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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING (*)

by D. Den Herroc M, C. Roos (!) and T. Tercaky (1)

Communicated by Pierre ToLLA

Abstract. — In the recent interior point methods for linear programming much attention has been
given to the logarithmic barrier method. In this paper we will analyse the class of inverse barrier

methods for linear programming, in which the barrier is Y z; ", where v > 0 is the rank of the
barrier.

There are many similarities with the logarithmic barrier method. The minima of an inverse barrier
function for different values of the barrier parameter define a “central path” dependent on r, called
the r-path of the problem. For r | O this path coincides with the central path determined by the
logarithmic barrier function. We introduce a metric to measure the distance of a feasible point to a
point on the path. We prove that in a certain region around a point on the path the Newton process
converges quadratically. Moreover, outside this region, taking a step into the Newton direction
decreases the barrier function value at least with a constant.

We will derive upper bounds for the total number of iterations needed to obtain an e-optimal
solution. Unfortunately, these bounds are not polynomial in the input length. Only if the rank r
goes to zero we get a polynomiality result, but then we are actually working with the logarithmic
barrier method.

Keywords: Linear programming, interior point method, logarithmic barrier function, inverse
barrier function.

Résumé. — Dans les méthodes récentes par points intérieurs, [’attention a surtout porté sur la
méthode de barriére logarithmique. Nous analysons dans cet article la classe des méthodes de
barriére inverse, oi la barriére est 3 x; ", o v > 0 est le rang de la barriére.

Il'y a beaucoup de similitudes avec la méthode de barriére logarithmique. Les minima d’une
fonction de barriére inverse pour les différentes valeurs du paramétre de barriére définissent un
« chemin central » dépendant de r, appelé le r-chemin du probléme. Pour v | 0 ce chemin coincide
avec le chemin central défini par la fonction de barriére logarithmique ; nous introduisons un €
métrique pour mesurer la distance d’un point réalisable a un point du chemin. Nous montrons que
dans une certaine région autour d’un point la méthode Newton posséde la convergence quadratique.
En outre, en dehors de cette région, un pas dans la direction de Newton décroit la fonction de
barriére d’au moins une constante.
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136 D. DEN HERTOG, C. ROOS, T. TERLAKY

Nous donnons des bornes supérieures du nombre total d’itérations nécessaires pour obtenir une
solution optimale a € prés. Malheureusement, ces bornes ne sont pas polynomiales par rapport a
la longueur des données. C’est seulement si le rang r tend vers zéro que nous obtenons un résultat
polynomial, mais alors nous travaillons en réalité avec la méthode de barriére logarithmique.

Mots clés : Programmation linéaire, méthode intérieure, fonction de barriere logarithmique,
fonction de barriere inverse.

1. INTRODUCTION

Karmarkar’s [11] projective method has initiated the fast developing field
of interior point methods for linear programming. Since then many different
interior point methods have been proposed, which appear to have several
similarities if one analyses them more carefully.

A well-known interior point method is the classical logarithmic barrier
function method, proposed by Frisch [7] and further developed by Fiacco
and McCormick [5]. In this method the nonnegativity constraints z; > 0
of the linear programming problem are replaced by an additional term
—u >, In z; in the object function. Now letting the barrier parameter y
g0 to zero, one can prove convergence. Moreover, in the case of linear
programming polynomiality can be proved. See Gonzaga [8] and [9], Roos
and Vial [18] and [19], and Den Hertog, Roos and Vial [3].

Besides this logarithmic barrier method there are other well-known barrier
methods. Carroll [1] proposed the socalled inverse barrier method, in which
the barrier function is ) :cz-_l. This method was further developed by Fiacco
and McCormick [5] and implemented by McCormick er al. [13] in the
SUMT-2 and SUMT-3 codes. Kowalik [12] described the quadratic inverse
barrier method, in which the barrier function is 3 mi_z. Fletcher and McCann
[6] elaborated this idea.

More recently, Ericsson [4] studied the socalled entropy barrier method.
Polyak [16] studied some modifications of classical barrier methods. But both
didn’t obtain upper bounds for the number of iterations: only convergence
has been proved.

In the recent papers on. interior point methods for linear programming
only the logarithmic barrier method has been studied thoroughly. So the
natural question arises if it is possible to construct effective methods based

on other barrier functions. Is it also possible to prove polynomiality for
such a method?

In this paper we will analyse the classical inverse barrier function method,
which uses Y z;" (r > 0) as a barrier. The approach resembles the
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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING 137

logarithmic barrier approach in Den Hertog, Roos and Vial [3]. The minima
of the barrier function again form a path, called the r-path, which is of
course different form the “central path” determined by the logarithmic barrier
function. As in the logarithmic barrier case we define a metric to measure the
distance of a feasible point to this path, and we will prove that within some
region the Newton method is quadratically convergent. Outside this region we
can prove that taking a step in the Newton direction results into a decrease
in the barrier function value. Of course, the present Newton direction is
different from the Newton direction for the logarithmic barrier function.

Unfortunately, we are not able to prove polynomiality. Under some
assumptions we will prove that the total number of iterations to obtain
an e-optimal solution is bounded by

/2
o(G(Z) (@) o« o(()u(®)
€ € € €
dependent on the updating of the barrier parameter. In each iteration a linear

system has to be solved. If r goes to zero then we will show that the method
reduces to the logarithmic barrier method, which has the complexity bounds

o(vam(2)) wi ofnn(2)

(see Gonzaga [9] and Den Hertog, Roos and Vial [3]).

The paper is organized as follows. In Section 2 we do the preliminary work.
Then, in Section 3 we prove some properties of nearly centered points and
we derive a lower bound for the decrease in the barrier function value after
a step in the Newton direction. In Section 4 we will state our algorithms and
derive upper bounds for the total number of iterations. Finally, in Section 5
we end up with some concluding remarks.

Notation: Given an n-dimensional vector x we denote by X the n X n
diagonal matrix whose diagonal entries are the coordinates x; of x; xT is
the transpose of the vector x and the same notation holds for matrices. The
identity matrix is denots by / and the all-one vector by e. Finally ||z|| denotes
the /, norm and ||Z|loo the lo norm of x.

2. INVERSE BARRIER FUNCTION AND r-PATHS
Consider the primal linear programming problem:
(P) min{cfz: Az =0, x> 0}.

vol. 28, n°® 2, 1994



138 D. DEN HERTOG, C. ROOS, T. TERLAKY

Here A is an m X n matrix, b and ¢ are m- and n-dimensional vectors
respectively; the n-dimensional vector x is the variable in which the
minimization is done. The dual formulation for (P) is:

(D) max{pTy: ATy+s=c, s>0}.

We assume that the feasible set of (P) is bounded and has a nonempty
relative interior. In fact we make the stronger assumption that all primal
feasible variables are bounded form above by 1. It is easy to see that this
can be accomplished by scaling the original problem. (See Appendix 3.) This
assumption is trivially fulfilled if one of the equality constraints A z = b is
the “simplex constraint” e z = 1, as Karmarkar [11] assumed in his paper.
In order to simplify the analysis we shall also assume that A has full rank,
though this assumption is not essential.

Since the primal feasible region is bounded, the dual feasible region is
unbounded. (See Appendix 4.) But we will show that the dual slack variables
which we need in the analysis lie in a bounded region. (See Appendix 2.)
Hence, by scaling, we can assume that those variables are bounded from
above by 1 too. (See Appendix 3.)

To the primal problem we associate the following inverse barrier function

Tz 1 1
fr(x,li):—u—‘*';z—;- (D

We call r the rank of the barrier function.
The first and second order derivatives of this function are:

c —r—
9:=V (e, W=2-X""e,
H:=V?f(z,p)=(r+1) X2
Hence it follows that f, (z, p) is strictly convex on its relative interior.

This means that there exists a unique minimum. The Karush-Kuhn-Tucker
conditions for this minimum are

AT y+s=c, >0,
Az =0, x>0, )
Xl s=pe.
The unique solution of this system of equations is denoted by z () and
(y (1), s (). The set of solutions for p > 0 is called the r-path. Note
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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING 139

that the O-path is exactly the central path which has been analysed by many
researchers during the last years (e. g. Megiddo [14]). The minimum of
fr (z, ) for p = oo is called the r-center of the polytope. Hence, the r-path
starts at the r-center.

It is straightforward to generalize the inverse barrier function f, (z, u)
for the dual problem. In Figure 1 we have drawn several r-paths for
2-dimensional dual problems. Figure l.a shows several r-paths for the
following problem:

5
max —yi +§y2
1<y, <1

y1—y2 <1
4

3 + <3
5311 5y2_5-

Figure 1.6 shows r-paths for the same problem, with the objective replaced
by -3 y1 + 4.1 ya.

Note that, loosely speaking, coming into the neigborhood of the boundary
is more penalized if the rank is large. This effect can indeed be seen in
Figure 1. In Figure 1.b, for example, a large part of the O-path is very
close to one of the constraints, whereas the higher order paths approach the
optimum more from the interior! So, using higher order barriers might be
an advantage for (almost) degenerate problems.

Note that the “limit path” (the path for » — o00) is piecewise linear.
Moreover, this limit path is only dependent on the constraints and the
optimum. For example, in Figure 1.a and 1.b the 50-path for both problems
(which only differ in the objective) are almost the same.

Without going into details we note that (under nondegeneracy) this
piecewise linear path is in fact Huard’s [10] path of centers for his special
“quasi distance” function. This path was recently further analysed by White
[21]. Moreover, if the columns of A have length 1, then this path also
coincides with the “locus of centers” studied by Tamura et al. [20]. They
proved that following this piecewise linear path corresponds to a primal
simplex method.

The next lemma deals with monotonicity of the objective along the r-path.

Lemma 1: The objective cI' x (1) of the primal problem (P) is monotonically

decreasing and the objective bTy( w) of the dual problem (D) is monotonically

vol. 28, n° 2, 1994



140 D. DEN HERTOG, C. ROOS, T. TERLAKY

a b
Figure 1. — r-Paths for r=0, 1, 2, 5, and 50, from the left to the right respectively.

increasing if p decreases. Moreover, if ¢cI x is not constant on the primal
feasible region, then T x (1) is strictly decreasing, and if b # 0 then bT y (1)
is strictly increasing.

Proof: Using that z (1) and y (u) satisfy (2) and taking derivatives with
respect to p we obtain

AT yl + 3, =0,
Az’ =0, 3)
Xt +(r+1)X" Sz’ =e,
where primes refer to derivatives with respect to . Now, using the relations
of (2) and (3), we find

o' = @) (s+ AT y) = (2/)T s = €T (Sz')
= (X" 4+ (r+1) X" 52T S’
— [L(CE,)TS, + (T+ 1) (xl)TSa X" = (T+ 1) (xl)Ter X"z > 0,

where the last equality follows because (z/)T s’ = —(Az’)Ty' = 0. This

proves that ¢! z (1) is decreasing along the path. Moreover, since S? X7 is

positive definite, ¢ 2’ = 0 if and only if z’ = 0. If 2/ = 0 then from (3) we
have X" t1s' = e or ps’ = s. This means that

c=ATy+s=ATy+pus = AT (y-pny).
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So, in this case ¢ is in the row space of A, which means that ¢’ z is
constant on the feasible region. Consequently, ¢! z (u) is strictly decreasing
if ¢’ 2 is not constant on the feasible region.

Now we multiply the last equality of (3) by AS~! X~ ":
ASTVX s +(r+1) Az’ = AST1 X "¢,
which reduces to AX"*? s’ = b. Taking the inner product with y' results into

bT yl — (yI)T AXr+2 8’ — (AT yI)T Xr+2 S, — _(s/)T X'r+2 sl < 0.
This proves that b7 y (i) is increasing along the path. Moreover, since
X7*2 is positive definite, b7 3/ = 0 if an only if ' = 0. If &' = 0 then from
(3) we have (r + 1) X" Sz’ = e or u (r + 1)z’ = z. This means that
b=Az=p(r+1)Az =0.
Consequently, b7 y (i) is strictly increasing along the path if b # 0. This
completes the proof of the lemma., [J

3. PROPERTIES NEAR THE r-PATH

We introduce the following measure for the distance of an interior feasible
point to the r-path:

6 (z, p) := min{
Y, s

+1
x-r/2 (b - e)
w

This measure will appear to be an appropriate one. The unique solution
of the minimization problem in the definition of § (z, ) is denoted by
(y (z, p), s (z, u)). It can easily be verified that

:ATy-i-s:c}. @

z=x(p) &8, p)=0&s(z, p)=s(u.

The next lemma states that there is a close relationship between this
measure and the projected Newton direction p (z, p) with respect to the
barrier function, which is obtained from

T —-p
(Z ’%) y =(g), yeR™. )
I
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142 D. DEN HERTOG, C. ROOS, T. TERLAKY
A closed-form formula for p (z, u) is given by

p(z, u)=—H Y2 Pyy 2 H V2 g, (6)

where P4-1/2 denotes the orthogonal projection onto the null space of the
matrix AH~1/2,

LemMa 2: For given x and p, 6 (z, p) = V7 + 1 |HY2 p (z, ).
Proof: From (6) we have

p(z,p)=—H 21 —H2 AT (AH™' AT)"1 AH7Y/2)

x H-1/? (3 - X‘T‘l) e.
I

Now it is easy to derive that /7 + 1 p (z, u) can be written as H —1/24,

where
g= X—T12 (e 3 XT: S) (7)
with
s=c—ATy (8)
and
y=p(AH AT AH 14 O

On the other hand it can be verified that

s(z, p) =c— pAT (AH T AT)"Y AH 1 4.

Consequently, s = s (z, p) and

ol = | x =72 (e - 3(—4”—1#) | =56

This proves the lemma. [

Note that ||[HY/2p|| = \/pT Hp := ||p||z. This measure (“the Hessian
norm of the Newton direction”) already appeared in many other papers (e. g.
Den Hertog et al. [2, 3]).
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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING 143

The Newton direction (6) is different from search directions used by other
interior point methods: instead of the matrix AX? AT it uses the matrix
AX™2 AT so the scaling is different. In the sequel of the paper we will
write p instead of p (z, p).

Now we will prove some fundamental lemmas, which will be used in the
following section to obtain upper bounds for the total number of iterations.

Lemma 3: If 6 := 6 (z, u) < 1 then y := y (z, p) is dual feasible.
Proof: By the definition of s (z, u) we have

x-T/2 (Mﬂ _ e) <1. (10)

n

Because x is feasible we have (due to our assumption) z; < 1. Using
this in (10) we get

[

H X+l Z(w’ N <1

This implies s (z, ) > 0, so y (z, w) is dual feasible. [J
Note that (7) gives an explicit expression for the Newton direction:

p= —H (E—X‘T“1e> __ 1 (Xr+2s_z)
7 r+1 p ’

where s = s(z, 1). Hence the new point £ after a full Newton step is given by

_r+2 1 X2
Tr41 r+1  pu
Now we state our quadratic convergence result.

T=zxz+4+p

Lemma 4: If 6 (z, p) < 2/3 then X is strictly feasible. Moreover,
5 (%, p) < 6 (z, wi
Proof: In the proof we make use of the vector ¢ defined by

Note that

aﬁza:—;i—thX(e— ! t). (11)

vol. 28, n® 2, 1994



144 D. DEN HERTOG, C. ROOS, T. TERLAKY

From 6 (z, p) < 2/3 we deduce that —2/3 < t; < 2/3. So £ is strictly
feasible.

The definition of s (£, ) implies the following:

. or+1 2
6 (&, p) = IX—T/2 (Xs—(x,u) - e)
"
< X—T/Z (XT-H s (.’L’, /J‘) _e) ]
I

Using (11) we find

X+ s @) (X =+ D) XTY s (o, )

e
7 p
1 r+1
:(I_T+1T) (t+6)—6.
Let us call the right hand side vector g (). So
5(&, W< IX2q @)l
= | X2 X" X T T2 q (1))
<X XT T2 g (#)leo X2 82 (12)
Note that
X2 4)° = 6 (2, w)?. (13)
The proof will be completed by showing that
IX=72 X" T2 q (oo < 1. (14)

Note that

IX=2 X7 772 g ()loo
< IETX)PT2 g ()]l
= max (1 - (1/(T + 1)) ti)r+l (tz + 1) -1 .
: 2 (1— (1/(r+ 1)) t:)""?

(15)
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Remember that —2/3 < t; < 2/3. Now we continue by evaluating (15).
First note that (1 — (1/(r +1))#;)™ ! (& + 1) is less than 1 (it has its
maximum for {; = 0). Moreover, using Lagrange’s remainder formula with
respect to #; we thus have

r
r+1 r+1
where 0 < v < 1. This means that

r41
051—(1~ ti> (ti+1)=1——(1—t,~+72——~t;‘-’)(ti+1),

+1
Now substituting this into the right hand side of (15), we get

1 r+1
1—(1—T ti) (ti+1)<1—(1—t)(t: +1) =2,

1—-1/r+1)t) T t+1) -1 1
t2 (1~ (1/(r + 1)) t:)"/? T A= @) )

which implies (14) if ¢; < 0. Now we will prove that inequality (14) also
holds for 0 < t; < 2/3. Note that it suffices to show that

t; r+1 5 ¢ r/2
Vo=1-(1= : -2 (1-— <
7 (t;) 1 (1 7'+1) (ti+1) —¢; (1 T+1> <0,

for 0 < t; < 2/3. After some algebraic manipulations we obtain the
derivative:

42 t; \/D1
() = 1-—
r+1 r+1
t;

(r/2)+1 _ .
X t; 1 ) A+ (4471)t; .
r+1 2(r+2)

Because 0 < 1 — (¢;/(r + 1)) < 1 we have

b2 G N\ At dr— (A4 )t
"(t’)srﬂ(l r+1> b1 r+1 2 (r+2)
_r(r+3) Lt (T/2)_1t' t._2('r+1)
T 2(r+1)? 41 ‘\" r+3
<0, (16)
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146 D. DEN HERTOG, C. ROOS, T. TERLAKY

for 0 < ¢; < 2/3. Since 7 (0) = 0 we obtain 7 (t;) < 0 for 0 < ¢; < 2/3.
Consequently, inequality (14) holds for ¢; < 2/3. Finally, substituting (13)
and (14) into (12) gives

§ (2, p) <6(x, w2 O

Note that if » > 1 then inequality (16) holds for ¢; < 1. Hence, if the rank
of the barrier is equal to or larger than 1, then the quadratic convergence
region is even wider: 6 (z, u) < 1.

Small-step path-following methods start at a nearly centered iterate and
after the parameter is reduced by a small factor, a unit Newton step is taken.
The following theorem shows that if the reduction factor is sufficiently small,
then the iterate is again nearly centered with respect to the new center. We

n

define By (z) as the barrier term E 1/z7. Note that B, (z) = || X~"/% €%

=1

Tueorem 1: Let 6 (z, p) < 1/2 and [ := (1 — 0) p, where § =
1/(9+/ By (z)), and % is defined as before, then 6 (Z, i) < 1/2.
Proof: Due to the definition of our measure we have

X/DH 5 (x, ) _x-r/2,

6 (-Ta i&) = \ {1
. X(r/2)+1’\5 (z, 1) x-7/2 ¢
1
| (X s e (1) xrr2e
1-6 p L=

AN

1
19 (5 (z, 1) + 0/ B, (x))
1 11 11
<— (=42 )==.
=19 (2 + 9) 16
Now we can apply the quadratic convergence result (Lemma 4)

s <o < (1) <L o
y M) S y M) S 16 9

The following lemma gives an upper bound for the difference in barrier
function value in a nearly centered point x and z (u).

Recherche opérationnelle/Operations Research
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LemMMA 5: If 6 := 6 (z, u) < 2/3 then
Fo o )= o (2 () ) S e
S o )= fr (@), W) S g T
Proof: The barrier function f; is conveQx in x, whence

fr(@+p, 1) > fr(z, w)+pl g
Now using that p = —H Y2 Pyp 1/ H"1/2 g,

pTg _ (H—1/2 g)T Hl/Zp
— _(g-2,\ e
()"

= 7 an

where the last equality follows from Lemma 2. Substitution gives

52
fT ($+p7 I“') Z fr (III, ﬂ')— 1"—-{-].—’
or equivalently
2
fr(zy, p) = fr (@ +p, p) < ——t

Now let 20 := z and let x°, x!, x2, ... denote the sequence of points

obtained by repeating Newton steps, starting at x°. Due to Lemma 4 we have
2i+1

Sz, pl <@, pt<... <8, (18)
Now we may write

o (@ 1) = fr (@ (m), w) =Y (fr (@' ) = fr (&1, 1))
=0
< i § (a, p)?

= r+1

1 oo
242¢
r+1 .2%(6)
=

1 §2
r4+1'1—62"

IA

A
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148 D. DEN HERTOG, C. ROOS, T. TERLAKY
The following lemma shows that taking a certain step in the Newton
direction gives a reduction in the barrier function value. We will use this

result for the long-step path-following method.

LemMma 6: For

Rl
Il

(1 + 6)—1/(7‘+1)]

we have

Afe = o (@ ) = fr (@ +Tp, ) 2 64+ 702 (1= (14 67/+D) > 0.

Proof: We write down the Taylor expansion for f;:

>
fr(@+ap, p)=fr(z, w)+ap’ g+ t,
k=2
where #; denotes the k-th order term in the Taylor expansion. From equation
(17) we have p? g = —6%/(r + 1) Using that, for k£ > 2,

— (—a)* (r+k-1)---(r+1) Z —r—k pk

we derive

k
k(""*‘k_ ~(r+1) |pi
ltk] < @ Z oD

. o k/2
k(r—i—k—l) (r+1) i
k! ; x(r/2)+l
C(as\ k-1 (r+1)
T \r+1 k! ’

So we find

1
fr(.'l'+01p, ﬂ)Sfr(-% H) aTl'(SZ

L1 Z (r+1)k (r+k—1)k-!--(r+l)r

3 1 5, 1 aé 1
= Jfr (@ p) ar+16_r_r+1+r(1—(a5/7‘+1))”
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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING 149

where the last equality holds if « 6 < r + 1. Hence

1 o, 1 af 1
fr(@ W)= fr(@tap, p) 2 e —=6 TR rA (s D)

The right hand side is maximal for

r+1 —1/(r
5 [1— (14 6)~Y0+),

Note that & 6 < r + 1. Substitution of this value finally gives

x =

Af2s+ T La— @+, (19)

The right hand side is zero for § = 0 and is an increasing function of 8.
Consequently

6+ Tfl (1= (1+8)7 D) > 0.
This proves the lemma. [J

The following lemma gives a lower and upper bound for the duality gap
in a nearly centered point.

Lemma 7: If 6 (z, p) < 1 then

u(Br @) - 6B, @) <" o~y (3, ) < o (B; (2) + 6v/B; (2)).

Proof: We have,

zT s (z, —(r
v s(z,p) | X~(/2) |2
u
_ (X_T/2 e)T (X(T/2)+1 s (.’L', [,L) _X_(r/2) e)
7
v (r/2)+1
< ||X—(r/2) el| “X “s (@, 1) x—/2) || = /B, (z) 6. (z) 6.
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150 D. DEN HERTOG, C. ROOS, T. TERLAKY

Consequently, since z7 s (z, ) = cI z — b7 y (z, p),

(B, (z) — 6+/B; ( )<c z — b7 y (z, p)
<u (B (@)+ wm).

In Appendix 2 it is shown that if x is approximately centered with respect
to # < pp < oo, then s (z, ) lies in a bounded region. Consequently,
we can scale the dual problem (D) such that s; (z, ) < 1,¢=1,..., n,
if 6 (z, u) < 1. (See Appendix 3.) This is use;i in the following lemma,

which shows that the barrier term B, (z) = Z 1/z{ is bounded in the

=1
neighborhood of the r-path. This result will zbe needed in the last two
lemmas of this section.

LemMma 8: Let § := 6 (z, p) < 1. Then

L 1D
o)

Proof: Recall from (4) that § = || X~7/2 (X"*! s (z, u)/u) — e)||. Let
$1,..., Sp denote the coordinates of s (x, u). Then it follows that

B, (2) = | X~ e|? < n [

s > pu(1 -2 6) > p-6)

Consequently, since s; < 1,

_ 1/(r+1)
T; > [LSQ] > [u(l- 5)]1/(r+1)_

From this it follows that

a

r/(r+1)
IX=C/D e < [ ]

n(1—6)
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The following lemma gives an upper bound for the difference in object
function value in a nearly centered point x and z ().

LemMA 9: If 6 := 6 (z, p) < 1, then

T po 1 /)
E m—cTﬂ?(H)lfm(l+\/_[ (1—5)] '

Proof: From (17) we have p” g = —62/(r + 1). On the other hand

c —r—
pngpT(;_X r 16)

T
4 __eTX—r—lp

u
So we have
ch__ 52 Tx—r 1
U r+1

or

2
T 6 T yv—r—1
= — X .
cp u( 1 +e p)

Using Cauchy-Schwarz’s inequality, we obtain

r— _,. —tr K
e X7 pl < X~ g X0/ e = = V/Br (@),

where the last equality follows from Lemma 2. From this we deduce that

lchlsM(i+ L VE®)

r+1 r+1

/1,5 1 r/(2(r+1))
(”f[ a9 '
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Again, let 20 := z and let x0, x!, 2, ... denote the sequence of points
obtained by repeating Newton steps startlng at x%. From (18) we have
6§ (', w) < 6. Consequently, we have

To—cla(p) = zo(c ot — T gt
< ij | P,
< g M(a: u) (1+«/ﬁ [u(l —51(g;i, u))]’”/@ (’”“)))
<5 e (v g )

/1'6 1 r/(2 (r+1))
SRSV (”f[ (1_5)} '

4. PATH-FOLLOWING ALGORITHMS

4.1. Short Steps

The analysis in the previous section suggest the following short-step
algorithm.

ALGORITHM 1:

Step 0: x:i= x° u := wy < (n/e)"*!, where x® and g satisfy
8 (2%, mo) < 1/2;

Step 1: if 27-s < ¢ then STOP;

Step 2: i := (1 (1/(9y/Br (2)))) 1

Step 3: ¢ = z + p;

Step 4: go to Step 1.

There are several papers which give transformations to obtain initial points
which are (approximately) centered with respect to the O—path. See e. g.

Renegar [17], Monteiro and Adler [15] and Gonzaga [8]. It is straightforward
to generalize these transformations for r-paths.
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THEOREM 2: Algorithm 1 stops after at most

o (v ()"w2)

iterations.

Proof- Let p; denote the barrier parameter and x* the iterate in the k-th
iteration. Theorem 1 implies that § := § (z, ux) < 1/2, where z := z*.

Hence, Lemma 8 gives that

o \ /(1)
B, (z)<n (—) .

223

Now, using Lemma 7 we obtain

r/(r+1)
2 ) < 3nullc/("'+l)

3 3

T

< = B < — .
z 3_2.U'k r(x)_zukn(uk
The algorithm stops if 27 s < e. So it certainly has stopped if

3nu,,1€/(r+l) <k,
or

€

m< ()" (20)

Hence, during the execution of the algorithm, we have that
px > (€/3n)™+1, whence

1 1 we\7/ (2 (r+1)) 1 € \7/2
s> o () e ()

9/B; (z) 9/n \ 2 13y/n \3n
Now note that the algorithm certainly stops if

pe=(1-60) po < (%)TH.

Taking logarithms, and using that —In (1 — ) > 6, we obtain that

r+1
k> % (ln (3?”) +1n HO)- @2n
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Now, using the assumption for yug in Step 0, we derive that after

o (v (2)"n2)

iterations the algorithm certainly stops. [

This upper bound for the total number of iterations is not polynomial in
the input length of the data for » > 0 . It also makes clear that if the rank of
the barrier r is small then the upper bound is better. If » = 0 then we obtain
the well-known complexity bound O (/7 |In €|), which is polynomial in the

input size. It is easy to verify that 7 = 0 corresponds to the logarithmic
barrier approach.

4.2, Long Steps
Now we state the long-step algorithm.

ALGORITHM 2:

Step 0: 2%, 11 := po < (n/e)™+1, where x0 and pg satisfy & (z°, po) < 1/2;
Step 1: if 7 s < € then STOP;

Step 2: 6 (z, p) < 1/2 then go to Step 5;

Step 3: z := z + & p, where & minimizes f, (z + ap, u);

Step 4: go to Step 2;

Step 5: u = 1/2p

Step 6: go to Step 1.

THEOREM 3: Algorithm 2 stops after at most
r
o (n (2) ln Zb—)
€ €

Proof: We denote the barrier parameter value in an arbitrary outer iteration
by 7i, while the parameter value in the previous outer iteration is. denoted
by . The iterate at the beginning of the outer iteration-is denoted by x.
Hence x is centered with respect to z (&) and & = (1/2)Z. Note that because
of Lemma 6 during each inner iteration the decrease in the barrier function
value is at least

1 r+1 3)7/(+)
A-—‘2'+ - (1—<§) > 0.
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Now let P denotes the number of inner iterations during one outer iteration.
Then we have

PA L fr (z, ﬁ) - fr(z (ﬁ)a ﬁ) (22)

Let us call the right hand side of (22) ® (z, 7i). According to the mean
value theorem there is a i € (%, &) such that

2@ =06 m+ TN G-, (23)

p=p
Let us now look at d® (z, u)/dp. We have

dfy (z, p) _ Tz
dp w2’

and

I

dfr (@) ) _ _cTzw)
dp p?
T
__¢c ;(u) +
'z (1)
ut
where the two last equations follow from (2) and (3). So

_Z i (u)’+1

T

K 1=1
TI TI
7

7

_d® (3, pu) Tzl z(p <|cT.1:—cj z ()]
- i _2 b
dp u=p I p=p 12

where the last inequality follows from the fact that 7z < j and from Lemma 1.
Substituting this into (23) gives

@ (z, 7)< @ (z, ) +

-z F@ —_
| < (®)| (- F)

m
T, T . (=
S@(z,ﬁH(lc o z (7)]

m

L2 @) —ch‘(ﬁN) (E_B) 24)
7}
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Because x is centered wit respect to & we have due to Lemma 5 and
§ (z, B) < 1/2,

1 1/4
r+1 1-(1/4)
Now note that due to Lemma 9 and 6 (z, %) < 1/2

- r/(2 (r4+1))
Tz — Tz ()] < (1+w7a(%) )

@ (z,m) < <1

K
r+1
Moreover,

7 2 (@) -z (B < 2@ -y (2 (@), B)
<7 B, ( (1)

1 r/(r+1)
<pni=
(z)

where the second inequality follows form Lemma 7 and the third inequality
from Lemma 8. Plugging all these upper bounds in (24) gives

r/(2 (r+1)) =
@(w,ﬁ)§1+%(ﬁ (1+\/ﬁ(2> )+n—ﬂl/(r+1)>(y'_=.fi).

7 [z

9 r/(2(r+1)) 1 r/(r+1)
<1+2 1+v%(ﬁ> +n(ﬁ)

1 r/(r+1)

From (20) it follows that the algorithm certainly stops if the barrier
parameter is smaller than p; < (¢/3n)"t!. Consequently from (25) we have

— 3n\"
®(z,n)<3+5n - -

Hence combining this with (22) gives that at most (1/A) (3+5n (3n/e)")
Newton steps are needed to return to the vicinity of the r-path. According to

(21) at most O(1In (n/€)) outer iterations (reductions of the barrier parameter)
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are needed. Hence after at most O(n (n/€)” In (n/€)) iterations the algorithm
ends up with an e-optimal solutions. [J

Again for 7 = 0 the result is exactly the same as obtained in many papers
for long-step logarithmic barrier methods. See e. g. Gonzaga [9], Roos and
Vial [19], and Den Hertog, Roos and Vial [3].

5. CONCLUDING REMARKS

We have developed path-following methods which use an inverse barrier
function. Under some assumptions we also derived upper bounds for the
total number of iterations. These bounds don’t give polynomiality for » > 0.

It is easy to verify that » = 0 corresponds to the logarithmic barrier
method and the results in this paper for » = 0 are similar to those obtained
in [3]. Lemma 6 for example gives a lower bounds for the reduction in the
barrier function value after a step in the Newton direction. For » = 0 we
have (using L’Hopital’s rule):

r+1
T

1= (148

o 6-}—1:&)1 r/(r+1)

1/(r +1)2 (1 4 8)/0+) 1n (1 4 6)

AfO > liﬁ)l 6+ (1 — (1 + 5)7‘/(7‘+1))

== 1/ +1)2
= 5—1In(1+96),

which is well-known for the logarithmic barrier method.

The derived upper bounds for the total number of iterations are increasing
in r. So, from the theoretical point of view, the logarithmic barrier method
(r = 0) seems to have the best performance.

In this paper we assumed that the primal feasible region is bounded and
has a nonempty interior. This assumption is necessary for the analysis of the
long-step algorithm. It is easy to verify that for the short-step algorithm it
is sufficient to assume that both the primal and the dual have a nonempty
interior.

Note that z () is not necessarily differentiable in 1 =0 when r > 0.
For the analysis given in this paper, this property was not necessary. But
sometimes (e. g. for extrapolation techniques) differentiability in p =0 is
required. This can easily be accomplished by raising p to the power r + 1 in
the barrier function (1). This has been proved by Fiacco and McCormick [5].
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APPENDIX

A.l. INTRODUCTION

The purpose of this Appendix is to present some elementary properties of
the primal and dual feasible region, hidden in the literature. Also the effect
of scaling will be discussed.

We introduce the following notations: ¥, and F; are the primal and dual
feasible regions respectively; .7-'2 and ]-'2 are the corresponding (relative)
interiors; ¥, and Fj are the corresponding optimal sets. We also introduce
the following primal/dual level sets:

Fp (0) = {z|z € Fp, T z < 0},
fd (0) = {Sl(y) .5‘) € Fd: bTy Z 0}7

and
F(0) :={(z, s)|lz € Fp, (v, 8) € Fg, L z —bT y < 0}.

We shall assume that both f},’ and ]—'2 are nonempty. Note that these
assumptions are less restrictive than the assumptions made in Section 2.
From these assumptions it is well-known from duality theory that both 7
and F; are nonempty.

A.2. BOUNDEDNESS OF 7, (¢), ; (¢) AND F (o)

Megiddo [14] showed that F, (¢) and F4 (o) are bounded; in particular
Fp and F are bounded. His proof uses the logarithmic barrier function. We
give another (more simple) proof, which uses Farkas’ lemma.

Lemma 10:
Fp (0) is bounded < Fo # 0

and
Fq (o) is bounded < ]:2 # 0.
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Proof: 1t is easy to see that

Fi (o) isbounded < {z|]Az =0, FTz<0,efz=12> 0} =0.

Using Farkas’ lemma this is equivalent with
{(w, m, VIATy—nec+rve<0,7>0,v>0}#0.
Evidentally, this is equivalent with
{(, m )|IATy+s=nc,s>0,n>0} £0.
Now there are two cases:

7 > 0, in which case (y/7, s/n) is dual feasible, and hence F9 # 0;

¢ 7 = 0, in which case we have a solution for the set {ATy+s =0,s > 0}.
This means that if (y, s) is in this set, then for arbitrary yo and A sufficiently
large we have that (yo + Ay, ¢ — AT yo + As) is an interior dual solution.
Consequently, F9 # 0.

On the other hand, if 70 # @ then
{(y, n, IATy+s=1nc, s>0,n>0} #0,
because it has a solution for n = 1. So, finally we conclude that

Fp (0) is bounded & FJ # 0.

In the same way it can be proved that
Fy(o)isbounded & FO £ 0. O

LemMa 11: F (o) is bounded.

Proof: Let z* denote the optimal value of problem (P). If (z, s) € F (o)
T

then ¢ 2 — z* < ¢ and z* — b7 y < o. So, it is obvious that
Fo)CFp (2" +0)x Fy(z* —o0).
From Lemma 10 it follows that both F, (2* + o) and F, (2* — o) are
bounded. Hence F (o) is bounded. O

A.2. BOUNDEDNESS OF s; (z, )

The following lemma shows that if x is approximately centered with
respect to p < pp < oo, then s (z, p) lies in a bounded region.
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LemMa 12: Let 6 (z, p) < 1/2 where p < po < oo. Then s; (z, p);
t = 1,..., n, are bounded from above.

Proof: A consequence of Lemma 7 is that

'z —b" y (e, p) <2p B, (z).
From Lemma 5 we derive that f, (z, u) — fr (z (1), 1) < 1/3. Thus
if follows that

1 Tz Ix
1 A 0))
3 B B

Combining these two inequalities gives

"B, (o) < +2 B, (z ().

.
Tz—bTy(z, p)<2 (gu—rcTrr+rcTrv(u)+uBr (-’v(u)))-
Now note that

T o) —cFz<clz(w—b"yu) =0

and from (2) it also follows that uB, (z (1)) = o (). Consequently, it
follows that

'z —b" y(a, M)S2(gu+(7“+1)0(u))-

From Lemma 1 we derive that the gap o (u) is decreasing along the
r-path. Hence we have that

2 2
@ s@) € 7 (5 wrz i o) € 7(5 w2010 (),
which was shown to be bounded in Lemma 11. O

A.3. SYMMETRICAL SCALING OF THE PROBLEM

From Appendix 2 we have that all s (x, p) for p < pp < oo lie in a
bounded region. Since the primal feasible region is bounded too, there exists
a & such that z; < k, for all primal feasible solutions, and s; (z, u) < &,
for all u < pg.

Recherche opérationnelle/Operations Research



INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING 161

Now consider the following symmetrical scaling of the primal and dual
problem

and

where

i=c/k, b=b/k, A=A

It is easy to verify that if x is primal feasible then Z; = z;/k < 1 is
feasible for (P). By definition we have

s(z,u)=c— AT (AH VAT Y AH Y (c— p X" e).

Consequently

5@ p)=¢—AAA YA YAH (- p X" e)
=c/k— AT (AH Y AT) YV AH Y (¢/r— TP XL e)
_ s (z, @)
=—"

Hence

M\ _ sz p)
s(a:, ,ir+2) = ~ <1

A4. EITHER THE PRIMAL OR THE DUAL INTERIOR IS UNBOUNDED

LemMmA 13: Either .7-"3 or ’]-'g is unbounded.

Proof: Suppose 7-'3 is bounded. Then

{zlAz=0,eTz=1,2>0}=0.

As a consequence of Farkas’ lemma we have that

{(y, AT y+ne<0,n>0}#0.
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if

This means that

{(, $)|AT y+s=0, 5 >0} #0.

Consequently, .7-'3 is unbounded. In the same way it can be proved that
F9 is bounded, then ]—'8 is unbounded. OJ
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