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GENERALIZED ORDERING POLICIES WITH GENERAL RANDOM
MINIMAL REPAIR COSTS AND RANDOM LEAD TIMES (*)

by Shey-Huei SHEU C1) and Ching-Tien Liou (2)

Communicated by Shunji OSAKI

Abstract. - In this article we consider two gêneralized ordering policies for a complex system with
age-dependent minimal repair and gênerai random repair costs. Introducing costs due to ordering,
repairs, shortage and holding, we dérive the expected cost per unit time in the long run as a
criterion of optimality and seek the optimum ordering policies by minimizing that cost. We show
that, under certain conditions, there exists a finite and unique optimum policy. Varions special cases
are discussed. Finally, a numerical example is given.

Keywords: Ordering, repair, maintenance, reliability.

Résumé. - Nous considérons dans cet article deux politiques généralisées pour un système
complexe avec coûts de réparation minimal dépendant du vieillissement et coûts de réparation
généraux aléatoires. Introduisant les coûts dus aux réapprovisionnements, aux réparations, à la
pénurie, et à l'immobilisation, nous en déduisons le coût moyen par unité de temps comme critère
d'optimalité, et cherchons les politiques de réapprovisionnement optimales par minimisation de ce
coût Nous montrons que, sous certaines conditions, il existe une politique optimale finie. Nous
examinons divers cas spéciaux. Nous terminons avec un exemple numérique.

Mots clés : Réapprovisionnement, répartition, maintenance, fiabilité.

1. INTRODUCTION

It is of great importance to avoid the failure of complex System during
actual opération when such an event is costly and/or dangerous. In such
situation, one important area of interest in reliability theory is the study
of various maintenance policies in order to reduce the operationg cost and
the risk of a catastrophe. Many préventive maintenance policies have been
proposed and discussed (see e.g., [3 to 6]). In particular, a replacement
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98 S.-HL SHEU, C.-T. LIOU

policy [7 to 10, 18, 19] is of great interest. In such a replacement policy
it is generally assumed that there are an unlimited number of spare units
available for replacement. However, it might not be true on some occasions.
For instance, it is natural in commercial industries that only one spare unit,
which can be delivered by order, is available for replacement. In this case
we cannot neglect a random lead time for delivering the spare unit. That is,
it is essential and practical to introducé the random lead times. Once we take
account of the random lead times, we should consider an ordering policy
that détermines when to order a spare and when to replace the operating
unit after it has begun operating.

Allen and D'Esopo [1, 2] considered an ordering policy in which some
failed units are repaired and the others are scrapped with certain probabilities.
Wiggins [21] considered an ordering policy in which a spare unit is ordered
at a prespecified time to after installation of the operating unit or at failure of
the operating unit, whichever occurs first. He obtained the optimal ordering
time £Q which minimizes the expected cost. He assumed in his model that
the lifetimes of the operating units obey the exponential distributions, which
implies the trivial ordering policy such as £g = 0 or £<$ ~^ °°* Several
authors [11, 12, 15, 20] have treated ordering policies for a non-repairable
unit by assuming the arbitrary lifetime distributions of the operating units
and the foliowing assumptions:

(i) The original unit is replaced as soon as the ordered spare arives
irrespective of the state of the unit.

(ii) The procured unit is kept in inventory until the original unit fails.

(iii) The procured unit is held in inventory until a predetermined times
t\ (measured from ordering times t$) if the original unit does not fail till
that time.

Recently, Osaki, Kaio, and Yamada [13], and Park and Park [14] have
treated ordering policies with minimal repair.

In this paper we consider two generalized ordering policies for a System
with age-dependent minimal repairs, gênerai random repair costs and random
lead time. The Policy 1 and 2 are described explicitly at the beginning of
the next section. The expected cost per unit time in the long run is derived
for the Policy 1 and 2. We show that, under certain conditions, there exists
a fiiiite and unique optimum policy in both the Policy 1 and 2. As special
cases, various results from Barlow and Proschan [5] are obtained as well
as many of the results of Osaki [12], Kaio and Osaki [11], Cléroux, Dubuc
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GENERALIZED ORDERING POLICŒS 99

and Tilquin [10], Boland and Proschan [9], Boland [8], Block, Borges and
Savits [7] and Park and Park [14, 15].

In the second section the Policy 1 and 2 are described, and then the
expected cost per unit time in the long run is found in both the Policy
1 and 2. Theorem 1 gives a gênerai optimization resuit for the Policy 1.
Theorem 2 gives a gênerai optimization resuit for the Policy 2. In the third
section various special cases are discussed. In the last section a numerical
example is given.

2. MODELS AND ANALYSIS

We assume that the unit has a failure time distribution F (x) with finite mean
}i and has a density ƒ (x). Then, the failure rate (or the hazard rate) function is

r(x)=f(x)/F(x) and the cumulative hazard function is R (x) = r (y) dy,

whichhas a relation F (x) = exp { -R (x) } where F(x)= 1-F(x). It is further
assumed that the failure rate function r(x) is continuous, monotone, and
remains undisturbed by minimal repair.

We assume that the original unit begins operating at time 0. A System has
two types of failures when it fails at age y. Type I failure (minor failure) oc-
curs with probability q (y) and is corrected with minimal repair, and whereas
type II failure (catastrophic failure) occurs with probability/?(y) = 1 -q(y) and
a unit has to be replaced. If the type II failure occurs before a specified time
*o, then the expedited order is made at the failure time instant. Otherwise,
the regular order is made at time fy- After a replacement the procedure is
repeated. We assume all failures are instantly detected and repaired.

POLICY 1: We define the following three mutually exclusive and exhaustive
states between successive replacements:

(a) If the type II failure occurs before ÎQ, then the unit is shutdown and
replaced by the spare as soon as the spare is delivered.

(b) If the type II failure occurs between ÎQ and the arrivai of the regular
ordered spare, then the unit is shutdown and replaced by the spare as soon
as the spare is delivered.

(c) If the type II failure occurs after the arrivai of the regular ordered spare,
then the unit is replaced by the delivered spare immediately irrespective of
the state of the original unit.

POLICY 2: We define the following five mutually exclusive and exhaustive
states between successive replacements:
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(à) If the type II failure occurs bef ore tQ, then the unit is shutdown and
replaced by the spare as soon as the spare is delivered.

(b) If the type II failure occurs between t$ and the arrivai of the regular
ordered spare, then the unit is shutdown and replaced by the spare as soon
as the spare is delivered.

(c) If the type II failure occurs between the arrivai of the regular orderded
spare and *o + 'i where t\ is measured from ordering time ÎQ, then the
delivered spare is put into inventory and the unit is replaced by that spare
at the type II failure time instant.

(d) If the regular ordered spare arrives before ÎQ + h and the type II failure
occurs after t$ +1\, then the delivered spare is put into inventory and the unit
is replaced by that spare at the time tQ + t\.

(e) If the regular ordered spare arrives after *o +1\ and the type IE failure
does not occur before the arrivai of the regular ordered spare, then the unit
is replaced by the spare as soon as the spare is delivered.

Let Le dénote the random lead time of an expedited order with p.d.f.
k€ (pc) and finite mean / v Let Lr dénote the random lead time of a regular
order with p. d. f. kr (x) and finite mean /zr. Let us introducé the following
five costs: the cost ce is suffered for each expedited order made up to time
*o, the cost cr is suffered for each regular order made at time *o> the cost
cs per unit time is suffered for the shortage, the cost CH per unit time is
suffered for the inventory, the cost of the i-th minimal repair at âge y is
g(C(y), Ci(y)) where C(y) is the age-dependent random part, c,(y) is the
deterministic part which dépends on the age and the number of the minimal
repair, and g is a positive, nondecreasing and continuous fonction. Suppose
that the random part C(y) at age y have distribution Ly (x), density ly (x) and
finite mean E[C(y)]. We assume that ce>cr>0 and fir>/j,e>0.

Let Y* dénote the length of the ï-th successive replacement cycle for
i = l , 2, 3,... Let R* dénote the operational cost over the renewal interval
Y*. Thus { ( Î7 \ R*)} constitutes a renewal reward process. The pairs
(Y/", R%)9 Ï = 1 , 2, 3,... are independent and identically distributed. If D(t)
dénotes the expected cost of the operating unit over the time interval [0, f],
then it is well-known that

(see, e.g., Ross [16, p. 52].) We shall dénote the right-hand side of (1) by
B(to) for the policy 1 and i?Oo> ^i) ft>r the policy 2.
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GENERALÏZED ORDERING POLICIES 1 0 1

We now give a dérivation of the expression for E[R\] and E[Yf] in
both the policies. First, however, we must describe in more detail the failure
process which governs the cost over the interval [0, YJ*].

Consider a non-homogeneous Poisson process {N(t), t > 0} with
intensity r(t) and successive arrivai times Si, $2» .... At time Sn we flip
a coin. We designate the outcome by Zn which takes the value one (head)
with probability p(Sn) and the value zero (tail) with probability q(Sn). Let

N(t)

L(t)= ^2 zn a n d Mty ~N(l) ~L (0- Then it can be shown that the process
n=l

{L(t)i t > 0} and {M(£), t > 0} are independent non-homogeneous
Poisson process with respective intensities p(t)r(t) and q(t)r(t). (seee.g.,
Savits [17]). This is similar to the classical décomposition of a Poisson
process for constant p. Let Y\ dénote the waiting time until the first type II
failure. Then Y\ — inf {t > 0 : L(t) = 1}. Note that Yx is independent
of { M (£), t > 0 }. Thus the survival distribution of the time until the first
type II failure is given by

Fp(y) = P(YX > y) = P(L(y) = 0) = e x p j - jTp(x)r (ar)<fcj. (2)

We also require the following extended result of Lemma in Block et al. [7].
The Lemma is shown by mimicking the proof of Lemma in Block et al [7].

LEMMA 1: Let {M (t),t > 0 } bea non-homogeneous Poisson process with

intensity q(t)r(t) (t > 0) and A (t) = E [M (*)] = q(z)r (z) dz. Dénote
Jo

the successive arrivai times by S\, 52, ... Assume that at time S( 0 = 1, 2, ...) a
cost of g (C (Si), ei (Si)) is incurred. Suppose that C(y) at âge y is a random
variables with finite mean E[C(y)]. If A(t) is the total cost incurred over
[0, 0, then

E[A(t)]= fh(z)q{z)r(z)dz, (3)

whereh(z) = EM{z) [Ec{z) [g (C(z), cM(z)+1 (z))]].

2.1. Analysis of Policy 1

For Policy 1 we have

,= (Y1+Le, if Yi<*
1 \to + LTy if Yi>*
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M(Y1)

ce + csLe + J2 g(C(Si), c% ($)), if Yx < fc

M(YX)

cr + ca(t0 + Lr-Y1) + J2 9 (C (Si),* (Si)),

if to < Yi < to+Lr

i), c% if

( 5 )

We are now ready to dérive the expressions for E[Yf] and E[R{]. First
note that

E\Yi] = I / (y + x)ke(x)dxdFp(y)
Jo Jo

/*OO /*0O

+ / / (*o + x) kr (x) dx dFp (y)

= [° ydFp (y) + Fp (t0) Ve + Fp (t0) (to + Mr)
pto ^

~~ ƒ -̂ p KU) ™y "̂  -^P 1̂ 0 ) Mr "l~ ̂ p (^o) Me* \^/

Using the Lemma 1 and the independence of Y\ and { M ( t ) , t > 0 } .
We can write

E
/-OO

/ xke (x)
Jo

dx

to

+ I El
/ l c s

J0 [ Jto

f

>t0)

fto+X

+ / s
Jto

to

M(y)

E

to + x - y) dFp (y)

9 (C (Si), a (Si)) dFp(y)
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E
to+X

'M(to+x)

9(C(Si), «(Si))
8 = 1

dFp(y) > kr (x) dx,

f ° f\(z)q (z) r (z) dz dFp (y) + Fp (t0) cr
Jo Jo

to+x

^
_
Fp(y)dy

rto+x py
/ / h(z)q(z)r(z)dzdFp(y)

_ rto+x 1
Fp (to + x) h(z)q (z) r(z)dz \ kr (x) dx,

which on simplification is equal to

Fp (to) Ce + Fp (to) Cr + Cs (Fp (tO)fie

Jo Jto
(y) dy kr (x) dx

oo r pto+x

Fp (y) h (y) q (y) r (y) dy \ kr (x) dx, (7)

where Fp (y)— exp < — / p (x) r (x) dx >.

For the infinité-horizon case we want to find a tç which minimise B(to),
the expected cost per unit in the longrun. Recall that

B (to) = < Fp (to) Ce + Fp (to) Cr+Csl Fp (to) IXe

+ Fp (to) fir - f (° Fp (y) dy kr (x) dx]
JO Jto )

1 1
Fp (y) h (y) q (y) r (y) dy kr (x) dx \

° (y) dy + Fp (t0) Hr + Fp (t0) (8)
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We obtain the following two special expected costs:

B(0)= icr + C.\cr + cs Fp (y) dy kr (x) dx

/ / Fp (y) h (y) q (y) r (y) dy kr (x) dx \ /M r , (9)
Jo Jo

in which it is ordered at the same time as the installation of a working
unit, and

B (oo) = l ce + cs iie + / Fp (y) h (y) q (y) r (y) dy l

in which it is ordered just after the type II failure of a working item.
Define the numerator of the derivative of the right-hand side in (8) divided

by Fp(to) as iu(*o);

= < (ce - (/xe - fir)P (t0) r

+ f Fp(x\to)kr(x)dx\

+ ƒ (1-FP (x\t0)) h (t0 + x) q (to + x) r (i0 + a:) kr (x) dx l

x J ƒ °

- < Fp (t0) Ce + Fp (to) Cr + Cs (FP (i0) Me + Fp (t0) Mr

- / / Fv{y)dykr{x)dx)
JO Jt0 /

/•oo rto+x 1
+ / / Fp{y)h{y)q{y)r(y)dykr{x)dx\

Jo Jt0 J

(H)
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GENERALIZED ORDERING POLICIES 105

where

LEMMA 2: Assume F has a density f, with /7(0") = 0. If r(t) and p{t) are
increasing in t, then Fp (x\t) is increasing in t for x > 0.

Proof: For t\ < t2, r (ti) < r(t2) and pfa) < p(t2)

imply ƒ p(ti+y)r (h + y)dy < ƒ p(t2+y)r (t2 + y) dy.
7o 7o

That is,

exp < - ƒ p (y) r (y) dy > < exp ^ - / p (y) r (y) dy

which implies Fp(x\t2) > Fp(x\ti) using the identity

Fp(t) = exp \ - p(y)r(y)dy\.
1 J° j Q.E.D.

Now we discuss the optimum ordering policy which minimizes B(t$).

THEOREM 1: (1) Suppose that either (a) the functions r(*o)> p(to) &nd

[(ce - cr) + cs(fie - tir)]p(to)r(tö) + csFp(x\to)

+ (1 - Fp (ar|*o)) h (t0 + x) q (t0 + x) r (t0 + x)
are continuous and strictly increasing in to for each x > 0, or (b) the
functions r(to),p(to), and (1 - Fp (x\to)) h (to + x)q (to + x) are continuous
and strictly increasing in to for each x > 0 and ce + cs /J>e > Cr + cs /J>r-

(i) If w(0) < 0 and-iu(oo) > 0, then there exists a finite and unique
optimum ordering time £Q (0 < tg < oo) satisfing wÇtç) — 0 and the
expected cost is

B(t*0)=Uce-cr)p(t*0)r(t*0)

+ cs L e - pT)P(t*0)r (*5) + jT00 Fp (x\t*0) kr (x) dx\

(1 - Fp (x\t*0)) h(t*0 +x)q(t*0 + x)r (t*0 + x) kr (x) dx 1

/{(He-Hr)p(t*0)r(t*0) + l}. (12)
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(ii) If w (oo) < 0, then the optimum ordering time is tj$ —» oo, Le. order
for a spare is made at the same time instant as type II failure of the original
unit, and the expected cost is given by (10).

(iii) If w(0) > 0, then the optimum ordering time is £Q = 0, i.e. order
for a spare is made at the same time instant as the beginning of the original
unit, and the expected cost is given by (9).

Proof: By differentiating J3('o) with respect to t$ and setting it equal to
zero, we have the équation w (to) = 0. Further, we have

+ cs Fp (x\to) h (to + x)

X q (to + x) r (to + x)] kr (x) dx

- \ Fp (to) Ce + Fp (to) Cr + Cs (FP (*0) Me + Fp (t0) flr

/>OO fto+X __ \

- / / Fp(y)dykT(x)dx)
Jo Jt0 J

+ ƒ / Fp (y) h (y) q (y) r (y) dy kr (x) dx) \
JO Jto J

! (to)r (t0) + p(to)r'"(*o))}- (13)

First, we treat the case (1). If the conditions of (1) in the Theorem 1 are
satisfied, using the Lemma 2, then we have that w'(to) > 0, i.e. w (to)
is strictly increasing.

If w (0) < 0 and w (oo) > 0, then there exists a finite and unique
t$ (0 < £Q < oo) which minimizes the expected cost B (to) as a finite
and unique solution to w(to) = 0, since w (to) is strictly increasing and
continuous. Substituting the relation of w (t$) = 0 into B (t^) in (8) yields
(12).

If w (oo) < 0, then for any non-negative ô̂  ty (to) < 0 and thus B(to) is
a strictly decreasing function, thus the optimum ordering time is ij-j —> oo.
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If w (0) > 0, then for any non-negative to, w (to) > 0 and thus B(to) is a
strictly increasing function. Thus, the optimum ordering time is ÎQ = 0.

Q.E.D.

2.2. Analysis
For Policy

Y{

of Pohcy 2
2 we have

fYi + Le,
to + Lr,

Yi,
to+h,
to + Lr,

if
if
if
if
if

to

to +
*0 +

Yi
< Y\
Lr <
Lr <
t\ ^

<to
< to + Lj
Y1<t0 +
to H" t i ^

to+Lr <

y

- t l
11

and

csLe+ 2^g(C (Si), a (Si)), if Yi < to,
i=l

t), a (Si)),

M(Yi)

cr + ch (Fi -to-Lr)+ }^g(C (S>), a (Si)),

if l~to+Lr < Yi < to+h,

Cr+Ch(t1-Lr)+ ]T 9 (C (Si), d (Si)),

if to+Lr < to+h < Yi,

(14)

(15)

M(t„+Lr)

Cr+ J 3 9 (C (Si), d (Si)),

if to+ti < to+Lr < Yx.

We are now ready to dérive the expressions for E[Y{] and E[R\]. First
note that we can write

/E [Yf] = / (y + x) dFp (y) ke (x) dx
Jo Jo

roo rto+x
+ / (to + x)dFp(y)kr(x)dx

Jo Jt0

+ / y dFp (y) kr (x) dx
Jo Jtn+x
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+

+

ff
Jo Ju

+ ti) dFp(y)kr(x)dx

+ x) dFp (y) kr (x) dx,

which on simplification is equal to
_ f*» _

Fp (to) fJ,e + Fp (to) nr + / Fp (y) dy
Jo

Fp(y)dykr(x)dx.
f t
/

JO
Using the Lemma 1 and the independence of Y\ and {M(£), t > 0} ,

we can write

to

+ / EL
M(y)

xke(x) dx

dFp(y)

fOO

+ cr / P (to < Yi < t0 + ar) kr (x) dx
Jo

fOO f fto+X

+ <cs (to + x-y) dFp (y)
Jo L Jto

to+x
E dFp(y)

r (x) dx

1

f {» f
JO l Jtc

I E
to+X

ft,
cr Pi

Jo

- to " x) dFp (y)

<Yx)kr(x)dx

(x) dx
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/ (ti-x)kr{x)dx
JO

ft

/
Jo

M(to+ti)

1=1

&r (x) dx

f°°
+ cr P(Yi>to+- x) kr (x) dx

Jt!

/*oo /*oo

+ / / '
Jii Jto+x 1=1

(y) /cr (x)

= Fp(to)< / /i (^) q (z) r (z) dz dFp (y)
Jo Jo

/•oo

+ CT ƒ P (*o < Yi < t0 + X) kT (x) dx
Jo

to+x ry

/

fto+x ry 1
+ / / h(z)q(z)r (z) dz dFp (y) kr (ar) d^

Jt 0 »/0 J

tti

+ Cr P(tQ + X <Yi <tO+ t l ) kr (x) dx
Jo

rii r / _ rto+t! _ \
+ / cft - ( t i - a ? ) F p ( t o + * i ) + / Fp (y)dy)

JO l \ Jto+x /
rto+t! ry 1

+ / h(z)q(z)r (z) dz dFp (y) kr (x) dx
Jto+x Jo J

ft!
+ cr / P(Yi >to + *i) fcr(x)dx

+ Fp (*o + ti) cft / (ti - x) kr (x) dx
Jo

rti rto+tx
+ Fp (to+*i) / h(z)q(z)r(z)dzkr(x)dx

Jo Jo
l>oo_

+ cr ƒ Fp (*o + x) fcr (a;) dx

/

•oo rto+x

Fp (to + ar) / h W ? (̂ ) r (z) dz kr
. 1vol. 28, n° 1, 1994
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which on simplification is equal to

p (to) Ce + Fp (to) Cr + Cs (FP (t0) He + Fp (tQ) Mr

- / / Fp(y)dykr(x)dx)
Jo Jto /

[tl [to+t! _
+ ch / Fp(y)dykr(x)dx

JO Jto+x
[tl [to+t\

+ / / Fp(y)h(y)q(y)r(y)dykr(x)dx
Jo Jo

/

'OO fto+X
/ Fp (y)h (y) q (y) r (y) dy kr (ar) dx. (17)

i JO

For the infinite-horizon case we want to find t\ which minimizes B (tg, t\ )
for a fixed value of tg given by a solution to w (to) — 0 in (11). Recall that

B (to, tl) = l Fp (to) Ce + Fp (to) Cr + Cs \Fp (to) He

+ Fp (to) Hr- \ ƒ Fp (y) dy kr (x) dx
Jo Jo J

[tl [to-\-tl
+ ch / Fp (y) dy kT (x) dx

Jo Jto+x
[ti [to+ti

+ ƒ / Fp (y) h (y) q (y) r (y) dy kr (x) dx
Jo Jo

/>oo rto+x 1

+ / / Fp (y) h (y) q (y) r (y) dy kr (x) dx
Jti Jto j

f — fto —
< Fp (to) Me + Fp (to) HT + ƒ Fp (y) dy

t [to+ti_ "j
/ Fp (y)dykr(x)dx).
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We see that dB (t%, h)/dti = 0 if and only if

x [ F P (t*0) Me + FP (t*0) »r + Jo° Fp (y) dy

(tg) /xe + Fp (t*0) /xr + jf ° F p (y) dy

+

ce + FP (tg) cr + cs T F P (tg) Me

Fp (tl) Mr - / / F p (y) % fcr (x) dx

/ / Fp(y)h (y) q (y) r (y) dy kr (x) dx

/ / Fp(y)h(y)q(y)r(y)dykr(x)dx\=O. (19)
Jtx JO I

Next, we discuss optimum ordering policies, which minimize B(t^ t\)
for a fixed value of t$ given by a solution to w (to) — 0 in (11).

THEOREM 2: Under the assumptions of (1) in Theorem 1 and

is continuous and strictly increasing in t\, we have

(i)ïf J ( tJ , 0) > 0, tf*en *J = 0,

(ii) if J (tg? 0) < 0 awd J (tg, oo) > 0, there exists a unique t\ such that
J(t5, tj) = 0 and the expected cost is

*î)r(t5 + *î), (20)

(iii) if J(tl, oo) < 0, tóera tj -> oo.
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Proof: Differentiating J (£Q, t\) with respect to t\ yields

r
I

-
(*S) Me + F

/ / Fp(y)dykr(x)dx
o ,/t;+x

Therefore, J (£Q, t\) is a strictly increasing function of fj.
Hence
(i)if J(*5, 0) > 0, then t\ = 0,
(ii) if J(*0) 0) < 0 and J(tg, oo) > 0, there exists a unique t\ such

that J ( ^ , t\) = 0.

Substituting J(*o, *î) = ° ^^ S (tg, <J) in (18) yields (20),
(iii) if J(*5, oo) < 0, then t\ -> oo.

Q.E.D.

3. SPECIAL CASES OF THE POLICY 2

Case 1 (p(y) = l, ce = cr = c0, {j,e = fj,r=m, ke(x)=kr(x)=k(x)): This is the
case considered by Park and Park [15]. In this case, if we put p(y)-\,
q(y) = 0, tie = V>r=m, ce = cr = co, ke(x)=kr{x)-k{x) in (18), then we have the
expression for the expected cost per unit time as

/ F{y)dyk{x)dx
o Jt0

/ F(y)dyk(x)dx
J0 J

\m+ / F(y)dy+ / / F(y)dyk(x)dx\, (21)
L Jo Jo Jto+x )

which agrées with équation (5) in Park and Park [15] and can be optimized
for *o and t\ as Park and Park [15].

Case 2 <p(y) = Of ce = cr = c0, g{C(y\ ct(y)) = c, ke(x)=kr(x)=k(x)): This
is the case considered by Park and Park [14]. In this case, we assume all
failures are type I failure (Le. p(y)~0, q(y)=l). If we putJp(y) = 0, q(y) = l9
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ce = cr = co, g(C(y), Ci(y)) = c, ke(x) = kr(x) = k(x) in (18), then we get the
following result as Park and Park [14] obtained,

f Z**1

B (to i t\ ) — i co + c ƒ R (to + t i ) k (x) dx
[ Jo

+ c R(to+x) k(x)dx + ch * (ti -x)k (x) dx \

H nk(y)dydx). (22)+ ti +

Case 3 (t\ =0): In this case, Policy 2 reduces to Policy 1. If we put t\ =0
in (18), then we get the expression (8).

Case 4 (*i=0, p(y) = l, ke(x)=kr(x)=k(x) and &(x) is degenerated
at L): Osaki [12] considered this case. If we put t\=0, p(y)~l and
ke(x)=kr(x)=k(x) is degenerated at L in (18), then we get the following
result as Osaki [12] obtained,

_ fto+L
ce F (to) + cr F (to) + cs ƒ F (y) dy

B (to) = -ï— iïa (23)
/ F(y)dy + L

Jo
Case 5 (*i =0, p (y) = 1, ke (x) is degenerated at Le, /:r (x) is degenerated at

Lr): Kaio and Osaki [11] considered this case.

Case 6 (*i=0, g(C(y), Ci(y)) = Ci(y), ke(x) and kr(x) are degenerated at
0): This is the case considered by Block et al [7].

Case 7 ( t1 =0, p(y) = 09 g(C(y)9 Ci(y)) = c(y)9 ke(x) and kr(x) are
degenerated at 0): This is the case considered by Boland [8].

Case 8 (*i = 0, p (y) = 0, g(C (y), ct (y)) = a, ke (x) and kr (x) are degenerated
at 0): Boland and Proschan [9] investigated this case. In particular they
considered the cost structure ci = a + ic.

Case 9 (*i = 0, p (y) =p, g (C (y), Q (y)) = C, /:e (x) and kr (x) are degenerated
at 0): This is the case considered by Cléroux et al. [10].

Case 10 (*i =0, p(y)= 1, ke(x) and kr (x) are degenerated at 0): This is the
classical age replacement considered by Barlow and Proschan [5].

Case 11 (*i = 0, p (y) = 0, g (C (y), Q (y)) = c, ke (x) and kr (x) are degenerated
at 0): The problem reduces to the classical periodic replacement with minimal
repair at failure. Barlow and Hunter [4] considered this case.
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Case 12 (g (C (y), et (y)) = C(y) + Ci (y)): Here the cost of the minimal repair
is the age-dependent random part C(y) plus the deterministic part Q(V) and
so h(y) = E [C (y)] + E [cM(y)+1 (»)] in (18).

4. A NUMERICAL EXAMPLE

In the numerical analysis here we shall consider the system with the
Weibull distribution which is one of the most common in reliability studies.
The p.d.f. of the Weibull distribution with shape parameter f3 and scale
parameter 9 is given by

/ w = f ( f ) ' ' * * [ - ( ? ) ' ] ' i>o' p>6>0> (26)

and the parameter of the distribution will be chosen /3 = 2.
The p. d. f. of the random lead time of an expedited order is given by

ke (x) = — exp - — , x > 0, Me > 0. (27)

The p. d. f. of the random lead time of a regular order is given by

kr (x) - — exp | - — 1 , x > 0, fir > 0. (28)
fl l MJ

Suppose that g(C(y), c%(y))-C{y)-\-ct (y). Here we discuss a policy where,
at failure, one replaces the system or repairs it depending on the random cost
C of repair. Let CQO be the constant cost. A replacement (type H failure) upon
at âge y takes place if C > S(y)coo> if C < 6(y)cOO') then on proceeds
a minimal repair (type I failure). The parameter 6 (y) can be interpreted
as a fraction of the constant cost CQO at âge y, and 0 < 6 (y) < 1. Here
we consider the following parametric form of the repair cost limit function
S (y) — 6e~ay with 0 < 'S < 1 and a > 0. Suppose that the random repair
cost C has a normal distribution L(.) and density / ( . ) , with mean fi and
standard déviation a (the probability of a négative cost is negligible). If
an operating system fails at âge y, it is either replaced with a new system
with probability

rà{y)c00

p(y) = l- l{x)dx (29)
Jo

or it undergoes minimal repair with probability

l (x) dx (30)
Jo
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Then the random part C(y) of minimal repair at âge y has density
ly(x) = l(x)/q(y) for 0 < x < S(y)coo and

h(y) — EM(y) [EC(y) [g(C(y), cM(y)+i (y))}]

r6(y)c

= /

r
y (x) dx + ^M(y) [cM(y)+l (y)]

xl(x) dx + EM(y) [cM(y)+i (y)]> (31)

where { M (y), y > 0 } is a non-homogeneous Poisson process with intensity
q(y)r(y).

Furthermore, when c,- (y) = C3 + C4>> + C5 i (C3 > 0, C4 > 0, C5 > 0), then

' h(y) = —r^ / x / (x) da; + c3 + c4 y
9 (y) io

V q (ar) r (x) dar + 1V (32)

In the numerical analysis we first compute the optimum solution £Q which
minimizes B(to) in (8) for the policy 1. Then, we seek an optimum solution
t\ which minimizes B (tj-J, t\) in (18) for a fixed value t^ given by a solution
to (8). The parameters 6, a and Ch were varied to take the different values
in order to see thier influence on the optimal solution. The results are given
in Tables 1 and 2. It should be noted that we can check the minimum cost
per unit time 5 (tg, *J) in Tables 1 and 2 is correct by putting tg and t\
in the expression (20).

In this paper, the repair cost limit function 6 (y) = 6e~ay is chosen for
the purpose of easy computation. From the numerical results, we can dérive
the following remarks:

Optimal ordering policies with gênerai random repair costs, for the Weibull
distribution.

/3 = 2, 0 = 1,012, fie= 100, fj,r = 120, cr= 1,100, ce = 1,300, Coo = 1,100, cs = 5,
C - iV(700, 2002).
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TABLEAU 1

Ci(y)=O

6

1

10/11

9/11

8/11

7/11

5/11

3/11

a

0

0

0

0

0

0

0

q(y)

0.977

0.933

0.841

0.691

0,500

0.158

0.001

Ch

0.10

0.10

0.10

0.10

010

1.00

1.75

*o*

1,172

1,203

1,263

1,354

1,457

1,566

1,562

1.7278

1.7077

1.6787

1.6549

1.6563

1.7300

1.7866

65

108

226

536

1,381

4,273

2,050

1.7275

1.7065

1.6722

1.6265

1.5974

1.7154

1.7863

TABLEAU 2

d (y) = 0.2>>, a (y) = 0.2y + 2i

6

1

1

1

10/11

10/11

10/11

9/11

9/11

9/11

8/11

8/11

8/11

7/11

7/11

7/11

5/11

3/11

a

0

0.00015

0.00070

0

0.00010

0.00060

0

0.00010

0.00050

0

0.00005

0.00036

0

0.00005

0.00024

0

0

q (y)

0.977

*

*

0.933

*

*

0.841

*

*

0,691

*

0.500

*

*

0.158

0,001

Ch

0.10

0.10

oo

0.10

0.10

oo

0.10

0.10

oo

0.10

0.10

oo

0.10

0.10

oo

0.10

1.75

d (y) = 02y

967

1,035

1,433

990

1,053

1,436

1,039

1,133

1,440

1,121

1,176

1,439

1,235

1,293

1,442

1,463

1,546

1.9076

1.8642

1.6816

1.8826

1.8430

1.6866

1.8407

1.7925

1.6947

1.7911

1.7692

1.7063

1.7540

1.7408

1.7214

1.7576

1.7902

85

140

0

106

174

0

158

365

0

288

464

0

588

1,120

0

1,155

96

B(«,tî)
1.9062

1.8607

1.6816

1.8802

1.8370

1.6866

1.8352

1.7706

1.6947

1,7740

1.7367

1.7063

1.7111

1.6769

1.7214

1.7446

1.7902
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6

1

1

1

10/11

10/11

10/11

9/11

9/11

9/11

8/11

8/11

8/11

7/11

7/11

7/11

5/11

3/11

a

0

0.00015

0.00070

0

0.00010

0.00060

0

0.00010

0.00050

0

0.00005

0.00036

0

0.00005

0.00024

0

0

0.977

*

*

0.933

*

*

0.841

*

*

0.691

*

*

0.500

*

*

0.158

0.001

Ch

0.10

0.10

oo

0.10

0.10

oo

0.10

0.10

oo

0.10

0.10

oo

0.10

0.10

oo

0.10

1.75

Ci(y) = 0.2y + 2i

964

1,032

1,433

987

1,051

1,436

1,036

1,131

1,440

1,118

1,174

1,439

1,233

1,291

1,442

1,462

1,546

1.9109

1.8674

1.6826

1.8880

1,8460

1.6876

1.8436

1.7951

1.6956

1.7934

1.7713

1.7073

1.7555

1.7421

1.7221

1.7580

1.7902

*ï
89

139

0

106

172

0

158

361

0

287

460

0

584

1,109

0

1,149

94

1.9095

1.8639

1.6826

1.8834

1.8402

1.6876

1.8380

1.7735

1.6956

1.7762

1.7390

1.7073

1.7127

1.6783

1.7221

1.7450

1.7902

*: age-dependent.

(i) from Table 1, some improvement can be made in the minimum cost per
unit time for the Policy 1 and 2 if one allows for minimal repair at failure;

(ii) from Table 2, the minimum cost per unit time for the Policy 1 and 2
will be reduced when the probability of minimal repairing is age-dependent;

(iii) from Table 2, when holding cost Ch is small, Policy 2 is better than
Policy 1 and when holding cost is sufficiently large Policy 2 has optimal
solution t\ = 0 and B(tg, t\) = S(*5);

(iv) it can be seen that the present models are a generalization on previously
known policies.
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