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GENERALIZED ORDERING POLICIES WITH GENERAL RANDOM
MINIMAL REPAIR COSTS AND RANDOM LEAD TIMES (*)

by Shey-Huei Sueu (1) and Ching-Tien Liou (?)

Communicated by Shunji Osax1

Abstract. — In this article we consider two generalized ordering policies for a complex system with
age-dependent minimal repair and general random repair costs. Introducing costs due to ordering,
repairs, shortage and holding, we derive the expected cost per unit time in the long run as a
criterion of optimality and seek the optimum ordering policies by minimizing that cost. We show
that, under certain conditions, there exists a finite and unique optimum policy. Various special cases
are discussed. Finally, a numerical example is given.

Keywords: Ordering, repair, maintenance, reliability.

Résumé. — Nous considérons dans cet article deux politiques généralisées pour un systéme
complexe avec coiits de réparation minimal dépendant du vieillissement et coits de réparation
généraux aléatoires. Introduisant les coilts dus aux réapprovisionnements, aux réparations, a la
pénurie, et a I'immobilisation, nous en déduisons le coit moyen par unité de temps comme critére
d’optimalité, et cherchons les politiques de réapprovisionnement optimales par minimisation de ce

coiit. Nous montrons que, sous certaines conditions, il existe une politique optimale finie. Nous
examinons divers cas spéciaux. Nous terminons avec un exemple numérique.

Mots clés : Réapprovisionnement, répartition, maintenance, fiabilité.

1. INTRODUCTION

It is of great importance to avoid the failure of complex system during
actual operation when such an event is costly and/or dangerous. In such
situation, one important area of interest in reliability theory is the study
of various maintenance policies in order to reduce the operationg cost and
the risk of a catastrophe. Many preventive maintenance policies have been
proposed and discussed (see e.g., [3 to 6]). In particular, a replacement
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98 S.-H. SHEU, C.-T. LIOU

policy [7 to 10, 18, 19] is of great interest. In such a replacement policy
it is generally assumed that there are an unlimited number of spare units
available for replacement. However, it might not be true on some occasions.
For instance, it is natural in commercial industries that only one spare unit,
which can be delivered by order, is available for replacement. In this case
we cannot neglect a random lead time for delivering the spare unit. That is,
it is essential and practical to introduce the random lead times. Once we take
account of the random lead times, we should consider an ordering policy
that determines when to order a spare and when to replace the operating
unit after it has begun operating. '

Allen and D’Esopo [1, 2] considered an ordering policy in which some
failed units are repaired and the others are scrapped with certain probabilities.
Wiggins [21] considered an ordering policy in which a spare unit is ordered
at a prespecified time #y after installation of the operating unit or at failure of
the operating unit, whichever occurs first. He obtained the optimal ordering
time ¢§ which minimizes the expected cost. He assumed in his model that
the lifetimes of the operating units obey the exponential distributions, which
implies the trivial ordering policy such as tj = 0 or t§ — oo. Several
authors [11, 12, 15, 20] have treated ordering policies for a non-repairable
unit by assuming the arbitrary lifetime distributions of the operating units
and the following assumptions:

(i) The original unit is replaced as soon as the ordered spare arives
irrespective of the state of the unit.

(i) The procured unit is kept in inventory until the original unit fails.

(iii) The procured unit is held in inventory until a predetermined times
t; (measured from ordering times fy) if the original unit does not fail till
that time.

Recently, Osaki, Kaio, and Yamada [13], and Park and Park [14] have
treated ordering policies with minimal repair.

In this paper we consider two generalized ordering policies for a system
with age-dependent minimal repairs, general random repair costs and random
lead time. The Policy 1 and 2 are described explicitly at the beginning of
the next section. The expected cost per unit time in the long run is derived
for the Policy 1 and 2. We show that, under certain conditions, there exists
a finite and unique optimum policy in both the Policy 1 and 2. As special
cases, various results from Barlow and Proschan [5] are obtained as well
as many of the results of Osaki [12], Kaio and Osaki [11], Cléroux, Dubuc
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GENERALIZED ORDERING POLICIES 99

and Tilquin [10], Boland and Proschan [9], Boland [8], Block, Borges and
Savits [7] and Park and Park [14, 15].

In the second section the Policy 1 and 2 are described, and then the
expected cost per unit time in the long run is found in both the Policy
1 and 2. Theorem 1 gives a general optimization result for the Policy 1.
Theorem 2 gives a general optimization result for the Policy 2. In the third
section various special cases are discussed. In the last section a numerical
example is given. LT

2. MODELS AND ANALYSIS

\&, ering
We assume that the unit has a failure time distribution F (x) with finite mean
w and has a density f (x). Then, the failure rate (or the hazard rate) function is
x

r (x)=f (x)/F (x) and the cumulative hazard function is R (z) = / r (y) dy,

_ _ 0

which has a relation F (x)=exp { —R (x) } where F(x)=1-F (x). It is further
assumed that the failure rate function r(x) is continuous, monotone, and
remains undisturbed by minimal repair.

We assume that the original unit begins operating at time 0. A system has
two types of failures when it fails at age y. Type I failure (minor failure) oc-
curs with probability g (y) and is corrected with minimal repair, and whereas
type II failure (catastrophic failure) occurs with probability p (y)=1-q(y) and
a unit has to be replaced. If the type II failure occurs before a specified time
tp, then the expedited order is made at the failure time instant. Otherwise,
the regular order is made at time #y. After a replacement the procedure is
repeated. We assume all failures are instantly detected and repaired.

PoLicy 1: We define the following three mutually exclusive and exhaustive
states between successive -replacements:

(a) If the type II failure occurs before #y, then the unit is shutdown and
replaced by the spare as soon as the spare is delivered.
(b) If the type II failure occurs between #y and the arrival of the regular

ordered spare, then the unit is shutdown and replaced by the spare as soon
as the spare is delivered.

(c) If the type II failure occurs after the arrival of the regular ordered spare,
then the unit is replaced by the delivered spare immediately irrespective of
the state of the original unit.

PoLicy 2: We define the following five mutually exclusive and exhaustive
states between successive replacements:

vol. 28, n° 1, 1994



100 S.-H. SHEU, C.-T. LIOU

(a) If the type II failure occurs before #(, then the unit is shutdown and
replaced by the spare as soon as the spare is delivered.

(b) If the type II failure occurs between fy and the arrival of the regular
ordered spare, then the unit is shutdown and replaced by the spare as soon
as the spare is delivered.

(¢) If the type II failure occurs between the arrival of the regular orderded
spare and fp+t; where #; is measured from ordering time f#, then the
delivered spare is put into inventory and the unit is replaced by that spare
at the type II failure time instant.

(d) If the regular ordered spare arrives before #o+¢; and the type II failure
occurs after 7 +¢;, then the delivered spare is put into inventory and the unit
is replaced by that spare at the time 7 +¢.

(e) If the regular ordered spare arrives after #+¢# and the type II failure
does not occur before the arrival of the regular ordered spare, then the unit
is replaced by the spare as soon as the spare is delivered.

Let L, denote the random lead time of an expedited order with p.d.f.
ke (x) and finite mean p.. Let L, denote the random lead time of a regular
order with p.d.f. k,(x) and finite mean y,. Let us introduce the following
five costs: the cost ¢, is suffered for each expedited order made up to time
ty, the cost ¢, is suffered for each regular order made at time #, the cost
¢s per unit time is suffered for the shortage, the cost ¢, per unit time is
suffered for the inventory, the cost of the i-th minimal repair at age y is
g(C ), c;(y)) where C(y) is the age-dependent random part, c;(y) is the
deterministic part which depends on the age and the number of the minimal
repair, and g is a positive, nondecreasing and continuous function. Suppose
that the random part C(y) at age y have distribution L, (x), density J, (x) and
finite mean E [C (y)]. We assume that c.>c¢,>0 and y,> p.>0.

Let Y;* denote the length of the i-th successive replacement cycle for
i=1, 2, 3,... Let R} denote the operational cost over the renewal interval
Y;*. Thus {(Y;*, R})} constitutes a renewal reward process. The pairs
(Y;*, RY), i=1, 2, 3,... are independent and identically distributed. If D (¢)
denotes the expected cost of the operating unit over the time interval [0, 7],
then it is well-known that

D(t) _ E[Rj]

lim —=*

t5o0 t E[Yl*]

0y

(see, e.g., Ross [16, p. 52].) We shall denote the right-hand side of (1) by
B () for the policy 1 and B (%, #;) for the policy 2.
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GENERALIZED ORDERING POLICIES 101

We now give a derivation of the expression for E[R]] and E[Y}*] in
both the policies. First, however, we must describe in more detail the failure
process which governs the cost over the interval [0, Y7*].

Consider a non-homogeneous Poisson process {N (t), t > 0} with
intensity r(¢) and successive arrival times Sp, Sz, .... At time S, we flip
a coin. We designate the outcome by Z, which takes the value one (head)
with prob:«tb)ility p(Sy) and the value zero (tail) with probability g (S,). Let

N(t

L(t)= Y Zn and M(t)=N($)-L (). Then it can be shown that the process

{L3), ¢ 21 0} and { M (t), t > 0} are independent non-homogeneous
Poisson process with respective intensities p () r () and g (®)r(f). (seee.g.,
Savits [17]). This is similar to the classical decomposition of a Poisson
process for constant p. Let Y; denote the waiting time until the first type II
failure. Then Y7 = inf{¢ > 0 : L(¢) = 1}. Note that Y; is independent
of { M (t), t > 0}. Thus the survival distribution of the time until the first
type II failure is given by

Fy(y) =Py >y)=P(L(y)=0)=exp{—/0yp(a:)r(:c)d$}. 2)

We also require the following extended result of Lemma in Block et al. [7].
The Lemma is shown by mimicking the proof of Lemma in Block et al. {7].

Lemma 1: Let { M (t), t > 0} be a non-homogeneous Poisson process with
t

intensity q(O)r(t) (t > 0) and A(t) = E[M (t)] = / q (2) 7 (2) dz. Denote

0
the successive arrival times by S1, S, ... Assume that at time S; i=1, 2, ..) a
cost of g(C(S;), ¢i(Sy)) is incurred. Suppose that C(y) at age y is a random
variables with finite mean E[C(y)]. If A(¢) is the total cost incurred over
[0, 1), then

BA®)= [ h(:)a@)r @ @3
0
where h(z) = Epp () [Ec (2)l9 (C(2), en (2)+1 (2))]]-

2.1. Analysis of Policy 1

For Policy 1 we have

v {Y1+Le, ifY1<t0}

V= Vto+ Ly, if Yi>t

C)

vol. 28, n® 1, 1994



102 S.-H. SHEU, C.-T. LIOU

and
r M (Y1) 3\
ceteslet D g(C(S), ci(S)), if Vi<t
T um

Rf={ctcs(tot+ L —Y1)+ Z 9 (C(8s), ¢i (Si)),
T b < Y1 < tot+L,

~

&)

M (to+L.)
Lcr -+ z Q(C (Si), C; (Si)), if Y7 > t+L, J
=1

We are now ready to derive the expressions for E[Y*] and E[R7]. First
note that

E[Y7] =/0° /Ooo (y + z) ke (z) dz dFy (y)
= /Oto y dF, (y) + Fp (to) pe + F, (to) (to + wr)

to .
= [ Fo) v+ Py to) e+ ) e ®)

Using the Lemma 1 and the independence of Y; and { M (t), t > 0}.
We can write

B[R] = P(¥i < to) (ce e /Ow oke () d:c)

o | MW

+/0 E|> g(C(S), ci (Sz'))] dFy (y) + ¢ P (Y1 2 10)
o tot+x

+/O {cs /t (to+z —y)dFy (y)

=1

to+x M (y)
+/t E [Z 9(C(S), ci (Sz))} dFy (y)
0 =1

Recherche opérationnelle/Operations Research



GENERALIZED ORDERING POLICIES 103

oo M(to-l-il})
+ / E[ > g(C(S), (si))} dF, (y)}kr () dz,
tote i=1

/t°/ h(2)a(2) 7 (2) dz dFp (5) + Fp (t0) cr

+ [ { ( \ (f0) - /t:"ﬂfp(y)dy)

/:ﬂ / h(2) 4 (2) r(z)dz dF, ()

_ to+T
+ Ty (o +2) /0 h(2) g (2) r(2)dz } k, (z) dz,

which on simplification is equal to
Fp (tO) Ce + Fp (tO) Cr + Cs (Fp (tO)Me
fo%) tot+x
[ [F k@) ae)
0 to
(s} tota
+ / [/ Fp()h(y)q(y)r(y) dy] kr (z)dz,  (7)
0 0
- y
where F'), (y)= exp {— / p(z)r(z) dw}.
0

For the infinite-horizon case we want to find a ¢ which minimise B (t),
the expected cost per unit in the longrun. Recall that

B (t0) = { Fy () e + F t0) s + e () e
o) to+z
+Fy - [ [ Ty dyke (2) o)

+ /O°° [/Oth Fr()h(y) a(v)r () dy] kr (z) d:z:}

/{ | oty + Ty o) + (tome}. ®
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104 S.-H. SHEU, C.-T. LIOU

We obtain the following two special expected costs:

B(0) = {cr +es /Ooo/opr(y)dykr (z)do

+/0°° /jﬂ(y)h(y)q(y)r(y)dm(x)dx}/ur, ©)

in which it is ordered at the same time as the installation of a working
unit, and

B(00)={ce+csue+/Ooofp(y)h(y)q(y)f(y)dy}
/{ue+ L7 (y)dy}, 10)

in which it is ordered just after the type II failure of a working item.

D;c_ﬁne the numerator of the derivative of the right-hand side in (8) divided
by Fp(to) as w(to);

w (tO) = {(Ce - Cr)p(tO)T (tO) + ¢s (.Ue - ;Lr)p(to)’f‘(to)

+ /000 F, (z|to) kr () dle
+ /000(1 — Fp (z|to)) h (to + z) g (to + ) r (to + z) kr (z) dx}
X { 0t° Fp (y) dy + Fp (to) pe + Fp (tO)/‘r}

- {FP (to) Ce + ﬁp (tO) Cr + Cs (Fp (tO) He T+ Fp (tO) Hr

[ [T Rwank @)

+ [ /+ Folw) h () 2 (0) 7 Wik, (w)dz}

X {(pe — pr) p(to) r (to) + 1}, (11)

Recherche opérationnelle/Operations Research



GENERALIZED ORDERING POLICIES 105

where
Fy (to + z) — Fp ()
Fp (o) -
LEmMA 2: Assume F has a density f, with F(07)=0. If r(¢) and p(t) are
increasing in t, then F, (z|t) is increasing in t for x > 0.
Proof: For t1 < t2, 7(t1) < r(t2) and p(¢t1) < p(t2)

Fp (z]to) =

imply /Oz pltit+y)r(ti+y)dy < /Ozp(tz +y)r(tz +y)dy.
That is,
exp {—/tzﬂp(y)?‘(y) dy} < exp {—/tltlﬂp(y)r(y) dy}

t2
which implies Fj, (z|t2) > Fp (z|t1) using the identity

t
Fp(t) = exp {~/ p(y)r(y) dy}~
0 QED.
Now we discuss the optimum ordering policy which minimizes B (#p).
THeOREM 1: (1) Suppose that either (a) the functions r(ty), p(tp) and
[(Ce - Cr) + ¢s (pe — Nr)]p (tO) T (tO) + Cs Fp (xlto)
+ (1 = Fp(zlto)) h(to + 2) g(to + z) 7 (to + )

are continuous and strictly increasing in ty for each z > 0, or (b) the

functions r(t), p (to), and (1 — F, (z|to)) h (to+ ) q (to + ) are continuous
and strictly increasing in ty for each x > 0 and ce + ¢s pe > ¢ + Cs pir-

@ If w(0) < 0 and-w(o0) > O, then there exists a finite and unique
optimum ordering time t§(0 < t§ < oo) satisfing w(t§) = 0 and the
expected cost is

B(%) = {<ce —e)p(§)r (&)
e [(Ne i) @) @)+ [ Fr (el b @) dx]
+ /000(1 — Fp (z|tg)) h (tg + z) g (85 + ) 7 (8§ + z) kr () dx}

/{(tte — pr) p (t5) 7 (£5) + 1} 12)

vol. 28, n° 1, 1994



106 S.-H. SHEU, C.-T. LIOU

(ii) If w (00) < 0, then the optimum ordering time is tj — oo, i.e. order
for a spare is made at the same time instant as type Il failure of the original
unit, and the expected cost is given by (10).

@ii) If w(0) > 0, then the optimum ordering time is t; = 0, i.e. order
for a spare is made at the same time instant as the beginning of the original
unit, and the expected cost is given by (9).

Proof: By differentiating B (ty) with respect to # and setting it equal to
zero, we have the equation w (tp) = 0. Further, we have

’w,(tO) = { Ooo d;jo ((Ce - Cr) + s (Me - /J'r))p(tO)T (tO)

+ cs Fp (z|to) b (to + z)

x q(to + )7 (to + z)] kr (z) da:}
x {/to Fy (y) dy + Fp (to) pe +Fp(t0)lllr}
0

- {Fp (to) ce + Fp (to) er + s (Fp (to) pe + Fp (to) ur

- /+ Fy0) dyk, () ds

+ [0 /+ Fy )k (v) 2(0) 7 () dyk (2) dx>}

x{ e = pr) (¢ (t0) ™ (to) + p (t0) ' (t0))}. (13)

First, we treat the case (1). If the conditions of (1) in the Theorem 1 are
satisfied, using the Lemma 2, then we have that w' (to) > 0, i.e. w (¢p)
is strictly increasing.

If w(0) < 0 and w(o0) > O, then there exists a finite and unique
t5 (0 < t§ < oo) which minimizes the expected cost B(fp) as a finite
and unique solution to w (tg) = 0, since w (¢p) is strictly increasing and
continuous. Substituting the relation of w (¢3) = 0 into B (¢§) in (8) yields
(12).

If w (00) < 0, then for any non-negative f, w (o) < 0 and thus B (t) is
a strictly decreasing function, thus the optimum ordering time is ¢j — oo.
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If w (0) > 0, then for any non-negative #, w (tp) > 0 and thus B (#) is a
strictly increasing function. Thus, the optimum ordering time is {5 = 0.

QED.
2.2. Analysis of Policy 2
For Policy 2 we have
Y1 + Le, if Yi <o
t0+Lr, if tOSYI<t0+Lr
i = Y1, if to+L, <Yi<to+t (14)
to + t1, if to+L,<to+t1 <N
to+ Ly, if to+t1<to+Lr <N
and
( M (Y1) )
cetesLet+ Y, g(C(Si), ci(Si), if Y1<t,
=1
M (1)
ertes(to+Lr=Yi)+ > g(C(Si), i (Si),
1=1
if <Y1 <tp+Ll,,
M (Y1)
cr+cp (Y1 —to—Ly) + g(C (8y), ci (S)),
R = Z . (15)

2
if Hot+L, < Y3 < to+t1,
M (to+t1)

er+cp(ty — Lr) + Z g(C (S3), i (Si)),

=1
if 4L < tg+t < Y7,
M (to+L,)

ot D> g(C(S), ai(S)),
i=1 :
if to+h < tp+Lr < Y7

\

We are now réady to derive the expressions for E[Y}*] and E[R]]. First
note that we can write

E[Yi*]:/(;w Oo (y +z) dF, (y) ke (z) da
0 plotw -
* /(; /to (to + ) dFp (y) kr (z) dz

ty to+t1
[ v aR @k @ de
0 t

ot+x

vol. 28, n° 1, 1994
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t1 o0
[T o+ ) dE @)k @) ds
0 to+t

" /:o /t:x (to + z) dFy (y) kr (2) da,

which on simplification is equal to
to

Fy (to) pe + Fp (to) ur + | Fp (y)dy

151 tot+ts
/ [ Rw k@) ds.
to+x

Using the Lemma 1 and the independence of Y, and { M (¢), t > 0},
we can write

E[R]]=P (Y1 < ty) (ce + cs/()ooxke(x)dx)
to M (y) |
+ [ E[Z 9(C (5, (sm} dF, (y)
0 i=1

o0
+cr/ P(to <Y1 <to+2z)kr(z)dz
0

+/Ooo {cs/t:0+x(t0+x—y)de(y)

to+z M(y)
+/ E{Z g(C(Sy), ¢ (si))} dF, (y)}kr (z) dz
to =1

t1
+cr Po+z <Y1 <tyo+1t1)k, (z)dx
0

t1 to+11
+/ {Ch/ (y = to — =) dFp (y)
0 to+.’27

to+ts M(y)
+/ E [Z 9(C(Si), ci (Sz)):| dFy (y)}kr (z)dz
totz =1

t1
—{-Cr/ P(to-i-tlsyl)kr(l’)dx
0

Recherche opérationnelle/Operations Research



GENERALIZED ORDERING POLICIES 109

+F, (to+11) cn /Otl (t — 2) kr (z) da
1 M (to+t1)
+/0 Fp(to+ tl)E[ > 9(C(S), (Si)):| kr (z) dz

=1

(e o)
+cr P(Yl >0+ 2)kr (z)dz

S s

:Fp(to)ce-i—F;,,(to)csue—i—/o0 /Oy h(z)q(2)r(2)dzdFy, (y)

M (to +t1)

=1

C(S) C; (Sz))] dF (y) kr( )

oo
0

+/00o [cs (wﬁp (to) — /:H Fp (v) dy)

+ /+ [ 1@ a@r @b o) k@

+cr P(t0+x§Y1<t0+t1)kr(2})d$
0 ;

+/tl [ (—(tl _2)F, (to + t1) + /t::;tl Fp (v) dy)

tot+t: py
/ h(z)q(2)r(z)dzdFy, (y)} ky (z)dx

t0+.’t

+cr/ P (Y1 >ty +11) ky (2)dz
0

t1

+ Fp (to + t1) Ch/o (t1 — 2) ky (z) dz

+ [Ty o+ [T @@ @ik @) i

+cr Fp (to + z) kr (z) dx
t1

oo o+
+ [ Fotora) [ h@a@r @k @) dr,

t

vol. 28, n° 1, 1994



110 S.-H. SHEU, C.-T. LIOU

which on simplification is equal to

Fy (to) ce + Fp (to) cr + cs (Fp (to) pe + Fp (to) pr

- / " /:H Fp(y) dykr (x)dw)

151 to+1,
+en / / T, (y) dy kv (2) de
1o

t to+11
+/0 /0 Fp(9h () g ()7 (y) dy ks (z) dz
o to+z
+/tl /0 Fp(nh(y) q() 7 (y) dyky (z)dz.  (17)

For the infinite-horizon case we want to find ¢} which minimizes B (¢, t1)
for a fixed value of tj given by a solution to w (tp) = 0 in (11). Recall that

B (to, t1) = {Fp (to) ce + Fp (to) cr + cs (Fp (to) pe

sy - [ [T @) dy ke @) o)
+cp /t1 /tt0+t1 (y) dy kr (z) dz

o+z

+ /0 § /0 o Fp (v) h(¥) q () () dy ky (z) dx

o prtotx
+ /t /to Fp (y) h(y)a(y)r(y)dy kr(.'lt)dx}

LBy (o) e + Ty to) i + [ Fp () dy
0

t1 to +t1
[ ) dy by (x) da
tot+x
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We see that dB (5, t1)/dt; = 0 if and only if

J(tB’ tl) = h(tsa tl)Q(taa tl)T(ta, tl)

x [F (6w + Fo e+ [ Fy)

// W) dyke (2 )da]

)
o (F (£8) e + Fp (88) i +

Fp (v) dy)
- {Fp (to) ce "'Fp (tg) er + ¢s <Fp (t0) ke

— 0o ptgt+T
+ Fp (t0) pr —/0 /t Fp(y)dykr (w)dw>

t1 ptotts _
+/0 /0 Fp(y)h(y) a(y)r (y) dy kr (z) da

oo ptgtx
+/t, /0 Fyo(y)h(y) q(y) v (y) dy kr (z) da:} =0. (19)

Next, we discuss optimum ordering policies, which minimize B (t§, t1)
for a fixed value of ¢j given by a solution to w (¢p) = 0 in (11).

THEOREM 2: Under the assumptions of (1) in Theorem 1 and
h(ty +t1) q (85 + t1) 7 (¢ + t1)

is continuous and strictly increasing in t;, we have
@) if J(t§, 0) > 0O, then t5 = 0,

(i) if J (t§, 0) < 0 and J (t§, o0) > 0, there exists a unique t] such that
J (t§, t3) = 0 and the expected cost is

B(taa )_ch+h(t0+t)Q(t0+t) (t0+t1)7 (20)
(iii) if J (tf, o0) < O, then t] - 0.
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Proof: Differentiating J (¢3, ¢1) with respect to #; yields

d
Pt 1) = | (b6 + 1) 0G5+ 1) (G5 + )
o
< | B @me + Ty G+ [ Fy )y

/ ’ /tt"”l Fp (y) dy ki (2) dx} > 0.

Therefore, J (¢, t1) is a strictly increasing function of #.

Hence

G) if J (&}, 0) > 0, then # = 0,

(i) if J (t5, 0) < 0 and J (t5, co) > 0, there exists a unique ¢t} such
that J (¢35, t}) = 0.

Substituting J (£}, %) = 0 into B (£}, t}) in (18) yields (20),

(iii) if J (¢, c0) < O, then ¢} — oo.

QED.

3. SPECIAL CASES OF THE POLICY 2

Case 1 (p(¥)=1, ce=cr=cg, pe=pr=m, ke (x)=k, (x)=k(x)): This is the
case considered by Park and Park [15]. In this case, if we put p(y)=1,
qO =0, pe=pr=m, ce=c,=cg, ke (x)=k, (x)=k(x) in (18), then we have the
expression for the expected cost per unit time as

B (tg, t1) = {co+cs /oo/t:o+xF(y)dyk(x)dx

t1 to+ta
+ch/ / F(y) dyk(a:)dx}
to+x

/{m+ C Fly)dy+ /tl /twlF(y dyk(x)dx} @1)

o+

which agrees with equation (5) in Park and Park [15] and can be optimized
for ty and #; as Park and Park [15].

Case 2 (p(y)=0, c.=c,r=cg, g(CWY), ci())=c, ke (x)=k, (x)=k(x)): This
is the case considered by Park and Park [14]. In this case, we assume all
failures are type I failure (i. e. p(y)=0, g(y)=1). If we put p(y)=0, q(y)=1,
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ce=cr=cg, g(CWY), ci(Y))=c, ke(x)=k, (x)=k(x) in (18), then we get the
following result as Park and Park [14] obtained,

B (tp, t1) = {60 -+-c/0’t1 R(to +t1) k(z) dz

+c - R (to + z) k(z;)dx+ch/0tl(t1 —z) k(z)dx}

1
<[ dydz }. 2
/{t0+t1+/tl | rway x} @)

Case 3 (#; =0): In this case, Policy 2 reduces to Policy 1. If we put #; =0
in (18), then we get the expression (8).

Case 4 (11=0, p(y)=1, k.(x)=k,(x)=k(x) and k(x) is degenerated
at L): Osaki [12] considered this case. If we put # =0, p(y)=1 and
ke (xX)=k, (x)=k(x) is degenerated at L in (18), then we get the following
result as Osaki [12] obtained,

_ to+L
ceF(to)+ch(to)+cs/ F(y)dy
to

B(t) = (23)

o _
/ F(y)dy+ L
0

Case 5 (11 =0, p(y)=1, k. (x) is degenerated at L., k, (x) is degenerated at
L;): Kaio and Osaki [11] considered this case.

Case 6 (t1=0, g(C(), ci)=¢;(¥), ke (x) and k, (x) are degenerated at
0): This is the case considered by Block et al. [7].

Case 7 (11=0, p(»)=0, g(CQY), ci(N=cy), ke(x) and k, (x) are
degenerated at 0): This is the case considered by Boland [8].

Case 8 (1 =0, p(») =0, g(C¥), ¢c; ) =c;, ke (x) and k, (x) are degenerated
at 0): Boland and Proschan [9] investigated this case. In particular they
considered the cost structure ¢;=a+ic.

Case 9 (11 =0, p(y)=p, g(C (), ci 3))=C, k. (x) and k, (x) are degenerated
at 0): This is the case considered by Cléroux et al. [10].

Case 10 (1; =0, p(y)=1, k. (x) and k&, (x) are degenerated at 0): This is the
classical age replacement considered by Barlow and Proschan [5].

Case 11 (11 =0, p(y)=0, g(C (), ¢c; ¥)) =c, ke (x) and k, (x) are degenerated
at 0): The problem reduces to the classical periodic replacement with minimal
repair at failure. Barlow and Hunter [4] considered this case.
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Case 12 (g(C(»), ¢i ())=C () +c¢; (y)): Here the cost of the minimal repair
is the age-dependent random part C (y) plus the deterministic part c;(y) and

so h(y) = E[C )] + E [cm ()41 (v)] in (18).
4. A NUMERICAL EXAMPLE

In the numerical analysis here we shall consider the system with the
Weibull distribution which is one of the most common in reliability studies.

The p.d.f. of the Weibull distribution with shape parameter 3 and scale
parameter 6 is given by

B-1 B
0=5() "G o mee o

and the parameter of the distribution will be chosen 5=2.
The p.d.f. of the random lead time of an expedited order is given by

1 1
ke (z) = — exp [—ﬁ , x>0, pe>0. 27N
He He |
The p.d.f. of the random lead time of a regular order is given by
1 ;
kr(z) = o exp [—ui , x>0, ur>0. (28)

Suppose that g (C (y), ¢; () =C(y)+c; (y). Here we discuss a policy where,
at failure, one replaces the system or repairs it depending on the random cost
C of repair. Let ¢ be the constant cost. A replacement (type II failure) upon
at age y takes place if C > 6§ (y) ¢, if C < §(y) coo, then on proceeds
a minimal repair (type I failure). The parameter §(y) can be interpreted
as a fraction of the constant cost ¢ at age y, and 0 < é6(y) < 1. Here
we consider the following parametric form of the repair cost limit function
§(y) = 6e™% with 0 < § < 1 and a > 0. Suppose that the random repair
cost C has a normal distribution L (.) and density /(.), with mean yx and
standard deviation ¢ (the probability of a negative cost is negligible). If
an operating system fails at age y, it is either replaced with a new system
with probability

6(3/) Coo .
) =1- [ 1@ 29
or it undergoes minimal repair with probability

6 (y) Coo
g(y) = /0 [(z)dz (30)
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Then the random part C(y) of minimal repair at age y has density
ly(x)=1(x)/g(y) for 0 < z < §(y)ceo and

h(y) = Ep ) [EBc ) 9 (C (%), em (y)+1 W))]]
= Ex(y) [Bo(y) [C (¥) + e (y)+1 (V)]

() oo
= /0 z ly (.’E) dz + EM (y) [CM (y)+1 (y)]

1

6 (y) oo
O] /0 zl(z)dz + Epy) lemr 1 @), GBD)

where { M (y), y > 0} is a non-homogeneous Poisson process with intensity
qmr Q).

Furthermore, when c; (y)=c3+csy+cs5i(c3 >0, c4 >0, ¢s > 0), then

6(y)cm
h(y) = y)/ z)dr +c3+cay

+cs (/0 q(;v)r(x)dx—l—l). (32)

In the numerical analysis we first compute the optimum solution ¢§ which
minimizes B (fp) in (8) for the policy 1. Then, we seek an optimum solution
t} which minimizes B (t{, ¢1) in (18) for a fixed value ¢ given by a solution
to (8). The parameters 6, a and c, were varied to take the different values
in order to see thier influence on the optimal solution. The results are given
in Tables 1 and 2. It should be noted that we can check the minimum cost
per unit time B (¢j, ¢7) in Tables 1 and 2 is correct by putting ¢j and ¢]
in the expression (20).

In this paper, the repair cost limit function 6 (y) = e~*Y is chosen for
the purpose of easy computation. From the numerical results, we can derive
the following remarks:

Optimal ordering policies with general random repair costs, for the Weibull
distribution.

B=2,0=1,012, e =100, p, =120, c,=1,100, c. = 1,300, coo = 1,100, cs =5,
C ~ N (700, 2002).
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TABLEAU 1
ci(y)=0

5 a a0 | @ | % B(t3) | B, &)
1 0 0977 | 010 | 1,172 1.7278 65 1.7275
10/11 0 0933 [ 0.10 | 1,203 1.7077 108 1.7065
9/11 0 0.841 | 0.10 | 1,263 1.6787 226 1.6722
8/11 0 0.691 | 0.10 | 1,354 1.6549 536 1.6265
7/11 0 0.500 | 0.10 | 1,457 1.6563 1,381 1.5974
5/11 0 0.158 | 1.00 | 1,566 1.7300 4,273 1.7154
3/11 0 0.001 [ 1.75 | 1,562 1.7866 2,050 1.7863

TABLEAU 2
ci(y)=02y ¢ci(y)=02y+2i
ci(y)=02y

5 a a0) | o | % B (53) tt | B, )
1 0977 | 0.10 967 1.9076 85 1.9062
1 0.00015 * 0.10 | 1,035 1.8642 140 1.8607
1 0.00070 * oo | 1,433 1.6816 0 1.6816
10/11 0 0933 | 0.10 990 1.8826 106 1.8802
10/11 0.00010 * 0.10 | 1,053 1.8430 174 1.8370
10/11 0.00060 * oo | 1,436 1.6866 0 1.6866
9/11 0 0.841 | 0.10 | 1,039 1.8407 158 1.8352
9/11 0.00010 * 0.10 | 1,133 1.7925 365 1.7706
9/11 0.00050 * oo | 1,440 1.6947 0 1.6947
8/11 0 0.691 | 0.10 | 1,121 1.7911 288 1.7740
8/11 0.00005 * 0.10 | 1,176 1.7692 464 1.7367
8/11 0.00036 * co | 1,439 1.7063 0 1.7063
7/11 0 0.500 | 0.10 | 1,235 1.7540 588 1.7111
7/11 0.00005 * 0.10 | 1,293 1.7408 1,120 1.6769
711 0.00024 * oo | 1,442 1.7214 0 1.7214
5/11 0 0.158 | 0.10 | 1,463 1.7576 1,155 1.7446
3/11 0 0.001 | 1.75 | 1,546 1.7902 96 1.7902
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ci(y)=02y+2i
6 a q0) | o & B (t;) ¢ B(t5, 1)
1 0 0977 | 010 | 964 1.9109 89 1.9095
1 0.00015 * 1010 | 1,032 1.8674 139 1.8639
1 0.00070 * oo | 1,433 1.6826 0 1.6826
10/11 0 0933 | 0.10 | 987 1.8880 106 1.8834
10/11 0.00010 * | 010 | 1,051 1.8460 172 1.8402
10/11 0.00060 * o | 1,436 1.6876 0 1.6876
9/11 0 0.841 | 0.10 | 1,036 1.8436 158 1.8380
9/11 0.00010 * | 010 | 1,131 1.7951 361 1.7735
9/11 0.00050 * co | 1,440 1.6956 0 1.6956
8/11 0 0691 | 0.10 | 1,118 1.7934 287 1.7762
8/11 0.00005 * [ 010 [ 1,174 17713 460 1.7390
8/11 0.00036 * oo | 1439 1.7073 0 1.7073
711 0 0.500 | 0.10 | 1,233 1.7555 584 1.7127
71 0.00005 * [ 010 | 1201 1.7421 1,109 1.6783
711 0.00024 * oo | 1,442 1.7221 0 17221
511 0 0.158 | 0.10 | 1,462 1.7580 1,149 1.7450
3/11 0 0.001 | 1.75 | 1,546 1.7902 94 1.7902

*; age-dependent.

(i) from Table 1, some improvement can be made in the minimum cost per
unit time for the Policy 1 and 2 if one allows for minimal repair at failure;

(ii) from Table 2, the minimum cost per unit time for the Policy 1 and 2
will be reduced when the probability of minimal repairing is age-dependent;

(iii) from Table 2, when holding cost ¢ is small, Policy 2 is better than
Policy 1 and when holding cost is sufficiently large Policy 2 has optimal
solution t; = 0 and B (t§, t7) = B(t});

(iv) it can be seen that the present models are a generalization on previously
known policies.
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