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GLOBAL OPTIMIZATION BY ARTIFICIAL LIFE: A NEW
TECHNIQUE USING GENETIC POPULATION EVOLUTION (*)

by F. BICKING (1), C. FONTEIX (1),

J.-P. CORRIOU ( !) and I. MARC (l) (**)

Communicated by Jean ABADIE

Abstract. — In this paper, a new technique based on genetic algorithms principles is proposed for
global optimizatïon problems. This optimîzation technique uses concepts front population genetics
such as population size, birth, death, mutation. Its main characteristic is to perform the search by
working on real variables. Following the algorithm description, experiments and results on a set of
functions are provided. The ease of implementation of this new method makes it particularly useful
as a tool for nonlinear unconstrained and constrained optimization problems.

Keywords: Global optimization, stochastic method, probabilistic rules, population genetics.

Résumé. - Dans cet article, une nouvelle technique basée sur les principes des algorithmes
génétiques est proposée pour traiter des problèmes d'optimisation globale. Cette technique
d'optimisation utilise des concepts tirés de la génétique des populations tels que la taille de la
population, la naissance, la mort, la mutation. Sa principale caractéristique est d'effectuer la
recherche en opérant sur des variables réelles. Après une description de l'algorithme, des études
de recherche d'optimum et leurs résultats sont présentés pour différentes fonctions. La facilité
d'implantation de cette nouvelle méthode la rend particulièrement utile pour résoudre des problèmes
d'optimisation nonlinéaire avec ou sans contraintes.

Mots clés : Optimisation globale, méthode stochastique, règles probabilistes, génétique des
populations.

1. INTRODUCTION

With the advent of advanced computer architectures and emerging of new
theoretical results, there is a growing interest in developing algorithms for
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24 F. BicKiNG et al

nonlinear optimization problems. A large number of optimization problems
can be written in the following form:

Mm{f{x)\ x E X} where X C Rn ; ƒ : Rn -+ R

X= {x e Rn\lj < Xj < ty, j = l, 2,..., n;

0*0*0 <hi k = 1, 2,..., m}

where Zj and M/ are respectively the lower and upper bounds for xy. It assumes
that n> m, the Ij and u;- are known and lj<Uj for ; = 1, 2, ..., n. Note that ƒ
is not required to be convex, differentiable, continuous or unimodal. This
kind of problems can be solved with différents approaches: deterministic or
stochastic, according to the classification adopted by most authors.

Among deterministic approaches» Floudas étal [1, 2] distinguish covering
methods, branch and bound methods, cutting plane methods, interval
methods, trajectory methods and penalty methods. Among probabilistic
methods, they distinguish random search methods [3], clustering methods
[4], methods based on statistical models of objective functions [5, 6].

Rinnooy Kan and Timmer [7] prefer to this classical distinction into
deterministic and stochastic approaches the following classification based on
the philosophy of the respective methods: partition and search, approximation
and search, global decrease, improvement of local minima, enumeration of
local minima.

It will be shown in the following that genetic algorithms are clearly a
stochastic approach which can be seen as a random search method. It is
more difficult to incorporate genetic algorithms in Rinnooy Kan and Timmer
[7] classification, however they have links with a global decrease method
with respect to the best generated point.

Genetic algorithms constitute a class of optimization algorithms. This class
of algorithms is distinguished firom other optimization techniques by the use
of concepts from population genetics to perform the search [8, 9], A genetic
algorithm créâtes a collection of initial points in the search space and makes
it evolve by genetic operators such as sélection, recombination, mutation and
crossover. The four characteristics of these algorithms are the following:

- parameters are coded in fixed length strings that assume an implicit
parallelism;

- the search is performed with a population of points, not with a single one;

- probabilistic rules are used to make the population evolve;
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GLOBAL OPTIMIZATÏON BY ARTMCIAL LIFE 25

- no information about the function is required, for example continuity,
derivability, convexity,...

In this paper, a new technique for global optimization based on genetic
concept is presented. The proposed technique uses actual values of the
parameters while genetic algorithms use coded parameters. Our technique
works also with genetic operators to perform the search. The overall approach
is stochastic in nature, which makes theoretical analysis quite difficult,
especially with regard to issues about the global convergence. Therefore the
behavior is characterized computationally through a series of experiments.
We first describe the proposed Global Optimization through Artificial Life
technique (GOAL). Then, the experiments on a set of test functions selected
from the literature for their difficulty and the results are provided.

2. DESCRIPTION OF THE ALGORITHM

As mentioned earlier, in this approach, we use genetic concepts. Like
genetic algorithms, our method considers simultaneously many points from
the search space by generating populations of points and tests each point
independently. At each itération, called a génération, a new population is
generated and tested. Probabilistic rules are used to guide the search. Our
algorithm requires only information concerning the quality of the solution
(objective function value). With probabilistic rules, a random choice is
efficiently introduced in the exploitation of knowledge to locate near optimal
solutions rapidly.

The philosophical principle can lead to a qualitative understanding of the
algorithm. The proposed algorithm opérâtes with a set of vectors which
represents a population of individuals. The phenotype of an individual is
given by a real vector x with x G X. Each component of x is called a gene.

The algorithm can be described by a five-tuple (N, L, M, G, S):

- N: Population size.

The population size affects both the performance and the efficiency of
the algorithm. It generally behaves poorly with very small populations,
because the population provides an insufficient sample size for the search.
A large population is more likely to contain représentative individuals and
discourages premature convergence to suboptimal solutions but requires more
évaluations per génération, possibly resulting in a slow rate of convergence.

- L: Number of genes.
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26 F. BiCKiNG et al

This parameter dépends on the characteristics of the function to optimize
(L = dim(x), x E X).

- M: Mutation rate.

Mutation is a secondary search operator which increases the variability
of the population and prevents complete loss of "genetic material" through
sélection and recombination. Approximately, MxN mutations occur per
génération. The mutation rate value is chosen equal to 0.01, near the value
met in natural processes.

- G: Génération patrimony.

The génération patrimony détermines the population ratio which remains
unchanged at each génération.

- S: strategy.

The population evolves génération after génération under the application
of evolutionary rules called genetic operators. The used strategy influences
the sélection process. Different stratégies might have been used; in partieular,
in genetic algorithms, the pure sélection strategy is often encountered where
each individual in the current population is reproduced in proportion to
the individuals performance. In the present case, only the elitist strategy is
retained: at each génération,NxG individuals are unchanged andNx (1-G)
are eliminated; these latter will be replaced by new individuals.

The search is done by N active individuals» each of them being described
by its vector of gènes or phenotype

x' = (x\, 4 , . . . , 4 ) (s* G X) and ƒ(*<),

its objective function. First, the algorithm créâtes at random an initial
population of N individuals satisfying ail eventual constraints. In the
évaluation process, the objective function is computed for each individual
and the extrema values î Min and #Max are stored (£fMin=Min {ƒ Çx*)} and
i/Max = Max {ƒ (x1)} for i = l , 2,..., N).

The population is next sorted in increasing order by ƒ (x1) if a minimization
is operated (respectively decreasing order in case of maximization) and a
sélection is made. Only a population ratio is selected using the génération
patrimony. The N x G first individuals will survive and participate to the
création of a new génération. So G is chosen to select individuals as severely
as possible without destroying the diversity of the population too much.
The elitist strategy guarantees that the best individual of a population Pt

survives in P^+i.
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GLOBAL OPTMZATION BY ARTIFICIAL LIFE 27

In the reproductive stage, two individuals among the NxG selected are
chosen at random to create a new individual (a child), ^(Nx G<k<N) by
a random combination of the parents genes. This new individual is tested
with respect to all constraints with must be satisfied; if not, it is rejected
and another child is created. This child can mutate with the mutation rate M.
The mutation operator sélects at random one gene j that undergoes a random
change (Ij < x^ < UJ). Next, the objective fonction value of this child is
computed. Another sélection is made: the child that satisfies ƒ (x*)<#Max is
accepted, otherwise another birth takes place. The reproductive stage runs
until k-N, so the population is entirely reconstructed and the search scheme
is iterated.

In order to verify the convergence of the algorithm, the following fitness
index was defined:

ffMin - f l y * g + 1 = fit(p;)

W h e r e , NxG
% — 1

If the best NxG individuals (subpopulation P[) converge to the found
minimum (#MinX fit(-P/) will tend to 1. It ensures the convergence to a
minimum without knowing whether it is a local or a global one.

The conditions to stop the search are

|#Max - #Min| < £ and fit(Pt') « 1.

The first condition assumes that the entire population has converged to a
solution and the second one that this point is the best minimum found during
the run. This means that e is an important factor for the search. If e is very
small, the search goes on and a better minimum (hopefully the global one)
can be located due to the mutation process, otherwise the found solution is
likely to be a local minimum.

Due to the elistist strategy, the next génération will have a minimal
fonction value (//MÛI) lower or equal to the previous one. So, génération
after génération, the population will converge to a solution which will be
the best found during the search.

The algorithm is summarized by the block diagram (fig. 1).
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verified conditions
STOP ) - * — <^EvaluatiorT

( SOLUTIONS )

Reproductive stage
to create new

génération

Figure 1. - Block diagram of the algorithm.

3. EXPERIMENTS AND RESULTS

Several functions taken from the literature have been tested with the
proposed optimization technique. The complexity of a function optimization
problem dépends on the number of local minima and their distnbution and
the search domain defined by the constraints.

The first and simple example is presented to show the algorithm behavior
in the search space. The second one is the Rosenbrock's 4-dimensional
function, the third one is subjected to nonlinear constraints, the fourth one
is used extensively in the Genetic Algorithms community. The two last are
used in "mainstream" optimization and are multimodal.

For all runs, the mutation rate M is fixed equal to 0.01 and the used
strategy is elitist, e is chosen equal to 10"8.

Example 1: The first experiment concerns a simple unimodal function with
explicit constraints but présents a real interest to visualize the algorithm
convergence.

Min { ƒ (ar, y) = 1 + (5 - x - y)1 +
2 , (1 - x + yf

16
0 < x,y < 7
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The global minimum is located at (x=3, y-2) with an objective function
value of 1. Figure 2 shows the algorithm behavior and the search domain is
also presented with the contours of f(x,y).

The initial population is scattered (fig. 2 a). The successive populations
are presented génération after génération (L e. figure 2 b corresponds to

Figure 2. - Behavior of the algorithm for example l
(successive populations for générations 1 to 6).

vol. 28, n° 1, 1994
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génération 2, figure 2 c to génération 3 and so on). The points are
progressively concentrated to a particular région of the search space where
the minimum is located (figure 2 / corresponding to génération 6). The
next générations bring a further accuracy which is not distinguishable on
a drawing.

The global minimum was located in 12 générations with N-500 and
G = 0.2, L being fixed equal to 2.

Example 2: This experiment is to minimize the Rosenbrock's
4-dimensional function:

M i n { f { i

= 100 (xi - # i ) 2+(l - X!)2 + 90 ( 4 - xs)
2 + (1 - x3)

2

+ 10.1 \{x2 - l ) 2 + (a* - l)2] + 19.8 (x2 - 1)(£4 - 1)}

The global minimum / = 0 is located at (1, 1, 1, 1). The algorithm was
tried with two populations sizes N= 100 and N=500,L=4, and a génération
patrimony equal to 0.2. The variations of N and G influence only the
number of générations needed to reach the solution but not the quality of
the solution, the global optimum being located at each run. For G = 0.2 and
N= 100, 318 générations were neded instead of only 25 for N=500.

Example 3: This experiment is to minimize the following function subject
to two nonlinear constraints [2].

Min{ƒ (yi,î/2) = -yi ~ yi)

with the search domain: 0 < y\ < 3 and 0 < Î/2 £ 4

subject to constraints:

yi < 2 + 2y\ - 8yf + Sy\

y2 < Ay\ - 32y? + 88y? - 96yi + 36

The feasible région consists of two disconnected subregions (fig. 3 a). The
global solution ƒ=-5.50796 occurs at yx = 2.3295 (point C on figure 3 b).

The proposed algorithm located the global minimum aty\=23295 with an
objective value of -5.50797. The optimum was detected in 24 générations
with 7^=500, G = 0.2, L being fixed equal to 2 and 50 générations for

G = 0.2

Recherche opérationnelle/Opérations Research



GLOBAL OPTMIZATION BY ARTMCIAL LIFE 31

lio
n

o
«A,. _
O

e
O-

b °

QO
-0.5
- 1

-1.5
- 2

-2.5
- 5

-3.5
- 4

- 4 5
- 5

-5.5

•

•
•

-

i
/

\ 1
\lV

A

1.0
1

\

ao s.(i i i '

\ ^

\ /

\ \ /

B \ /

C

Figure 3. - (a) Feasible région for example 3; (b) Optimal solution of example 3.

Example 4: This function was suggested by De Jong [10]

Min{/ (x,y) = 100 (x2 - y2)2 + (1 - xf }; -2.048 < x,y < 2.048

This fonction (fig. 4) is nonconvex and has its global minimum ƒ = 0 at
(1,1). For all runs with different population size, the proposed algorithm has
located the global optimum as shown in table.
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TABLE

Influence of the population size N and the génération patrimony G on the number of générations.

N

500
500
50
50

G

0.2
0.5
0.2
0.5

Générations

14
200
22

391

2 - 2

Figure 4. - Function of example 4.

Example 5: This function was suggested by Griewangk [11]

r io io Ï
-600 < x< x% < 600

The global minimum / = 0 is located at Jct-=O, i = l , 2,..., n. The local
minima are located approximately at

Xk — ±kirVï, i = 1,2,..., n, fe — 0 ,1 ,2 ,3 , . . .

In ten dimensions, there are four suboptimal minima f(x) « 0.0074 at
x « (±7r, ±7T >/2,0,. . . , 0) . For all runs, the proposed algorithm has located
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the global optimum. In ten dimensions, with N=500, the number of necessary
générations was 35, respectively 65, resp. 124 with G equal to 0.2, resp.
0.5, resp. 0.7.

Example 6: This function was proposed by Schwefel [12].

Mini ƒ (x) = J2~Xl sin(VW\) ?; -500 < Xi < 500

The global minimum is at x,-=420.9687, i= l , 2, ..., n (fig. 5). The local
minima are located at the points x^ = (vr (0.5 + /c))2, k = 0, 2, 4, 6 for
the positive directions of the coordinate axis and xj- = — (TT(0.5 + k))2,
k = 1, 3, 5. Points with x,-=420.9687, i=l,2,..., n, Ï^J, JC/=-302.5232, give
the second best minimum-far away from the global minimum. For all runs
with N=500 and G = 0.2, the proposed algorithm has located the global
optimum in 52 générations. For N=500 and G = 0.5, 196 générations were
necessary to reach the solution. To emphasize the efficiency of the algorithm
when faced to a multimodal function, two additional cases on the present
two-dimensional function have been studied in detail; in these particular
studies, the initial population has been randomly generated in a restricted
area far from the optimum.

-400

-400
-200

200
400

Figure 5. - Two-dimensional version of function of example 6.
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Case a: the generating domain for the initial population was —500 < Xi <
—400 to be compared to the search domain: —500 < x{ < 500. At each
génération, the centroid for the population has been represented on figure 6
(contours of the function). The numbers on figure 6 indicate the génération
in question. It can be seen that during the évolution towards the optimum
which is reached after 42 générations, the centroid undergoes phases of
"accélération" and "décélération": sometimes, it seems to be trapped in a
local minimum before emerging towards a new position. The population size
was #=500 and G = 0.2.

400

200

-200 -

-400 •

-400 400

Figure 6. - Contours for function of example 6 and different ways to reach the optimum.

Case b: the generating domain for the initial population was
-100 < Xi < 100. Near the génération 10, the centroid évoluâtes slowly
around the point (80, 420) (fig. 6), then near the génération 20 around
the point (-302, 420) which is a second-order local minimum (Min2). It
extirpâtes itself only at the génération 40 where it évoluâtes quickly towards
the searched minimum reached after 64 générations. The population size was
only AT=50, with G = 0.2.
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4. CONCLUSION

In this paper, a new and original method for function optimization problems
is proposed. It uses concepts of genetics to perform the search. lts main
originality is the use of actual values of parameters instead of coded ones
as usually used in genetic algorithms. The main operating parameters to
be defined for the algorithm in a given optimum search are the population
size, the number of genes, the mutation rate, the génération patrimony.
The algorithm strategy is elitist, i. e. only the best points are retained. The
method has been tested on several cases of nonlinear unconstrained and
constrained optimization problems. A fitness index has been defined to serve
as an indicator for convergence. Even when the test function presented
pronounced extrema and when the initial population was confined near a
local extremum, at the end, the global optimum was always located. Though
the global convergence cannot be proved, the expérience gained through
many complex optimization problems makes us think that the algorithm is
both robust and powerful.

Further work may be done along the following main research directions:
first development of additional properties that can increase the computational
efficiency and secondly application of this method in various domains as
an optimization tooi.
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