 for ail
du

0 e [-A, 0]. For 9 > 0, ^ > 0 and p(0) = 0, hence <p(9) > 0 for ail

ô > 0. D

Now, defining: 9i — -À ̂ —̂ —, expression (9) may be rewritten as
%ax

(10)

and we note that, Vi : ôj; > —À. Therefore, applying Lemma 4 to each term
of (10) we get the inequality:

n v n

The first term on the right handside is zero, therefore:

)? \\itf

From this we deduce the following bound for Af:

ai): " ~ 6 e Vcre/r*y^2(l-A)(w)2

and we can state:

THEOREM 2: Under the same assumptions as for Theorem 1 the inequality:

X2

A ƒ < -A/?min + , i _ \\ ^m a x (12)
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holds with probability > 1 — 2r\ — 4 e where:

n — a y/2n — a2

[ut (V)}2 + % [nt (v) - un (i/)]

and

n + a V2n + (2/3) a2

Pmax — 7-3
f

f: Using (11) together with Proposition 1 and Theorem 1, we have
with probability > 1 — 2 ?? — 4 e

A / < n l o g e ( l - ^ ^ X2

Observing that loge f 1 Pmjn I < Pmin the result follows. D
\ n J n

Since, for very large n, pnün and pmax are almost equal, a good choice
for A is obtained when

is minimized The exact minimum value is -0.2679 and is obtained for

A = 0.42 I = 1 - ¥— 1. However, as shown on Table 5 for 50 000 < n <

IQ7

Pmin

and therefore, in the range [50 000, 107], A should be chosen between 0.29
and 0.22.

Table 5 shows numerical values of the bound (12) on the decrease A ƒ of
the potential fonction. It is seen that, | A ƒ | increases almost Hnearly with
n; this is to be contrasted with worst-case analysis {see [5]) where the bound
on Af is a constant (ie. does not depend on n).
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TABLE 5

Bound on the improvement A ƒ in the potential function with probability
> 1 - 4 • 1 0 " 4 , (hère, again e = 5 • 1 0 " 5 and t) = 1O"4).

n

1OOO

5 000

10 000

50 000

100 000

500 000

106

107

Pmin
n

0.028

0.029

0.028

0.027

0.026

0.024

0.023

0.021

Pmax
n

0.246

0.137

0.115

0.083

0.075

0.060

0.056

0.044

probabilistic bound
n n A /

n

- 1 . 5 10"3 (for A = 0.1)

- 2 . 4 10"3 (for A = 0.2)

- 2 . 3 10"3 (for A = 0.25)

- 3 . 3 10"3 (for A = 0.25)

-3 .5 10"3 (for A = 0.25)

- 3 . 6 10~3 (for A = 0.25)

-3 .5 10~3 (for A = 0.25)

- 3 . 4 10~3 (for A = 0.25)

probabilistic bound
on A /

- 1 . 5

- 1 2

- 2 3

- 1 6 5

- 3 5 0

- 1 800

- 3 500

- 34 000

5. ASYMPTOTIC ANALYSIS

For fixed e and 77, it is easily seen that for n growing arbitrarily large,
Pmin [ut (r?)]2

and
Pmax r —

1.

Therefore the asymptotic analysis of the bounds given by Theorem 1 and
Theorem 2 will follow from the asymptotic behaviour of u+ (77) and u~ {r}).

THEOREM 3:

(i) lim
n—•oo

ut
12 loge

= = 1

(ii) lim
n—>-oo

(iii) lim
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Proof: From Lemma 3, a lower bound for u£ (77) is

where

and

r — (0.89).

When n -> +00, both r+ and r " tend to +00 and 0.

From this it is seen that u+ (77) —> +cx). Similarly, it may be proved that

For any fixed value of 77, u^ (77) is the root of the équation

" A/̂ TT U "~ ~ 2

with w (n) —> 1 when u —» +00. Since u+ (77) —»- +00 (n —> +00), the
asymptotic value of w+ (77) is the root of the équation:

1 -

which may be rewritten

u + loge (u ) = r

Ï | I - ( I - 2with r = — 2 loge

When n —> +00

therefore:

r ^ r o o ( n ) - - 2 loge V2TT - 2 loge - ^ = 2 log,
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Using Proposition B.l of Appendix B, we deduce for the asymptotic value
of u+ (77) the double sided inequality:

\Aoo O) - loge (roo (n)) < U+ (7/)

< \A<x> (n) - loge (
r<x> (n) - loge (roo (n)))

and, since r ^ (n) —• +00, (n —• +00) we deduce that:

which proves (i).
In a similar way, the asymptotic value of u~ (77) is the root of the équation

u2 + loge (u
2) = s

with

When

therefore

oo:

loge (I
n n

= - 2 loge ( v ^ ) - 2 loge
n

n= 2 loge

Again, using Proposition B.l, we deduce

lim

which proves (ii).
Finally we have:

«n
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and

'il ( n 1
an VI)

y 2 loge (n)

which show that, for

i

lo (

fixed

n
\/2¥loge

77, both

>

(2/17) J

ut
)

0?)

1
loge

and —

(^lo

loge (r

Un(v)

s. (î))
l)

- tend to
V 2 !oge (n) V2 loge (n)

1, and this proves (iii). D
From Theorem 3 we easily deduce the asymptotic behaviour of the bounds

given by Theorem 1 and Theorem 2. Thus, for n sufficiently large, and with
probability > 1 — 2 77

^ W £ 1 A
C e / " 2 log.

and

- * 7 ^ + 7 Y' (14)

" 2 log« (# ï ) 4(1 " A) log- i^^w.))
The asymptotic probabilistic result used by [7] and [11] states that if

Ç(n) e [Rn is a random unit vector uniformly distributed in Rn then, when

l k ( n ) l l r 9n —• 00 the random variable Z — •—( , 2 converges in probability to
II ^ IIX/oo

n

2 loge (n)*

Since for n sufficiently large,
n < y r; ||2 < n

[ut{rij\2 l^minl x | ?5 m a x | [un (rj)]2

(with probability > 1 — 77) it may be seen that Theorem 3 above proves a
similar asymptotic result for the random variable

I2

\L2

where Ç ^ and ^ ^ x respectively dénote the largest and the smallest
component of ^n\
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(Note that though | QJ^ | and | Qjx | have the same probability
distribution, they are not independent, thus Z and Z1 are distinct random
variables).

Table 6 shows a numerical comparison of the asymptotic values for u£ (77)
and u~ (77) as given by Theorem 3 and the exact values derived from
Lemma 3 (the value of 77 is 10~4). It is seen that for v+ (77) the error ranges
from 5.6% (for n = 1 000) to 4% (for n = 107); and for u~ (77) the error
ranges from 87% (for n = 1 000) to 23% (for n = 107).

These results show that, at least in the range n — 103 to n = 107,
asymptotic analysis only provides poor accuracy for the quantities u+ (77)
and u~, x involved in the probabilistic bounds of Theorem 1 and Theorem 2.

TABLE 6

Comparison o f the asymptotic values for u+ (77) and u~ (77) as given by
Theorem 3 with the exact values derived from Lemma 4 (77 = 10~4).

n

1000

5 000

10 000

50 000

100 000

500 000

106

107

Exact values
Confidence interval Confidence interval

5.30 - 5.33

5.58 - 5.61

5.70 - 5.73

5.97 - 6.00

6.08 - 6.11

633 - 6.36

6.44 - 6.47

6.78 - 6.80

2.27 - 2.39

2.83 - 2.92

3.04 - 3.12

3.50 - 3.56

3.68 - 3.74

4.07 - 4.12

4.23 - 4.28

4.72 - 4.76

Asymptotic values

ui iv) u~ (7))

5.63

5.91

6.03

6.29

6.40

6.64

6.75

7.08

4.49

4.84

4.98

5.29

5.42

5.71

5.83

6.21
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APPENDIX

A. AN APPROXIMATION FORMULA FOR THE TAIL OF THE REDUCED NORMAL
DISTRIBUTION

Let X be a centered reduced and normally distributed random variable. In
this Appendix, we dérive a good approximation to:

for sufficiently large u.

We first give a gênerai upper bound, valid for all u > 0.

PROPOSITION A.l: For ail u > 0:

1 e"w2/2
p (u) <

U
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t
Proof: For ail t > u, — > 1, hence:

u

-f
«• Ju

e""2/2

Ulu

Q.E.D. D

Now, we dérive lower and upper bounds, valid for all u > 0 and providing
better approximations (note that the upper bound only improves over the one
in Proposition A.l for sufficiently large u, u > 2,5 say).

PROPOSITION A.2: For all u > 0;

^ u
where

1 , , 1 3

(hence u (u) is almost constant and equal to 1 for large u).

Proof: (i) The lower bound is obtained by observing that:

from which we deduce that:

f
and since the last summation is strictly positive:

r ° 2/7.
(ii) Now, the upper bound is obtained as follows. We have that:

d f (\ 1 . 3 \ T2

/
2 /O Xt} _„'ï>2 /O
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From this we deduce that:

1 ;
U

'/* = ƒ
Ju

oo -x^l/*oo — x

Ju X
Since the second term of the right handside is strictly positive we have

f
Ju

ö + ^r X
u

Q.E.D. D

As a direct conséquence of Proposition A.2 it is observed that for all
u > 3, u) (u) G [0.89; 1]. Table A.l below shows that, as soon as u > 3
the approximation is very good.

TABLE A.l

u

1.28

2.32

2.57

3.29

3.89

4.26

4.75

Actual value of
p (it)from tables

0.1

0.01

5.10-3

5.10"^

5.1O"5

io-5

5.10-6

Lower bound

' f i - 1
2 ) e "" 2 / 2

^/2^ \ U2 J U
0.053

0.0094

4.8.10"3

4.89.10"4

4.94.10~5

1.10"5

ÏO^6

Upper bound

1 / 1 3\e-2/2

V2^\ v? u4) u
0.206

0.0106

5.22.10"3

5.0310-4

5.01.10"5

1.01.10"5

L005.KT6

B. SOLUTION OF THE EQUATION x + loge (x) = r

PROPOSITION B.l: For r > 1, the équation x + loge (x) = r has a unique
solution x(r) which satisfies for all r > 1:

r - loge (r) < x (r) < r - loge (r - loge (r)).

Proof: The fonction x —> x + loge (x) is monotone increasing in x,
therefore for all r > 0, the équation has a unique solution.

For x\ = r — loge (r) we have:

ari -h loge (xi)=r- loge (r) + loge (r - loge (r))

= r + loge L
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Since r > 1, loge (r) > 0 hence: loge ( 1 — < 0 and we have

xi + loge (xi) ^ r which proves that ici is a lower bound to x (r).

Now since x(r) = r — loge (z (r)) and a;i is a lower bound to x (r)
we have

x(r) <r - loge (xi) = r - loge (r - loge (r)).

Q.E.D. D

The following table shows the values of x\ — r — loge (r) and
x2 = r — loge (x\) together with the exact values x(r) for various values
of r ranging from 9 to 100. The exact values x (r) have been computed
by means of the itération:

(x(0)=r

which, for the values r > 9, converges very rapidly (no more than 5 itérations
are needed for a relative accuracy 10~5).

TABLE B.2

Solutions to x + loge (a;) = r for various values ofr.

Values of r

9

10

12

14

16

20

25

30

50

100

1000

Xl = r - loge (r)

6.802

7.697

9.515

11.360

13.227

17.004

21.781

26.598

46.087

95.394

993.092

x2 = r - l o g e (xi)

7.082

7.959

9.747

11.569

13.417

17.166

21.918

26.719

46.169

95.441

993.099

x(r)

7.0473

7.9293

9.7252

11.5530

13.4044

17.1575

21.9129

26.7147

46.1677

95.4414

993.0991
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TABLE C .3

Confidence intervals for u+ (77) and u~ (r)) derivedfrom
Lemma 3 [inequalities (2) and (3)] for 77 = 10~4 .

n

1000

5 000

10 000

50 000

100 000

500 000

106

107

< u+ (v) <

5.30

5.58

5.70

5.97

6.08

6.33

6.44

6.78

5.33

5.61

5.73

6.00

6.11

6.36

6.47

6.80

< y-ü (v) <

2.27

2.83

3.04

3.50

3.68

4.07

4.23

4.72

2.39

2.92

3.12

3.56

3.74

4.12

4.28

4.76
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