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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING (*)

by D. DEN HERTOG (X ) , C. ROOS (*) and T. TERLAKY (*)

Communicated by Pierre TOLLA

Abstract. - In the recent interior point methodsfor linear programming much attention has been
given to the logarithmic barrier method. In this paper we wilt analyse the class of inverse barrier
methodsfor linear programming, in which the barrier is Y2%~r, where r > 0 is the rank of the
barrier.

There are many similarities with the logarithmic barrier method. The minima of an inverse barrier
function for different values of the barrier parameter define a "central path " dependent on r, called
the r-path of the problem. For r [ 0 this path coincides with the central path determined by the
logarithmic barrier function. We introducé a metric to measure the distance ofafeasible point to a
point on the path We prove that in a certain région around a point on the path the Newton process
converges quadratically. Moreover, outside this région, taking a step into the Newton direction
decreases the barrier function value at least with a constant.

We will dérive upper bounds for the total number of itérations needed to obtain an e-optimal
solution. Unfortunately, these bounds are not polynomial in the input length. Only if the rank r
goes to zero we get a polynomiality resuit, but then we are actually working with the logarithmic
barrier method,

Keywords: Linear programming, interior point method, logarithmic barrier function, inverse
barrier function.

Résumé. - Dans les méthodes récentes par points intérieurs, l'attention a surtout porté sur la
méthode de barrière logarithmique. Nous analysons dans cet article la classe des méthodes de
barrière inverse, où la barrière est ^x~r, où r > 0 est le rang de ta barrière.

Il y a beaucoup de similitudes avec la méthode de barrière logarithmique. Les minima d'une
fonction de barrière inverse pour les différentes valeurs du paramètre de barrière définissent un
« chemin central » dépendant de r, appelé le r-chemin du problème. Pour r [ 0 ce chemin coïncide
avec le chemin central défini par la fonction de barrière logarithmique ; nous introduisons un e
métrique pour mesurer la distance d'un point réalisable à un point du chemin. Nous montrons que
dans une certaine région autour d'un point la méthode Newton possède la convergence quadratique.
En outre, en dehors de cette région, un pas dans la direction de Newton décroît la fonction de
barrière d'au moins une constante.
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136 D. DEN HERTOG, C. ROOS, T. TERLAKY

Nous donnons des bornes supérieures du nombre total d'itérations nécessaires pour obtenir une
solution optimale à c près. Malheureusement, ces bornes ne sont pas polynomiales par rapport à
la longueur des données. C'est seulement si le rang r tend vers zéro que nous obtenons un résultat
polynomial, mais alors nous travaillons en réalité avec la méthode de barrière logarithmique.

Mots clés : Programmation linéaire, méthode intérieure, fonction de barrière logarithmique,
fonction de barrière inverse.

1. INTRODUCTION

Karmarkar's [11] projective method has initiated the f ast developing field
of interior point methods for linear programming. Since then many different
interior point methods have been proposed» which appear to have several
similarities if one analyses them more carefully,

A well-known interior point method is the classical logarithmic banier
fimetion method, proposed by Frisch [7] and further developed by Fiacco
and McCormick [5]. In this method the nonnegativity constraints x% > 0
of the linear programming problem are replaced by an additional term
- / i 2 In X{ in the object function. Now letting the barder parameter ^
go to zero, one can prove convergence. Moreover, in the case of linear
programming polynomiality can be proved. See Gonzaga [8] and [9], Roos
and Vial [18] and [19], and Den Hertog, Roos and Vial [3].

Besides this logarithmic banier method there are other well-known barrier
methods. Canoll [1] proposed the socalled inverse barrier method, in which
the barrier function is J2 XÏX* This method was further developed by Fiacco
and McCormick [5] and implemented by McCormick et ah [13] in the
SUMT-2 and SUMT-3 codes. Kowalik [12] described the quadratic inverse
barrier method, in which the barrier function is Yl X7^ • Fletcher and McCann
[6] elaborated this idea.

More recently, Ericsson [4] studied the socalled entropy barrier method.
Polyak [16] studied some modifications of classical barrier methods. But both
didn't obtain upper bounds for the number of itérations: only convergence
has been proved.

In the recent papers on interiot point methods for linear programming
only the logarithmic barrier method has been studied thoroughly. So the
natural question arises if it is possible to construct effective methods based
on other barrier functions. Is it also possible to prove polynomiality for
such a method?

In this paper we will analyse the classical inverse barrier function method,
which uses Y^XJT ( r > 0) as a banier. The approach resembles the
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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING 137

logarithmic barrier approach in Den Hertog, Roos and Vial [3]. The minima
of the barrier function again form a path, called the r-path, which is of
course different form the "central path" determined by the logarithmic barrier
function. As in the logarithmic barrier case we define a metric to measure the
distance of a feasible point to this path, and we will prove that within some
région the Newton method is quadratically convergent. Outside this région we
can prove that taking a step in the Newton direction results into a decrease
in the barrier function value. Of course, the present Newton direction is
different from the Newton direction for the logarithmic barrier function.

Unfortunately, we are not able to prove polynomiality. Under some
assumptions we will prove that the total number of itérations to obtain
an e-optimal solution is bounded by

dependent on the updating of the barrier parameter. In each itération a linear
System has to be solved. If r goes to zero then we will show that the method
reduces to the logarithmic barrier method, which has the complexity bounds

and

(see Gonzaga [9] and Den Hertog, Roos and Vial [3]).
The paper is organized as follows. In Section 2 we do the preliminary work.

Then, in Section 3 we prove some properties of nearly centered points and
we dérive a lower bound for the decrease in the barrier function value after
a step in the Newton direction. In Section 4 we will state our algorithms and
dérive upper bounds for the total number of itérations. Finally, in Section 5
we end up with some concluding remarks.

Notation: Given an rc-dimensional vector x we dénote by X the n x n
diagonal matrix whose diagonal entries are the coordinates Xj of x ; xF is
the transpose of the vector x and the same notation holds for matrices. The
identity matrix is denots by / and the all-one vector by e. Finally ||a;|| dénotes
the h norm and ||#||oo the Zoo norm of x.

2. INVERSE BARRIER FUNCTION AND r-PATHS

Consider the primai linear programming problem:

(P) min{cT x : Ax = b, x > 0}.

vol. 28, n° 2, 1994



138 D. DEN HERTOG, C. ROOS, T. TERLAKY

Hère A is an m x n matrix, b and c are m- and n-dimensional vectors
respectively; the n-dimensional vector x is the variable in which the
minimization is done. The dual formulation for (P) is:

(D) max {bT y : AT y + s = e, 5 > 0}.

We assume that the feasible set of (P) is bounded and has a nonempty
relative interior. In fact we make the stronger assumption that ail primai
feasible variables are bounded form above by 1. It is easy to see that this
can be accomplished by scaling the original problem. (See Appendix 3.) This
assumption is trivially fulfilled if one of the equality constraints A x = b is
the "simplex constraint" eT x — 1, as Karmarkar [11] assumed in his paper.
In order to simplify the analysis we shall also assume that A has full rank,
though this assumption is not essentiaL

Since the primai feasible région is bounded, the dual feasible région is
unbounded. (See Appendix 4.) But we will show that the dual slack variables
which we need in the analysis lie in a bounded région. (See Appendix 2.)
Hence, by scaling, we can assume that those variables are bounded from
above by 1 too. (See Appendix 3.)

To the primai problem we associate the following inverse barrier function

~~ a r 4~^ xT>*
i=l l

We call r the rank of the barrier function.
The first and second order derivatives of this function are:

H := V2 fr (ar, M) = (r + 1) X^r~2.

Hence it follows that fr (xy /z) is strictly convex on its relative interior.
This means that there exists a unique minimum. The Karush-Kuhn-Tucker
conditions for this minimum are

AT y + s = c, s > 0, 1
,4 a; = 6, x > 0, > (2)

Xr+l s = iie. J
The unique solution of this System of équations is denoted by x (/x) and

(y (fi), s (/i)). The set of solutions for fx > 0 is called the r-path. Note
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INVERSE BARRIER METHODS FOR LINEAR PROGRAMMING 139

that the O-path is exactly the central path which has been analysed by many
researchers during the last years (e. g. Megiddo [14]). The minimum of
fr (x, fi) for fi — oo is called the r-center of the polytope. Hence, the r-path
starts at the r-center.

It is straightforward to generalize the inverse banier function fr (#, fj,)
for the dual problem. In Figure 1 we have drawn several r-paths for
2-dimensional dual problems. Figure La shows several r-paths for the
following problem:

, 5
max -y\ + -y%

- 1 < 2/1, 2/2 < 1

2/1 - 2/2 < 1
3 4 3

Figure l.b shows r-paths for the same problem, with the objective replaced
by - 3 y i + 4.1 y2.

Note that, loosely speaking, coming into the neigborhood of the boundary
is more penalized if the rank is large. This effect can indeed be seen in
Figure 1. In Figure l.b, for example, a large part of the O-path is very
close to one of the constraints, whereas the higher order paths approach the
optimum more from the interior! So, using higher order barriers might be
an advantage for (almost) degenerate problems.

Note that the "limit path" (the path for r —> oo) is piecewise linear.
Moreover, this limit path is only dependent on the constraints and the
optimum. For example, in Figure \.a and l.b the 50-path for both problems
(which only differ in the objective) are almost the same.

Without going into details we note that (under nondegeneracy) this
piecewise linear path is in f act Huard's [10] path of centers for his special
"quasi distance" function. This path was recently further analysed by White
[21]. Moreover, if the columns of A have length 1, then this path also
coincides with the "locus of centers" studied by Tamura et al. [20]. They
proved that following this piecewise linear path corresponds to a primai
simplex method.

The next lemma deals with monotonicity of the objective along the r-path.

LEMMA 1: The objective cT x (//) of the primai problem (P) is monotonically
decreasing and the objective bTy(fj) of the dual problem (D) is monotonically

vol. 28, n° 2, 1994



140 D. DEN HERTOG, C. ROOS, T. TERLAKY

Figure 1. — r-Paths for r = 0, 1, 2, 5, and 50, from the left to the right respectively.

increasing if \i decreases. Moreover, if cT x is not constant on the primai
feasible région, then cT x (/x) is strictly decreasing, and ifb^O then bT y (/z)
is strictly increasing.

Proof: Using that x (/i) and y {JJL) satisfy (2) and taking derivatives with
respect to \x we obtain

ATyl + a' = 0,
(3)

r + 1 s ' + (r + 1) X r Sxf = e,

where primes refer to derivatives with respect to /z. Now, using the relations
of (2) and (3), we find

cT x' = (x'f (s + ATy) = (x')T s = eT (Sx')
= (Xr+l s' + (r + 1) Xr Sx'f Sx'
= /x (x'f s' + (r + 1) (x'f S2 Xr x' = (r + 1) (a/)T S2 Xr x' > 0,

where the last equality follows because (xf)T s! = —(Ax/)Ty/ — 0. This
proves that cT x (fj,) is decreasing along the path. Moreover, since S2 Xr is
positive definite, cT xf — 0 if and only if x{ = 0. If xl = 0 then from (3) we
have X r + 1 s' = e or [is1 — s. This means that

c = AT y + s = AT y + M s' = AT (y - \i y1).
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So, in this case c is in the row space of A9 which means that cT x is
constant on the feasible région. Consequently, cT x (/x) is strictly decreasing
if cT x is not constant on the feasible région.

Now we multiply the last equality of (3) by AS~l X~r:

AS'1 Xs' + (r + l)Aa/ = AS'1 X~r e,

which reduces to AXT+2 s! = b. Taking the inner product with ƒ results into

bT y' = (y'f AX^2 s' = (AT y'f Xr+2 s' = -(s'f Xr+2 s' < 0.

This proves that bT y (/x) is increasing along the path. Moreover, since
Xr+2 is positive definite, bT y1 = 0 if an only if s' = 0. If sf = 0 then from
(3) we have (r + 1) Xr Sxf = e or /x (r 4-1) x! = x. This means that

b = A x = IJL (r + 1) A x1 - 0.

Consequently, bT y (/x) is strictly increasing along the path if b ̂  0. This
complètes the proof of the lemma. D

3. PROPERTTES NEAR THE r-PATH

We introducé the following measure for the distance of an interior feasible
point to the r-path:

:ATy + s = c\. (4)

This measure will appear to be an appropriate one. The unique solution
of the minimization problem in the définition of 6 (x, fi) is denoted by
(y (ir, jz), s (x, //)). It can easily be verified that

x — x (fi) <$ 6 (x, fi) = 0 O 5 (a:, /x) = 5 (jx).

The next lemma states that there is a close relationship between this
measure and the projected Newton direction p (x, /x) with respect to the
barrier function, which is obtained from

y e Rm. (5)
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A closed-form formula for p (x, //) is given by

(6)

where PAH-1/2 dénotes the orthogonal projection onto the null space of the
matrix AH~ll2.

LEMMA 2: For given x and /i, 6 (x, /x) = \Jr + 1 \\Hll2 p (x, //)||.

Proof: From (6) we have

p (x, /x) = - H-1'2 (I - H-1'2 AT (AH~l AT)-1 AH~ll2)

x H-W (£ _ x~r-A e.

Now it is easy to dérive that y/r + lp (x, /i) can be written as H~1I2 q,
where

Q =

with

and

5 = c — A y

' 1y = V (AH'1 A r ) - 1 Aff"1 g.

On the other hand it can be verified that

5 (x, /i) = c - /xAT (Ai /" 1 AT)~1

Consequently, s = 5 (x, /i) and

(7)

(8)

(9)

IMI = X r / 2 / _ X^3(X;/X)A

This proves the lemma. D

Note that ||Jff1/2p|| = y/pTHp := ||p||ja-. This measure ("the Hessian
norm of the Newton direction") already appeared in many other papers (e. g.
Den Hertog et al [2, 3]).
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The Newton direction (6) is different from search directions used by other
interior point methods: instead of the matrix AX2 AT it uses the matrix
AXT+2 AT, so the scaling is different. In the sequel of the paper we will
write p instead of p (x, /x).

Now we will prove some fondamental lemmas, which will be used in the
following section to obtain upper bounds for the total number of itérations.

LEMMA 3: Ifô := 6 (x, /x) < 1 then y := y (x, fj) is dual feasible.

Proof: By the définition of 5 (#, fj,) we have

feiüU) < 1. (10)

Because x is feasible we have (due to our assumption) x% < 1. Using
this in (10) we get

s (x,
- e < 1.

This implies s (x, /x) > 0, so y (a;, /x) is dual feasible. D
Note that (7) gives an explicit expression for the Newton direction:

where s = s(x, /x). Hence the new point x af ter a full Newton step is given by

r + 2 1 Xr+2s
X = X + p = XX •

r + 1 r+1 fi,

Now we state our quadratic convergence resuit.

LEMMA 4: If 6 (x, fï) < 2/3 then x is strictly feasible, Moreover,
(x, M) < 8(x, //)2 .

Proof: In the proof we make use of the vector t defined by

t = X^1 s (x, M) C

Note that

= x ^—Xt = X (e ^zrt\
r + 1 V r + ! /

(11)

vol. 28, n° 2, 1994
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From 6 (x, /x) < 2 /3 we deduce that - 2 / 3 <U< 2 /3 . So x is strictly
feasible.

The définition of 5 (x, fi) implies the following:

6 (rr, /x) = r-r/2

Using (11) we find

^1 s (x,
_

6 —

— e

— e

A*
r+l

Let us call the right hand side vector q (t). So

o

rl2Xr X-rT2T-2q(t)\\
(12)

Note that

The proof will be completed by showing that

Note that

(13)

(14)

= max
t2 (1 - (l/(r + 1)) tip

(15)
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Remember that - 2 / 3 <U< 2/3. Now we continue by evaluating (15).
First note that (1 - ( l / ( r + 1)) ti)r+l (U + 1) is less than 1 (it has its
maximum for U = 0). Moreover, using Lagrange's remainder formula with
respect to tt we thus have

o < ï - ( i - ^ t^J (u +1) = ï - (1 - u + 72 ^ *?) (*• +1),

where 0 < 7 < 1. This means that

r+l/ i

1 " ( 1 ~ — ^

Now substituting this into the right hand side of (15), we get

which implies (14) if t{ < 0. Now we will prove that inequality (14) also
holds for 0 <ti < 2/3. Note that it suffices to show that

r/2

for 0 < U < 2/3. After some algebraic manipulations we obtain the
derivative:

Because 0 < 1 - (U/(r + 1)) < 1 we have

( i \ ( lr + 1 V, r + l) ^ ^ r + i 2 (r + 2)

(r +r(r + 3) / ti \ W 2 H / 2(
"2(r+l)2 V M 1 ! ; V ~^
< 0, (16)
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146 D. DEN HERTOG, C. ROOS, T. TERLAKY

for 0 < U < 2/3. Since r\ (0) = 0 we obtain r? (U) < 0 for 0 < U < 2/3.
Consequently, inequality (14) holds for U < 2/3. Finally, substituting (13)
and (14) into (12) gives

6(x, fi) < 6(x, /z)2. D

Note that if r > 1 then inequality (16) holds for U < 1. Hence, if the rank
of the barrier is equal to or larger than 1, then the quadratic convergence
région is even wider: 6 (x, /x) < 1.

Small-step path-following methods start at a nearly centered iterate and
after the parameter is reduced by a small factor, a unit Newton step is taken.
The following theorem shows that if the réduction factor is sufficiently small,
then the iterate is again nearly centered with respect to the new center. We

n
define Br (x) as the barrier term ^ l/xr

%. Note that BT (x) = | |X" r / 2 e||2.

THEOREM 1: Let 6 (x, fx) < 1/2 and \x \— (1 - 9) ji, where 6 =
/(9^/Br (#)), and x is defined as before, then 6 (x, A) < 1/2.

Proof: Due to the définition of our measure we have

6 (x, /x) =

1 - (1/9) V2 + 9) ~ Ï6"

Now we can apply the quadratic convergence resuit (Lemma 4)

The following lemma gives an upper bound for the différence in barrier
function value in a nearly centered point x and x (//).
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LEMMA 5: If 6 := 8 (x, fi) < 2/3 then

A (^ )_M l W , ( , ) Ê_i__iL,
Proof: The banier function fr is conveQx in x, whence

fr (x + p, //) > fr (x, n) + pT g.

Now using that p = -H~ll2 PAH-ui H~ll% g,

H-wpy
62

(17)
r + 1'

where the last equality follows from Lemma 2. Substitution gives

82

or equivalently

fr (x, /i) - /r (X + p, /X) < ^ - y .

Now let x° :— x and let JC°, X1, X2, . . . dénote the séquence of points
obtained by repeating Newton steps, starting at x°. Due to Lemma 4 we have

8{x\ fi)2 <8{xi~1, ii)4 < ...<62%+1. (18)

Now we may write
oo

fr (ar, fl) - fr (x (fl), M) = $ 3 (fr
t=0
oo r .

E (*2)21

D

vol. 28, n° 2, 1994
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The following lemma shows that taking a certain step in the Newton
direction gives a réduction in the barrier function value. We will use this
resuit for the long-step path-following method.

LEMMA 6: For

we have

a — [1-(1 +

Afr := fr (X, ll)-fr(x 0.

Proof: We write down the Taylor expansion for fr:

fr {x + a p, fj,) = fr{x, n) T

k=2

where ^ dénotes the k-ih order term in the Taylor expansion. From équation
(17) we have pT g = -62/{r + 1). Using that, for k > 2,

we dérive

<ah (r + fc - 1) • • • (r + 1)

\Pi\

Jfe!

= (—V
1=1

fc/2

(r + fc - 1) • • • (r + 1)
fc!

So we find

fr (x + a p, /i) < fr (rr, fi) - a

k ( , i

k=2 fc!
r , x 1 2 ! ^ ^

r + 1 r r + 1 r (1 - (a 6/r + l))r
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where the last equality holds if a 6 < r + 1. Hence

+y ~ r + 1 r r + 1 r (1 - (a 6/(r + l)))r

The right hand side is maximal for

_ r + 1
OL —

Note that a 6 < r + 1. Substitution of this value finally gives

Afr > 6 + r-±± (1 - (1 + ô)rttr+% (19)

The right hand side is zero for 6 = 0 and is an increasing function of 6.
Consequently

This proves the lemma. D

The following lemma gives a lower and upper bound for the duality gap
in a nearly centered point.

LEMMA 7: If 6 (rc, /x) < 1 then

(BT (X) - 6^Br (x)) < cT x - bT y (x, fx) < /JL [BT (X) +

Proof: We have,

x

(a:)

vol. 28, n° 2, 1994
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Consequently, since xT s (ar, //) = cT x — bT y (ar,

fi (Br (x) - 6y/Br (re)) <cTx-bTy

< /i ( S r (x) + Sy/Br {%)) . •

In Appendix 2 it is shown that if x is approximately centered with respect
to /i < /io < oo, then 5 (x, /x) lies in a bounded région. Consequently,
we can scale the dual problem (D) such that s, (ar, //) < 1, i = 1 , . . . , n,
if 5 (x, /x) < 1. (5ee Appendix 3.) This is used in the following lemma,

n
which shows that the barrier term BT (ar) = ^ l /x[ is bounded in the

i l

neighborhood of the r-path. This result will be needed in the last two
lemmas of this section.

LEMMA 8: Let 6 := 6 (x, /x) < 1. Then

Proof: Recall from (4) that S = | |X- r /2 ( (X r + 1 s (ar, ft)/ft) - e)||. Let
s i , . . . , sn dénote the coordinates of s (x, fi). Then it follows that

xr
i
+1si>»(l-xr

i
/26)>fM(l-6)

Consequently, since Si < 1,

From this it follows that
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The foUowing lemma gives an upper bound for the différence in object
function value in a nearly centered point x and x (fx).

LEMMA 9: If 6 := 6 (x, /JL) < 1, then

W(2(r+1))\

)

Proof: From (17) we have pT g = -S2/(r + 1). On the other hand

= — - - e x A ' x p.

So we have

or

>!>)

Using Cauchy-Schwarz's inequality, we obtain

\eT X-r-* p\< ÏÏX-r'i-i p\\ \\X-M e||

where the last equality follows from Lemma 2. From this we deduce that
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Again» let x° := x and let x°, xl, x2, . . , dénote the séquence of points
obtained by repeating Newton steps, starting at x°. From (18) we have
S (x% n) < 62\ Consequently, we have

c x — cTx(fj,)\ =
t=0
oo

i=0

<

(j.6

r

r/(2

r/(2 (r+l))>

4. PATH-FOLLOWING ALGORITHMS

4.1. Short Steps

The analysis in the previous section suggest the following short-step
algorithm.

ALGORTTHM 1:

Step 0: JC:= x°, satisfy:= /J,Q < (n /e ) r + 1 , where x° and
6 (x°, /io) < .1/2;

Step 1: if x T s < e then STOP;

Step 2: M := (1 - (l/(9y/W(x)))) P\

Step 3: x := a: + p;

Step 4: go to Step L

There are several papers which give transformations to obtain initial points
which are (approximately) centered with respect to the O-path. See e. g.
Renegar [17], Monteiro and Adler [15] and Gonzaga [8]. It is straightforward
to generalize these transformations for r-paths.
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THEOREM 2: Algorithm 1 stops after at most

O ^ (=)"•>.=)

itérations.

Proof: Let \i^ dénote the barrier parameter and ^ the iterate in the k-th
itération. Theorem 1 implies that 6 :— 6 (x, /z&) < 1/2, where x :— xk.
Hence, Lemma 8 gives that

f 2 r/(r+l)

Br(x)<n[ — )

Now, using Lemma 7 we obtain

xT s < I ̂ fc Br (x) <l„kn fl_

The algorithm stops if xT 5 < e. So it certainly has stopped if

r+V < e,

or

s (é)'+1- (20)

Hence, during the exécution of the algorithm, we have that
fc > (e/3n)r+1, whence

> _

Now note that the algorithm certainly stops if

Taking logarithms, and using that - In (1 — 6) > 0, we obtain that

A:> - f In f - ^ J +lnMo)- (21)
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Now, using the assumption for fiQ in Step 0, we dérive that after

itérations the algorithm certainly stops. D
This upper bound for the total number of itérations is not pojynomial in

the input length of the data for r > 0 . It also makes clear that if the rank of
the barrier r is small then the upper bound is better. If r = 0 then we obtain
the well-known complexity bound O (y/n |ln e|), which is polynomial in the
input size. It is easy to verify that r = 0 corresponds to the logarithmic
barrier approach.

4.2. Long Steps
Now we state the long-step algorithm.

ALGORTTHM 2:

Step 0: x°, \h := //0 < (n/e)r+1, where x° and /x0 satisfy 6(x°, /zo) < 1/2;
Step 1: if xT s < e then STOP;
Step 2: 6 (x, /x) < 1/2 then go to Step 5;
Step 3: x := x + â p, where à minimizes fr (x + a p , /x);

Step 4: go to Step 2;
Step 5: jjb := 1/2 /z
Step 6: go to Step 1.

THEOREM 3: Algorithm 2 stops after at most

o

itérations.
Proof: We dénote the barrier parameter value in an arbitrary outer itération

by /Z, while the parameter value in the previous outer itération is denoted
by JI. The iterate at the beginning of the outer itération^ is denoted by x.
Hence x is centered with respect to x(Jï) and /! = (l/2)/I. Note that because
of Lemma 6 during each inner itération the decrease in the barrier function
value is at least

r/(r+l)\
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Now let P dénotes the number of inner itérations during one outer itération.
Then we have

< / r ( x , M) - (22)

Let us call the right hand side of (22) $ (x, /i). According to the mean
value theorem there is a jl G (7Z, fi) such that

Let us now look at d$ (ar, ^)/dfi. We have

d/r (x, /x) CT X

(23)

and

(ar (/i), IJL) _ c T ar (/x) c

C X (fJb) CT X 8 X

where the two last équations follow from (2) and (3). So

d fi

cT x — cT x (/x) |cT x — cT x (fi)\
=2

where the last inequality follows from the fact that fi < fi and from Lemma 1.
Substituting this into (23) gives

(x, 7Z) < $ (x,
\cT x — cT x (a

( i T T
\C X — C X

=

\cT x (JL) — cT x (~
(24)

vol. 28, n° 2, 1994



156 D. DEN HERTOG, C. ROOS, T. TERLAKY

Because x is centered wit respect to /J we have due to Lemma 5 and
S (x, 5) < 1/2,

Now note that due to Lemma 9 and 6 (x, JI) < 1/2

Moreover,

\cT x (7Z) - cT x (p)\ <cTx (M) - bT y {x (/i),

where the second inequality follows form Lemma 7 and the third inequality
from Lemma 8. Plugging all these upper bounds in (24) gives

« 2Nr/(2(r+l))

/ 1 \ r/(r
( - )
/ 1 \ / ( )

< 3 + 5 n ( - ) (25)

From (20) it follows that the algorithm certainly stops if the barder
parameter is smaller than ^ < (e/3n) r + 1 . Consequently from (25) we have

Hence combining this with (22) gives that at most ( l /A) (3+5 n (3 n/e)r)
Newton steps are needed to return to the vicinity of the r-path. According to
(21) at most O (In (n/e)) outer itérations (réductions of the barrier parameter)
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are needed. Hence after at most O(n (n/e) r In (n/e)) itérations the algorithm
ends up with an e-optimal solutions. D

Again for r — 0 the result is exactly the same as obtained in many papers
for long-step logarithmic barrier methods. See e. g. Gonzaga [9], Roos and
Vial [19], and Den Hertog, Roos and Vial [3].

5. CONCLUDING REMARKS

We have developed path-following methods which use an inverse barrier
function. Under some assumptions we also derived upper bounds for the
total number of itérations. These bounds don't give polynomiality for r > 0.

It is easy to verify that r = 0 corresponds to the logarithmic barrier
method and the results in this paper for r = 0 are similar to those obtained
in [3]. Lemma 6 for example gives a lower bounds for the réduction in the
barrier function value after a step in the Newton direction. For r = 0 we
have (using L'Hôpital's rule):

A/o > lim \S + —!— (1 - (1 + 6)r/

no I r

r/(r + 1)

c v l / ( r + l ) 2 (1 + (5)r/(r+1) In (1 + 6)
= o — l im — w5

no l/(r-fl)2

= 6- In (1 + 6),

which is well-known for the logarithmic barrier method.
The derived upper bounds for the total number of itérations are increasing

in r. So, from the theoretical point of view, the logarithmic barrier method
(r = 0) seems to have the best performance.

In this paper we assumed that the primai feasible région is bounded and
has a nonempty interior. This assumption is necessary for the analysis of the
long-step algorithm. It is easy to verify that for the short-step algorithm it
is sufficient to assume that both the primai and the dual have a nonempty
interior.

Note that x (M) is not necessarily differentiable in \i — 0 when r > 0.
For the analysis given in this paper, this property was not necessary. But
sometimes (e. g. for extrapolation techniques) differentiability in fx = 0 is
required. This can easily be accomplished by raising /x to the power r + 1 in
the barrier function (1). This has been proved by Fiacco and McCormick [5].
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APPENDIX

A.l. INTRODUCTION

The purpose of this Appendix is to present some elementary properties of
the primai and dual feasible région, hidden in the literature. Also the effect
of scaling will be discussed.

We introducé the following notations: Tv and T& are the primai and dual
feasible régions respectively; T^ and T\ are the corresponding (relative)
interiors; T^ and T\ are the corresponding optimal sets. We also introducé
the following primal/dual level sets:

Fp (a) := {x\x e Tp, c
T x < a},

Fd (<r) := {3.|(y, s) E Tà% bTy> a} ,

and

.F (<r) :={(*, s)\xtTv, (y, s) e Td, cTx-bTy<a}.

We shall assume that both J^ and T\ are nonempty. Note that these
assumptions are less restrictive than the assumptions made in Section 2.
From these assumptions it is well-known from duality theory that both J7^
and T*d are nonempty.

A.2. BOUNDEDNESS OF Tv (a), Té (a) AND T (er)

Megiddo [14] showed that !FP (a) and T& (a) are bounded; in particular
T^ and T\ are bounded. His proof uses the logarithmic banier function. We
give another (more simple) proof, which uses Farkas' lemma.

LEMMA 10:

Tv (a) is bounded <& T°d ^ 0

and

Tà (a) is bounded & J^ ^ 0.
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Proof: It is easy to see that

Td (a) is bounded O {x\A x = 0, cT x < 0, eT x = 1, x > 0} = 0.

Using Farkas' lemma this is equivalent with

{(y} r/, v)\AT y-rjc + ve < 0, 77 > 0? v > 0} ̂  0.

Evidentally, this is equivalent with

, 77, v)\AT y + s = rj c, s > 0, r? > 0} / 0.

Now there are two cases:

• 7} > 0, in which case (y/77, 5/77) is dual feasible, and hence T\ ^ 0;

• 77 = 0, in which case we have a solution for the set {ATy+s = 0, 5 > 0}.
This means that if (y, s) is in this set, then for arbitrary yo and A sufficiently
large we have that (yo + Ay, c — AT yo + As) is an interior dual solution.
Consequently, ^ ^ 0.

On the other hand, if T\ + 0 then

{(y, v, v)\AT y + s = ri c, s > 0, 77 > 0} ^ 0,

because it has a solution for 77 = 1. So, finally we conclude that

Tv (a) is bounded <£> J^ ^ 0.

In the same way it can be proved that

Fd (a) is bounded O J^ ^ 0. D

LEMMA 11: ƒ" (a) w bounded.

Proof: Let z* dénote the optimal value of problem (P). If (x, 5) G J7 (a)
then cT or - z* < a and z* - bT y < a. So, it is obvious that

T (a) Ç Tv (z* +a)*Fd (z* - a).

From Lemma 10 it follows that both Tv (z* + a) and Tv (z* — a) are
bounded. Hence T (a) is bounded. D

A.2. BOUNDEDNESS OF s* (a;, p)

The following lemma shows that if x is approximately centered with
respect to /x < fiQ < 00, then s (x, /x) lies in a bounded région.
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LEMMA 12: Let 6 (x, fi) < 1/2 where \x < /xo < oo. Then Si (x, /x);
i = 1 , . . . , n, are bounded from above.

Proof: A conséquence of Lemma 7 is that

cT x - bT y (x, /x) < 2 /x Br (x).

From Lemma 5 we dérive that fr (x, //) — fr (x (M)? M) ^ 1/3. Thus
if follows that

1 _ , x 1 cT x cT x (a) 1 „ / / Nv- 5 r x) < + ^ + - S r (x M))•
r 3 fi il r

Combining these two inequalities gives

cT x — bT y (x, IJL) < 2 ( - // - rcT x + rcT x (jx) + /xSr (x (AO) V

Now note that

c x (/x) — c x < c x (/x) — & y (/x) —: a (/x)

and from (2) it also follows that [iBr (x (/x)) = a (/x). Consequently, it
follows that

cT x - bT y (x, fi) < 2 ^ M + (r + 1) a (/

From Lemma 1 we dérive that the gap a (/x) is decreasing along the
r-path. Hence we have that

(x,5(x,/x)) G r(^- M+2 (r + 1) a (/x)j Ç J ^ ^ M + 2 (r + 1) a (/xo)Y

which was shown to be bounded in Lemma 11. D

A.3. SYMMETRICAL SCALING OF THE PROBLEM

From Appendix 2 we have that all 5 (x, /x) for \i < /xo < oo lie in a
bounded région. Since the primai feasible région is bounded too, there exists
a K such that XJ < K, for all primai feasible solutions, and s% (x, JJL) < K,
for all /x < /xo.
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Now consider the following symmetrical scaling of the primai and dual
problem

(P) min{cr x : A x — 6, x > 0},

and

(D) max {bT y : ÂT y + s = c, 5 > 0}.

where

c = C/K, b = 6/K, A — A.

It is easy to verify that if x is primai feasible then xi — X{JK < 1 is
feasible for (P). By définition we have

s (x, M) = c - AT (Ai/" 1 AT)-X A^f-1 (c - fi X-r-x e).

Consequently

5 (£, M) - c - A {AH-1 A7)'1 ÂH~l (c - jl X'^1 e)

= c/« - AT ( A ^ " 1 A^2')"1 A i f 1 (c/«: - /iKr+1 X" ' ' " 1 e)

_ 5 (X, flKr+2)

Hence

A.4. EITHER THE PRIMAL OR THE DUAL INTERIOR IS UNBOUNDED

LEMMA 13: Either J^ or T\ is unbounded.

Proof: Suppose J^ is bounded. Then

{x\A x = 0, eT x = 1, x > 0} = 0.

As a conséquence of Farkas' lemma we have that

{(y, r
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This means that

Consequently, J^ is unbounded. In the same way it can be proved that
if J ^ is bounded, then J® is unbounded. D
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